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A scaling hypothesis in percolation theory is formulated, making it possible to relate the correlation-length 
index to the exponents of the infinite-cluster density and of the mean finite-cluster size. To check the 
relation obtained the correlation-length index is calculated for the site problem in the two-dimensional and 
three-dimensional cases on a computer by the Monte Carlo method. The results of the calculation confirm 
the scaling hypothesis. 

PACS numbers: 05.50. 

1. In recent years the ideas and results of percolation 
theory have found wide use in the physics of disordered 
systems[l-4]. One of the simplest problems of percola-
tion theory-the site problem-is formulated as follows. 
We consider an infinite periodic lattice, over the sites 
of which zeros and ones are distributed in a random 
manner. Let the fraction of sites occupied by ones be x. 
Two ones are regarded as connected if they are nearest 
neighbors. We say that all'ones connected together both 
directly and through chains of other pairwise-connected 
ones belong to one cluster. We require to find the crit
ical value Xc of the concentration X of ones at which an 
infinite cluster of ones is first formed, or, in other words, 
at which percolation with respect to the ones arises. 

The position of the percolation threshold Xc has been 
well studied for different lattices. It has also been es
tablished that, immediately beyond the threshold, i.e., 
for 0 < X - Xc « 1, the fraction P(x) of lattice sites be
longing to an infinite cluster increases according to the 
power law: 

(1) 

in which, according to[4, 5], i3 depends on the dimension
ality d of space: 

~=O.35±O.05 for d=3, 

~=O,14±O.03 for d~2. 
(2a) 
(2b) 

The result (2a) is the same for three different lattices. 

The problem under consideration is analogous to a 
second-order phase transition. IT we use the language of 
ferromagnetic transitions, P(x) obviously corresponds to 
the spontaneous magnetization and Xc to the transition 
temperature. The region X < Xc corresponds to the para
magnetic region, and the region x> Xc to the ferromag
netic region. 

The analogy with a phase transition has been elucidated 
more fully by Kasteleyn and Fortuin[6]. They introduced 
the parameter h, playing the role of the dimensionless 
magnetic field f.,LHjT, where ,U is the spin magnetic mo
ment. We imagine an extra site occupied by a one (the 
demon of Kasteleyn and Fortuin), which does not belong 
to the lattice under consideration but, by definition, is 
connected with each of its ones with probability 1-e-h . 
It is clear that in the presence of the demon an infinite 
cluster exists for arbitrarily small x. For X - 0 and 
h « 1 the function P(x, h) _xh. The number of finite 
clusters per lattice site can be written in the form 

F(x, k)= ~ n,e-h., 
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(3) 

where ns is the number (per lattice site) of finite clus
ters with s ones for h = O. The factor e-hs is the fraction 
of clusters of size s in which not one of the sites is con
nected with the demon. 

The quantity F(x, h) is analogous to the free energy 
of the ferromagnet. Indeed, the order parameter P(x) is 
determined by the derivative aF jah at h = 0: 

P(x)=x-~sn.=x+~1 . 
• ok ... , 

We introduce the mean size of the finite cluster to 
which an arbitrarily chosen unity belongs: 

S(x)= ~ s'n •. 

According to (3), 

S(x)= o'~ I . 
ok' h_O 

(4) 

(5) 

(6) 

It follows from (6) that the quantity S(x) is analogous to 
the susceptibility. Its behavior in the pre-threshold re
gion has been well studied. According to[7], for X - xc-O, 

S(x)-(x-x,)-V, 

where, for all the lattices investigated 

1=1.69±O.03 for d=3, 

1=2.38±O.05 for d=2. 

(7) 

(8) 

Differentiating F(x, h) with respect to both variables, 
we can obtain a set of functions analogous to all the re
maining thermodynamic quantities studied in the theory 
of critical phenomena. 

Up to now we have discussed the site problem. The 
other problems of percolation theory differ from this in 
the character of the arrangement of the sites and of the 
ones, and in the rules establishing the linking of the ones 
with each other [ 1]. In these problems quantities analogous 
to x, P(x), S(x) and F(x, h) can be introduced. The fact 
that the indices i3 and yare independent of the lattice type 
prompts the thought[7] that the indices of percolation the
ory are universal for all problems and are determined 
only by the dimensionality of space. This assumption cor
responds to the hypothesis of universality.in the theory 
of phase tranSitions, which postulates that the character 
of the interaction at short distances has a weak effect 
on the critical indices. It is true that, in the theory of 
phase tranSitions, for a given dimensionality of space 
there remains a weak dependence of the indices on the 
number of components of the order parameter; e.g., the 
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difference between the Ising and Heisenberg problems is 
connected with this. On the other hand, all the problems 
known to us in percolation theory are one-component 
problems, so that the corresponding discrepancies be
tween the indices should be absent. The existing data do 
not contradict the hypothesis of Wliversality. 

Essam and GWilym[8] have formulated a scaling hypo
thesis for the quantity F(x, h). They postulated that 

F=T"II>(,Ihb), (9) 

where T = (x - xc)/Xc. This assumption is sufficient to 
relate the indices of the derivatives of F(T, h) with re
spect to T and h. However, up to now, only two such in
dices ({3 and y) have been studied, and this is insufficient 
to check the scaling hypothesis. On the other hand, in 
percolation theory there exists another quantity-the cor
relation length. This quantity becomes infinite at the 
threshold point (L ~ T- lJ ). 

It has been shown [9,10] that the pre-exponential fac
tor in the hopping conductivity and the exponent in the 
expression for the electrical conductivity of a thin film 
are expressed in terms of the correlation-length index 
v. In [lll the corre lation length was introduced by treating 
percolation in finite volumes. (In an analogous way, in 
the theory of phase transitions the correlation length is 
studied from the smearing-out of the specific-heat singu
larity near the transition point in finite volume[ 12J.) This 
is a constructive method which makes it possible to de
termine the index lJ by means of computer calculations 
by the Monte Carlo method. Using a calculation of Kur
kijlirvi[13], the authors of[ll] fOWld that for d = 3 the in-
dex " = 0.83 :l: 0.13. 

In this paper we shall introduce a correlation fWlction 
into percolation theory, thereby giving a definition of the 
correlation length in the traditional form. We then extend 
the scaling hypothesis in such a way that the transforma
tion law for the correlation fWlction follows from it. In 
this form the formulation of the scaling hypothesis turns 
out to be analogous to that of Kadanoff[ 14]. The new formu
lation makes it possible to relate the index lJ to the in
dices {3 and y. As a result it becomes possible to check 
the scaling hypothesis. In the three-dimensional case we 
can use for this purpose the above-mentioned calcula
tion of[13]. However, its accuracy is not great. In addition, 
it would be desirable to check the hypothesis of Wliver
sality with respect to the different problems of percola
tion theory. In the two-dimensional case the index 1) has 
not been calculated. For these reasons we have Wlder
taken calculations of the index lJ of the site problem for 
the simple-cubic and square lattices on a computer by 
the Monte Carlo method. The result of this check con
firms the scaling hypothesis. 

2. We shall define the quantity g(r, r') on the lattice 
sites, putting it equal to Wlity if the sites r and r' are 
occupied by ones and belong to the same finite cluster, 
and equal to zero in all other cases. After this we in
troduce the correlation fWlction G(r - r' , x} by averag
ing g(r, r') over all the lattice sites: 

G(r-r', x) =(g(r,r'». (10) 
Obviously, G(r, x) _ 0 as r _ 00. We shall assume that 
it contains a single characteristic length, which we shall 
call the correlation length L. The divergence of the cor
relation length as x _ Xc characterizes the increase of 
the mean size of the clusters as the percolation threshold 
is approached. For x> Xc the correlation length also de-
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scribes the characteristic size of the mesh which is 
formed by the infinite cluster. From the definitions (10) 
and (5) follows the important relation 

S(x)= LG(r, x), (11) 

which is completely analogous to the well-known relation 
for the susceptibility[14]. 

We turn now to the formulation of the scaling hypothe
sis. By analogy with the theory of phase transitions[141 
we shall assume that the singular parts of the fWlctions 
F and G satisfy the relations 

F(,Z", hZ') =ldF(" h), (12) 

(13) 

where y, z and 1] are as-yet Wlknown indices. From (12) 
follows (9), with a = d/y and b = y/z. By means of (12), 
(13), (4), (6) and (11), all the indices of percolation theory 
can be expressed in terms of two indices, e.g., y and z. 
We shall not write out all the relations between the in
dices, which are completely analogous to the relations 
following from the static scaling hypotheSis [141. For us, 
only the relation connecting the three indices investi
gated is important now: 

dv=y+2p. (14) 

3. To determine the index lJ we have studied percola
tion in finite volumes for the two- and three-dimensional 
cases. For finite volumes the percolation threshold Xc 
varies from realization to realization. Let l be the num
ber of sites along a side of the square of cube in which 
the percolation is being studied. The dispersion of the 
percolation threshold is determined by the formula 
Wi = «xc - (xc»~, where <..) denotes averaging over the 
different realizations for a given value of l. As I _ 00, 

Wz decreases with increasing Z in accordance with the 
lawful 

(15) 

where B is a constant and the index lJ coincides with the 
correlation-length index. Thus, the index lJ can be deter
mined by studying the dispersion of the percolation in 
large volumes. 

We have calculated WI analytically for Z = 1 and l = 2 
only. For larger values of I numerical calculations 
were carried out on a BESM-6 computer by the Monte 
Carlo method. Numerical calculations were also per
formed for Z = 2 for the purpose of checking the pro
gram. Their results coincided with the results of the 
analytical calculation. 

We used a program compiled in accordance with the 
algorithm described earlier[15]. Calculations were per
formed for the simple-square and simple-cubic lattices. 

For the two-dimensional case the percolation was 
studied in squares with sides equal to 4, 8, 16, 32, 64, 
128 and 256. The results of the calculations are given in 
Table I. In Fig. 1 we give the distribution fWlctions (nor
malized in the same way) for the threshold value Xc for 
I = 8, 32 and 128. The calculated third and fourth mo
ments of the distribution fWlctions for l = 16, 32, 64 and 
128 coincide to within the fourth decimal place with the 
corresponding moments of the Gaussian distribution 
fWlction. Approximately 0.68 of the total number of real
izations fall in the interval 2WZ centered at the maximum 
of the distribution, and approximately 0.95 of the total 
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TABLE I. Results of percolation calculations for the two-dimensional 
case 

Number of Mean value Dispersion 
realizations n <.\c) W, 

Analytic If, 0289 
calculation 

2 Analytic 8/ 15 0.2218 
calculation 

I, 400J O.36.'±0.003 0.1.)5±0.002 
8 1000 0.581 ±0.003 O.I03±O 003 

IH 5000 0.5884±U.0002 0.0634±0.0006 
32 1000 0."924±0.C013 0.0399±0.0009 
1i4 1000 0 .. i934±O.OOO8 O.0243±O.0005 

·128 18() 0.393±0.001 O.0142±0.0007 
2[)6 8 O.;)£l!!±O.OO.3 

X ! 

o. q 0 . .5 (lJj 0,7 0.0 
Xc 

FIG. I. Distribution function f(xc) of the percolation threshold Xc 
for different I: X 8;.32; 0 128. 

number of realizations fall in the interval 4WZ; this co
inc ides , within the calculational accuracy, with the cor
responding values for the Gaussian distribution. 

Figure 2 shows the dependences of W Z on Z on a 
doubly-logarithmic scale for the two-dimensional (curve 
1) and three-dimensional (curve 2) cases. It can be seen 
from the figure that as Z increases these dependences 
asymptotically approach a straight line. The slope of 
the asymptote determines the quantity V-I. In the two
dimensional case, to determine this quantity with the 
greatest possible accuracy and to determine the magni
tude of the error we have approximated the dependence 
shown in curve 1 of Fig. 2 by the expression 
Wz = B(l + c~l/v, where B = 0.54, c =1.4 and 

v= 1.33±O.04, d=2. (16) 

This is our result in the two-dimensional case. 

In the three-dimensional case we have studied the 
percolation in cubes with sides 1= 4,8, 12, 16 and 24. 
The results of the calculations are presented in Table II. 
From Fig. 2 (curve 2) it can be seen that for I ~ 4 the 
dependence of Wz on Z for the three-dimensional case is 
a straight line, the slope of which determines v: 

v=O.9±O.05, d=3. (17) 

The errors t:;.WZ indicated in Table II are connected with 
the fact that for each value of I a finite number n of 
realizations has been used. They were calculated from 
the formula 

2W,.c\ W,=n-"'[ «(x-(x») ')-( (x-(x») ')']'. (18) 

It should be noted that the results of this calculation 
agreed well in all cases with the estimate t:;.WZ =Wz/(2n)'/2, 
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FIG. 2. Dependence of WI on I on a doubly logarithmic scale. Curve 
I-the two-dimensional case; curve 2-the three-dimensional case. 

TABLE II. Results of percolation calculations for the three
dimensional case 

(Xc> \.\'l 

Analytic 0.3 0.289 
calculation 

Analytic 0.407 0.186 
calculation 

I, 1600 0:J:i2±0.Oo:1 0.IOO±0.002 
8 1000 O.335±O.C02 0.0488±0.011 

12 200 D.331 ±0.OO3 0.0319±0.OI6 
14 120 0.329±0.C02 O.0268±O.0017 
It; 170 O.320±O.002 O.0236±0.0013 
24 100 0.318±0.OOI.; O.OI36±0.OOlO 

valid for the Gaussian distribution. 

The errors in the formulas (16) and (17) were found 
by means of graphs of the dependences of log Wz on 
10g(Z + c) for d = 2 and of log Wz on log l for d = 3. These 
errors are determined by the scatter of the angles of 
slope of the straight lines that can be drawn through the 
calculated points taking the errors t:;.WZ into account. 

4. The result (17) for d = 3 coincides with the quantity 
v = 0.83 ± 0.13, mentioned in Sec. 2, for the random-site 
problem. This corroborates once more the universality 
hypothesis. 

We return now to the relation (14), which follows from 
the scaling hypothesis. Substituting the indices {3 and y 
from (2) and (8) into it, we obtain 

v=O.80±O.05 for d=3. 

\"=1.33±O.05 for d=2, 
(19) 

which agree with (16) and (17) within the error bars. 
Thus, within the framework of the calculations carried 
out so far, the scaling hypothesis is confirmed. 

The authors are grateful to A. V. Sheinman for help 
in the calculations. 
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