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Using the exact solution of the problem of dynamic scattering of x rays in a crystal with a constant strain 
gradient, we construct the quasiclassical asymptotic form of the wave field for a wide range of scattering 
parameters and calculate the pre-exponential factor as a function of the crystal deformation B. The 
divergence of the integral intensity of the scattered wave for a nonabsorbing crystal, which is known from 
the theory of geometric optics in the limiting case I BI> 1, is lifted in this case because of the static 
scattering factor (pre-exponential factor) of the form 1-exp( -71" 121B1). The limits of applicability of 
geometrical optics are determined on the basis of the trajectory approach. The qualitative features of 
dynamic scattering of x rays by an elastically bent crystal, particularly the formation of the caustic and the 
focusing of the x rays are determined. 

PACS numbers: 78.70.Ck 

1. INTRODUCTION 

Until recently, it was customary to use the theory of 
geometric optics to analyze the dynamic scattering of 
x rays in an inhomogeneous crystaly~61 In the case 
leff» A, where leff is the characteristic inhomogeneity 
length of the crystal and A is the scattering length (the 
extinction length) for radiation in a perfect crystal, the 
first term of the asymptotic series of the expansion ob­
tained within the framework of this theory in powers of 
Afeh « 1 gives the correct result. If, however, 
leff 'S A, then all the terms of the series become of the 
same order, and the geometric-optics theory leads to 
qualitatively incorrect conclusions. 

It is known (see, e.g. pi) that a general method of 
solving scattering problem is to construct the quasiclas­
sical asymptotic wave function on the basis of trajec­
tories corresponding to the classical equations of motion. 
The effectiveness of this approach, if it can be used con­
sistently, is obvious, for in the general case the multi­
dimensional scattering problem reduces to one-dimen­
sional, and the essential singularities of the scattering, 
where the quasiclassical approximations are violated, 
have the clear-cut physical meaning of formation of 
caustics. 

The principal role is assumed in this connection by 
the class of problems of dynamic scattering of x rays 
(DXRS) in an inhomogeneous crystal with a constant 
strain gradient. It turns out that in this case the boundary­
value scattering problem can be solved exactly[S-lll (see 
also[12, 131). In l9 , 111 there was constructed a retarded 
Green-Riemann function for x-ray quanta in a crystal 
with an elastic-displacement field that is an arbitrary 
quadratic function of the coordinates in the scattering 
plane. An investigation of the solution obtained there is 
of interest in itself, since it permits a complete analysis 
of the problem of quasiclassical scattering of particles 
(x-ray quanta) in the case of a "potential" that is a lin­
ear function of the coordinates. 

The present paper is devoted to an investigation of 
the quasiclassical approximation in the two-dimensional 
DXRS problem in the case of a homogeneous strain gra­
dient. Special attention is paid to the calculation of the 
pre-exponential factor of the quasiclassic asymptotic 
wave field as a function of the crystal deformation. In 
Sec. 2, to solve the boundary-value problelI', an oblique 
dimensionless coordinate system is introduced, in which 
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the mathematical formulation of the problem and the 
analysis of the result become much simpler. A complete 
system of influence functions of a point source (Green's 
functions) is obtained, and an integral formulation is 
presented of the Huyghens-Fresnel principle for a wave 
field in a crystal. In Sec. 3 we present a detailed analysis 
and construct the asymptotic Green's function in a wide 
range of the parameters of the scattering problem close 
to (the wave region) and far from (the quasiclassical 
region) the characteristics of the influence region of a 
pointlike source. In the region where the quasiclassical 
approximation is valid, we obtain the static scattering 
factor and the scattering phase shift (the two to-
gether constitute the pre-exponental factor) as 
functions of the effective deformation of the crys-
tal B. This procedure eliminates automatically the 
divergence, known from the theory of geometric optics 
and linear in IBI » 1, of the integrated (over the angles) 
intensity of the scattered wave for a non-absorbing crys­
tal. At low effective deformations IBI « 1, the regions 
of applicability of the wave and of the quasiclassical ap­
proximations overlap and it becomes possible to obtain 
a simple interpolation formula for the Green's function 
in the entire influence region. The quasi classical ap­
proximation is used (Sec. 4) to reveal the qualitative 
features of the propagation of x rays in an elastically 
bent crystal. It is interesting that the spatial distribu­
tion of the wave field of an incident plane wave passing 
through such a crystal exhibits a number of character­
istic features of energy fOCUSing of x rays with formation 
of caustics. Using symmetrical DXRS as an example, we 
demonstrate the feasibility, in principle, of using a bent 
crystal as a lens for x rays, starting with a certain crys­
tal thickness. The focal length is determined and an equa­
tion is obtained for the caustics. 

2. FORMULATION OF PROBLEM 

When an x-ray beam is incident on a crystal oriented 
near the regular Bragg reflection, the wave field inside 
the crystal is a coherent superposition of a transmitted 
wave and a scattered wave' this superposition is de­
scribed by the Takagi system of dynamiC equa­
tionsY4-16, 3,5, 9J In a form symmetric with respect to 
the amplitudes 

Eo,.=exp ,K -80+--8. .Eo,,, { . (1(0 j(o-a)} 
210 2'(. 

(2.1a) 

these equations become 
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·aE n . 
i-' +-cr-,exp(ihu(R»E,=O, 

as, .\ 
aE,. n 
i- + - cr, exp (-ihu(R) )E,=O. 

as, A . 
(2.1b) 

Here h is the reciprocal-lattice vector multiplied by 
21T, u(R) is the vector of elastic displacement at the 
point R, the oblique coordinate system with axes along 
the directions Ko of the incident beam and K, of the scat­
tered beam is defined by the relation 

(2.2) 

where Yo and y, are the direction cosines, YO,l 
= cos (K07,n), n is the inward normal to the entrance sur­
face of the crystal, K = w/r:" 'J) is the frequency of the 
x-ray wave, and c is the speed of light. The dynamic co­
efficients (7±1 are accordingly defined by the formulas 

cr_,=~ i'KX_' ... ~(X_')'/' (Hik) , 
n 2,,(, l'1~1 x. 

(2.3) cr.=~ i'Kx .... ~ (~)'/' (Hik) , 
n 2,,(. l'1~1 X-I 

where xo and XI1 are the Fourier components of the po­
larizability of the crystal, A is the extinction length, '{f 

is a polarization factor equal to unity or to cos 28, 
k = (xfx.!~ + X~'X{')/2>11 is the normalized dynamic absorp­
tion coefficient, >II = XtX~' - X{'X.!~, a single prime denotes 
the real part and a double prime the imaginary part of 
the corresponding quantity, and f3 = YO/Ylo We note that 
by definition k < 0 and usually I kl « 1. 

The system (2.1b) has been written out in the oblique 
system (SO,Sl), but the boundary conditions are formu­
lated on the entrance surface of the crystal. It is there­
fore expedient to introduce a dimensionless "special" 
system of coordinates (see Fig. 1) with the aid of the 
relations 

It is easily seen that the x axis coincides in direction 
with the Cartesian axis X, and the z axis is the median 
of the triangle made up by the axes so, S" and d (Fig. 1), 
since 

z=~x 
sin (21/l) 

at x = O. Here if! = (CPo + cp,)/2 is the angle between the bi­
sector of the angle s ,Oso and the Z axis. 

We note that in the chosen coordinate system (X, z) 
the mathematical formulation of the problem, in the 
general case of asymmetric scattering, is of the same 
form as the formulation in the symmetric case (see, 
e.g.,(51). This circumstance greatly Simplifies the an­
alysis. 

In the DXRS case in a crystal with a constant strain 
gradient, the function h • u(R) is quadratic in the coor­
dinates 

;t' 
hu(R) =2 -=---(As,'+2Bs,s.+Cs,'). 

A' (2.5) 

For the same of simplicity, we have left out from the 
expression for the dhspiacement field u(R) in (2.5) the 
terms that are linear in the coordinates, since allow­
ance for them leads only to a renormalization of the 
value of the Bragg scattering angle 8. Expressions for 
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the displacement-field components in the case of me­
chanical and temperature flexures are given in(17, 11. 

In the (x, z) system, the boundary-value problem is 
formulated as follows (see (2.1) and (2.4)): 

. x,(1+~)±cx~ 
EfOl (r)=exp(t1Jr)EOI (r); 1J.,= , 

. .. 2i'l'1~1'¥ 
(2.6a) 

az ax 
( 
i(~+~) 

cr.exp(-ihu) 

cr-,exp(ihu) ')(E,)_o 
i(~-~) E, -, 

az ax . 
Ef,(x,O)=Ef(x), Ef,(x,O)=O, 

(2.6b) 

(2.7) 

where the displacement-field function h'u in (2.6b) is of 
the form (2.5). 

We note that 11X is the normalized angular deviation 
from the exact Bragg condition. The imaginary part, 
1J~, describes in the general case (f3 j: 1) the asymmetry 
of the absorption of the x-ray beam in the crystal. 

The solution of the problems (2.5) and (2.6) can be 
obtained with the aid of the Riemann method or with the 
retarded Green's function (~r(xp, x, zp, z)[lo, 111. Using 
the influence functions of a pointlike source obtained in 
there under the DXRS conditions, for any point (xp, zp ) 
of the triangular region bounded by the contour L and by 
the characteristics drawn from its ends to the point 
(xp, zp) (Fig. 2), we define the amplitudes of the trans­
mitted and scattered waves by the expressions 

Ef,(P) = J<!loo(xP,x,zp,z)Ef,(x,z) (dx-dz) + J(!lOl (xP. x, zp,z)8,(x, z) (dx+dz) , 

• • (2.8a) 

8, (P)= J <!l,,(xp, x, Zp, z)8o(x, z) (dx-dz) + J (!l" (.,,...T. c,. :)8, (x. z.I (dx-"-d:). 

RQ "" (2.8b) 
The influence functions take here the form 

<!loo(rp, r) = exp (i1J(rp-r) +is,} {6 (x-xp+:p-:-O) 

cr' (cr')} - -(zp-z+xp-x) ,F, 1 + i -,2: iBp' , 
4 .1.ll 

(!l" (rp, r) = i~, exp {i1J (rp-r) +is,-i (hu).} ,F, ( 1 + i :~ J; iEr'), 

(2.9) 
<!l" (I'p, r) = exp {i1J (rp-l') -is,} {{j(X-XP+Z-Zl'+O) 

- ~: (zp-z-xp+x) ,F, '1- i :~, 2; -iEp' )} 

io- t . ,. (. cr' ) <!l0l(rp,I')=2exp {t1J(rp-r)-,S,+t(hu).} ,F, I-,--vi I; -iBp' 

where ,F,(a, b; x) is a confluent hypergeometric function, 

Z 

FIG. I 

R _-___ ..;Q~ 

p 

FIG. 2 

FIG. I. Scattering geometry. The positive direction of the angles is 
counterclockwise. 

FIG. 2. Influence region for the observation. 
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p2 = (Zp - Z)2 - (Xp - X)2, rl' = 1 + 2ik, SO,l are quadratic 
fWlctions of the coordinates, equal to 

8.(rp , r) =lj2C[ (zp-xp) '- (z-x)'] +'j,B[ (zp+x) , 

- (xp+z)'-p'], (2.10) 
8, (rp , r) ='I,A [ (zp+xp) '- (z+x)']+'1 ,B[ (zp-x)'- (z-xp)'-p']. 

In (2.9) the symbols ±O ensure that the singular point of 
the 1i-fWlction will fall in the integration region. 

The general relations (2.8) together with formulas 
(2.9) constitute the Huyghens-Fresnel principle in the 
Kirchhoff form Wlder the DXRS conditions in a crystal 
with a constant strain gradient. On going to a perfect 
crystal, when the coefficients A, B, and C tend to zero, 
the influence fWlctions can be readily shown to go over 
into the corresponding expressions for a perfect crys­
tal~5] We note that, as seen from (2.9), the influence 
fWlctions are, apart from a phase factor, invariant to 
translations. PhYSically this is connected with the in­
variance of the distribution of the intensity of a point­
like source placed in a homogeneously bent crystal, with 
respect to translations that constitute a superposition of 
two pairs of successive rotations through equal and op­
posite angles relative to the center of curvature of the 
reflecting planes (center of curvature of the neutral 
plane) and the point at which the source is located. fu 
each of thes e rotations, the intens ity of the diffraction 
image of the source, which is equal to the square of the 
modulus of the influence fWlction, depends only on the 
difference of the coordinates of the source and of the 
observation point. 

In an x-ray experiment the source is usually placed 
on the z = 0 surface of the crystal. Then, taking into 
accoWlt the boundary conditions (2.7), we obtain for the 
amplitudes of the transmitted and scattered waves (cf. 
(2.8» 

(So (P) =.f dX@oo(.Te, x, Zp, 0)8 (:1'), 
RQ 

8,(P)= J dx@,,(xp,x,zp,O)8(x). (2.11) 
nQ 

Expressions (2.8), (2.11), and also (2.9), (2.10), in accord 
with the Huyghens-Fresnel prinCiple, solve completely 
the problem of x-ray optics of a crystal with a constant 
strain gradient. 

It is interesting that if the axis of the homogeneous 
bending of the crys tal lies in a reflecting plane, then 
B = 0, A f 0, C f 0, and the influence functions coincide, 
accurate to within a phase factor, with the corresponding 
expressions for a perfect crystal. In this case the inte­
grated (over the angles) intensity of the scattered wave 
Rio which can be easily shown to equal 

Zp 

R,= S dxl@"I', 

does not depend on the magnitude of the strain. 

Further investigations of the solutions (2.8) and (2.11) 
call for the use of nonstandard asymptotic expansions 
of the confluent hyper geometric function 1F1 as a func­
tion of the effective deformation parameter B. This 
question will be discussed in detail below. 

3. THE ASYMPTOTIC GREEN'S FUNCTIONS 

The spatial distribution of the wave field in the crys­
tal is determined, in accord with the Huyghens-Fresnel 
principle (28), by the influence fWlctions of the pointlike 
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source (2.9) (the Green's functions). It is obvious that 
in physical applications the effective expansions of the 
Green's fWlctions are those in powers of the deforma­
tion of the crystal. To obtain Green's-function repre­
sentations of interest to us for a wide range of para­
meters of the problem and of the argument, we use 
Olver's methodYS] 

The gist of the method is to construct an asymptotic 
form of the Whittaker function 

F(t) =exp (-2i8Xt) (4iBXt) "",F, (bj2+iBX, b; 4iBXt), (3.1) 

where 

B'p' 
t=(;2' 

0' 1+2ili: 
x = 41BI "" 41BI ' li:=k+B(b-2), e=signB. 

We introduce a function W(v) defined by 

W(v) = (dtjdv)-"'F(t) , 

where the new variable v is defined by the relation 

X-- ---
v(t)=i'j;j' {l't(1+t)-ln(l'1+t-l't)}. (3.2) 

The function W(v) satisfies the equation 

d'W/dv'={4\x\'+f(v)}W, (3.3) 

whose two linearly-independent solutions have, in ac­
cordance with Olver'S theorem, the asymptotic expan­
sions 

,,-, A.(v) 
W,=exp(2Ixlv) [1: ~+O«2Ixl)-M)], 

11=0 

[ F (-1)'A.(v) ] 
W,=exp(-2Ixlv) .l..J (2Ixl)' +0«2Ixl)-M) . 

(3.4) 

3=0 

Here the functions As (v) are determined by the recur­
rence relations 

1 dA,(v) 1 S A .. ,(v)=----+- f(v)A.(v)dv+K" A,=1, 
2 du 2 

(3.5) 

Ks is an arbitrary constant, which is conveniently chosen 
such that As (v) - 0 as v - 00. The function f(v) is in our 
case equal to 

f(v) = (.!!.)' b(b-2) - [3 (~)' -2~~] /4 (!:!)', (3.6) 
dll 4t' dv' dv dv' dv 

We note that the function v(t) has the meaning of a 
complex eikonal, as follows from (3.4), and in principle 
can be obtained by the method of complex trajectories. 
On the other hand it is clear that it is possible to con­
struct a quasiclassical asymptotic form of the wave 
field by going over directly in the initial system of equa­
tion (2.1b) to one action variable along the classical 
trajectory. 

Using the linear connection between the fWlctions W, 
W1, and W2 and also the asymptotics of these functions 
at large values of the argument, we obtain for 1F1 the 
following representation: 

,F, =f (b) exp (2iext) (4xt) -"/'[tl (1 +t) ]'I' 

x{ (-ix)-'X exp (ix+inbI4)w,+ (iX)'X exP (-ix-inbI4)w,}, (3.7) 
I'(b/2-ix) f(bl2+ix) 

where r(z) is the Gamma function. Physically, the rep­
resentation of the Green's fWlction of an x-ray point 
source in the form of a sum of two terms corresponds 
to the propagation in the crystal of two wave fields (in 
accord with the two branches of the dispersion surface 
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"'1,2(1{) = W),£lO] with W1 and W2 corresponding to weakly 
and strongly absorbed waves, respectively. 

A direct analysis of expressions (3.2) and (3.4)-(3.6) 
shows that the region of applicability of the quasiclas­
sical expansions (3.4) has a limit not stronger than 

(3.8) 

independently of the degree of deformation of the crystal. 
This means that when the condition (3.7) is satisfied we 
can confine ourselves in (3.7) in practice to the first 
nonvanishing terms of the series (3.4). In the opposite 
limiting case, namely near the characteristic rays 
z = ±x (the wave region), the function 1F1 can be repre­
sented in the form of Olver'S third asymptotic expan-
sion[18]. , 

,F, (bI2+tsx, b; 4iEXt) -r(b)exp(2iext) 

X(2Ixlii)'-b{/b_,(4IxI1't) [I:A'(2~t;;'i) +Q«4iex)-N)] 
,_0 (4lEX)' (3.9) 

+ 1 ' b(4IxI1'"t) [~B,(2ii;;;) +O«4iex)_N) ]}. 
21'-iEx ~ (4iex)' ._0 

The functions As and Bs are connected and defined in 
analogy with (3.5) (for more details see[18]). The region 
of applicability of the representation (3.9) depends on 
the degree of deformation of the crystal' at large (small) 
IKI, i.e., small (large) values of the deformation para­
meter B, the expansion is respectively in powers of 
41 KI et2 and et2 • 

We note that formulas (3.7) and (3.9) are valid in 
the general case of an arbitrary deformation gradient 
B, the value of which determines in turn the region of 
applicability of the expansions obtained for the Green's 
functions. 

FIG. 3. Dependence of the scattering 
phase on the deformation. 

ImLn.C_ (1, 181) 
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0.1i 
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value calculated by perturbation theory (the kinematic 
limit). The point is that now, in comparison with geo­
metric optics [2] , the expression for the intensity Ri con­
tains the statistical scattering factor I C.1 2 = IC_12 
= 1- exp (-1T/2IBI), which tends to zero as IBI _ 00. 

Physically this is connected with the fact that as the de­
formation IBI increases the volume of the scattering 
region of the crystal decreases like 1- exp(-1T/2IBI). 

As a rule, the case when the strain gradient is small 
is realized in a deformed crystal far from the stress 
concentrators. It is interesting that in this case it is 
possible to write down a general formula that approxi­
mates uniformly the Green's function with a fixed rela­
tive accuracy 0 < 1. Inasmuch as at IBI « 1 we have 

ImlnC_(b,IBI)""-; (b-+), 

we obtain from (3.11) and (3.12) 

( 0' ) ( iBP') ( p ) ._b 
.F. Hi 4B ,b; iBp' -r(b)exp ~ "2 

x (211)-"'(p'(Hb;p') )_",{ exp [is(P) -ilt( b~1 + : )] 

+exp[ -is(p)+in( b~1 + : ) n. (3.13) 

It is easy to show that the regions of applicability of 
the expansions (3.9)- (3.13) at large IKI overlap, in which 

Formula (3.7) can be greatly simplified if it is recog- case 
nized that for x rays the dynamic absorption coefficient 

( 0' ) ( iBP') ( p ) ._b is usually 1 k\ « 1. The expression for the function v (P) 
in the region of applicability of (3.8) then takes the form 

27i 1+2t7i 
v(p)=iS(p)- 41BI -i4TBT In (H2i7i), 

p -- 1+2t1i --
S(P)=21'HB'p' -2iBI1n(l'HB>p'-IBlp). 

As a result we obtain after direct Simplifications 

,F.-r(b) exp (iBp'/2) (IBlp,)(·-b)!2{C+(e, b, IBI) 
xexp(iS(p»+C_(e, b, IB\)exp(-iS(p»}, 
• (tI4IBI) "'181-.(b-.)/, exp( -i/4IBI-i1tb/4) 

C+(e)=C_ (-e)= r(bI2+i/4IBI-e(b-2)I2) . 

(3.10) 

(3.11a) 

(3.11b) 

It can be shown that at b = 1 or 2 the coefficients C± 
do not depend on E, with C. = C-*. Their absolute values 
are determined by the relations 

W.(b, IBI) 1'= 1-exp~~nI2IBI) (4IBI)b-' (b=1,2). (3.12) 

The scattering phase shift 1m In Co(l, 1 BI) as a func­
tion of 1/41 BI is shown in Fig. 3. As B - 0, the 
ImlnCo(l, IBI) curve tends to 1T/4. 

Direct calculation shows that the first nonvanishing 
term of the quasiclassical asymptotic form of the Green's 
function (3.11), together with the pre-exponential coef­
ficient C+ = C~, yie Ids, in the limit of large deformations 
1 BI » 1, the correct result for the integrated intensity 
Ri of the scattered wave, equal to the corresponding 
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.F. Hi4B"' b;iBp' -r(b)exp -, -2- 2 (3.14) 
XS(p) (p'(1 +B'p') )-"·Ib_. (S(p» (HO(IBI"'» 

uniformly in the entire influence region Ixl ~ z. 

The interpolation formula (3.14) is similar to the cor­
responding ex~ression for the Green's function in a per­
fect crystalY Just as in a perfect crystal, the surfaces 
of the wave front of the perturbation propagating in the 
medium are hyperbolic cylinders with p = const, but the 
phase on the wave front S(P) is now a complicated func­
tion of p (see (3.10». It can be shown (for details see 
below) that the function S (P) has the physical meaning of 
the phase integral along the ray trajectories, which are 
hyperbolas in a crystal with a strain gradient lBl « 1. 
Expressions (3.9)- (3.13) describe also the scattering 
of x rays in inhomogeneous crystals in a wide interval 
of values of the effective deformation parameter B, the 
absorption coefficient k, and the scattering asymmetry 
parameter {3, under the condition that the strain gradient 
changes slowly over distances on the order of the crys­
tal thickness. 

4. THE EIKONAL APPROXIMATION 

It is phYSically clear that the wave field in a crystal 
with a small strain gradient can be found by the trajec­
tory method. The geometric-optics theory based on the 
trajectory approach, as applied to the problem of DXRS 
on a bent crystal, was considered in detail by Kato. [2] 
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We shall show that the results of the Kato theory fol­
low directly from the asymptotic expansion of the in­
fluence function (3.13). With the aid of (3.10) and (2.9) we 
can write down an explicit expression for the eikonal 

~,,(rp, r)=1J(rp-r)+Bp'/2+S.(rp, r)±S(p) 

=1J (rp-r) +Bp'/2+S, (rp, r) ±pl' 1+B'p'/2 

H2ik -- --
'+ 21B1 In(l'HB'p' -IBlp) '+ie(b-2)ln(l'HB'p' -IBlp). 

(4.1) 

In (4.1), the third and fourth terms of the right-hand 
side coincide exactly with the complex eikonal of the 
Kato theory[2], with allowance for the transition formu­
las 

Z=2Bz, X=2Bx, M=-kz, 

where Z, X, and M are the Kato variables. The fifth 
term of (4.1) is included in the Kato theory in the ampli­
tude of the scattered wave. The dependence of this term 
on the Sign of the deformation leads to violation of the 
Firedellaw for absorbing crystals, i.e., to a change of 
the integral intensity of the scattered wave when the di­
rection of the strain gradient (or of the reflection vec­
tor h) is changed. 

We consider now a wave packet incident on the sur­
face of a bent crystal. The wave field inside and at the 
exit from the crystal is given by expressions (2.11) with 
the influence functions (2.9). If the spatial length of vari­
ation of the packet is large in comparison with the ex­
tinction length 11., we can use the stationary phase method 
in the eikonal approximation for the calculation of the 
integrals (2.11). The stationary points at fixed coordi­
nates of the observation point (xp, zp) are determined 
from the two equations for the weakly and strongly ab­
sorbed waves: 

(4.2) 

where the prime denotes the real part of the eikonal. 

Equations (4.2) can be regarded as the equations for 
the ray trajectories emerging from two points on the 
entrance surface, with a common running observation 
point (xp, zp)' Substituting in (4.2) the expression for 
the eikonal (4.1) we obtain after direct calculations 

(2B(x p -x) '+i;(x) )'- (2Bzp-'1(x) )'=1, (4.3) 

where 

'1 (x) ='1:+ (C-B)x, ~(X)=(H'12(X))';'. (4.4) 

Here 17(x) determines the deviation from the exact 
Bragg condition at the point x on the entrance surface 
of the crystal. 

It is seen from (4.3) that the trajectories of the rays 
constitute a family of hyperbolas, and that physical 
meaning attaches to the hyperbola branches satisfying 
the condition Ixp - xl < zp. In the general case the 
hyperbolas form a "fan" that can be either converging 

•. q -z 0 

5 

lelz 

q IGlx 

FIG. 4. Intersection of the caustic sur­
face and the scattering plane. 
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or diverging, depending on the branch of the dispersion 
surface (weakly and strongly absorbed waves) and on the 
Sign of the deformation. In prinCiple, the formation of 
caustics is possible here, i.e., the formation of points 
of intersections of the rays, where the geometric-optics 
theory does not hold. The positions of the caustics are 
determined (see, e.g.,[19]) by simultaneous solution of 
two equations, the first of which is (4.2) and the second 
is 

(4.5a) 

or, equivalently, if we know the solution of the equations 
for the trajectories xp = xp(zp, x, 0), 

(4.5b) 

By way of example we consider the symmetric scat­
tering of x rays by a bent crystal (B = 0, C f 0) in the 
case of an incident plane wave. At B = 0 the ray trajec­
tories form two families of straight lines (cf. (4.3)) 

1'\ (x) 
xp-x=± --zp. 

$(x) 
(4.6) 

Combining (4.5b) and (4.6) we find that at C > 0 « 0) 
the rays corresponding to the strongly (weakly) absorbed 
wave form a caustic, the equation of which is 

(4.7) 

It follows from (4.7) that the critical thickness of the 
crystal, starting with which ray fOCUSing takes place, 
is equal to 

(4.8) 

The intersection of the caustic surface with the scatter­
ing plane is shown graphically in Fig. 4. The caustic 
divides the scattering plane into two regions. In the up­
per region, far from the caustic, we can use the sta­
tionary-phase method to find the field of the scattered 
wave, which forms on emerging from the crystal an ap­
proximately converging beam of x rays. [10] 

Thus, on the basis of an exact solution of the DXRS 
problem in a crystal with a constant strain gradient it 
is possible to construct a quasiclassical asymptotic ex­
pression for the wave field, to calculate the pre-expo­
nential coefficient in a wide range of values of the scat­
tering parameters, and establish the limits of appli­
cability of the trajectory approach of the geometric­
optics theory. At the same time, the use of the quasi­
classical asymptotic form of the Green's function makes 
it possible to reveal directly the physically significant 
features of the DXRS in an elastically bent crystal, par­
ticularly the formation of a caustic, and to calculate in 
prinCiple the structure of the wave field both far from 
and close to the caustic. 

The authors are grateful to A. M. Afanas'ev, V. L. 
Indenbom, and Yu. M. Kagan for a discussion of the work 
and for valuable remarks. 
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