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An asymptotically exact solution for the electric conductivity of a one-dimensional electron gas interacting 
with randomly distributed impurities and phonons is obtained. The electron states which are completely 
localized in a one-dimensional disordered system become nonstationary if the electron-phonon interaction is 
taken into account. Consequently, a non-vanishing low-frequency electric conductivity arises in the system 
and is proportional to the interaction in the case of weak electron-phonon interaction. The electric 
conductivity of such a system is calculated and the carrier diffusion in it is investigated assuming that the 
impurity potential is sufficiently weak (namely, the localization length /, - considerably exceeds the inter­
impurity distance). The diffusion coefficient values are consistent with the idea of electron hops that occur 
over distances of the order of /j - and at a period of the order of the phonon relaxation time T ph' Phonon 
scattering involving a small momentum transfer, and scattering involving a momentum transfer -2PF' 
contribute to the process. At low temperatures the first type is predominant, as distinct from the usual 
phonon resistance mechanism, in which the second type is always predominant. In passim, the asymptotic 
density correlator 1.xl -3/2 exp( -1.xl/4/j -), which determines the nature of localization is calculated for 
an electron in an impurity field at large distances and times. 

PACS numbers: 7I.85.Ce, 72.90.+y 

1. INTRODUCTION 

Interest in disordered one-dimensional systems, 
which was initially connected mainly with the possibility 
of obtaining a number of exact results for these sys­
tems,PJ has subsequently increased in connection with 
experimental investigations of certain systems whose 
electronic spectra are close to one-dimensional (see, 
e.g.pl). A very important result is that of Mott and 
TwoseP ], according to which all states in a disordered 
one-dimensional system are localized; this result was 
subsequently proved more rigorously P,S] This dis­
tinguishes one-dimensional systems qualitatively from 
three-dimensional ones, where the localization takes 
place only in definite sections of the spectrum.£&-9] 

In a system with localized states one should expect 
the absence of static conductivity. This was proved 
directly only recently.[lO,ll] When account is taken of 
the electron phonon interaction, the situation changes 
significantly, since jumps between indi vidual localized 
states become possible and are accompanied by the pho­
non emission or absorption. Violation of the localization 
leads to a finite conductivity of a diffusion type. In the 
case of a weak electron-phonon interaction the conduc­
tivity is proportional to this interaction. This mecha­
nism is close to that considered by Mott(l21 in connec­
tion with the theory of low-temperature hopping conduc­
tion in three-dimensional systems, where it leads to a 
variation like exp{-(To/T)I/4}. 

We construct in this paper a theory of low-frequency 
conductivity in a one-dimensional system. It is assumed 
that the scattering by the impurities is weak in the 
sense that the localization length greatly exceeds the 
interimpurity distance. In this limit, all the results are 
asymptotically accurate. The phonons are assumed to 
be three-dimensional; the interelectron interaction is 
disregarded. 

We follow the method proposed by BerezinskH[lll but 
in conjunction with a new variant of the Keldysh diagram 
technique[ 13] for kinetic phenomena. The method yields 
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results close to those obtained by the Eliashberg tech­
nique)!'] 

2. DETERMINATION OF THE MAIN QUANTITIES 

We consider a one-dimensional system of electrons 
that do not interact with one another and have a disper­
sion law E(P), are situated in a random potential V(x), 
and interact with phonons that are assumed to be three­
dimensional. 

The Hamiltonian of the interaction with the phonon is 
written in the form 

H'_Ph = J¢+(x)¢(x)<p(x,y,z)6(y)6(z)dxdydz, (1) 

where 1/!(x) and f (x) are the electron operators, and 
rp (x, y, z) are the phonon operators. 

We shall calculate below the correlation functions of 
the current and denSity operators. It is convenient to 
introduce for these operators a common symbol 
ja(x) (a = 0; 1): 

j'(x)=¢+(x)¢(x), i'(x)=l/d~(x')-~(x»¢+(x)¢(x') I,·~.. (2) 

where v(x) is the velocity operator: 

The correlation functions Bea(w, k) are defined in the 
usual manner in terms of the exact Heisenberg opera­
tors 

~ ~ 

Be"(ro,k)= S d(x-x') S d(t-t')exp[iro(t-t')-ik(x-x')] 
o 

x <Sppj,(t,x)j"(t',x'». (3 ) 

Here p is the equilibrium density matrix, and the angle 
brackets denote averaging over the realizations of the 
random potential. The contribution to the correlator 
from the unconnected diagrams, which does not depend 
on the coordinates and the time, is omitted throughout. 
The current-current correlator determines directly, 
according to the Kubo formula, the conductivity of the 
system 
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a(w, k)=e'T-'ge'(w, k), 

where T is the temperature. Formula (4) is suitable 
so long as w« T, a condition that will henceforth be 
assumed satisfied. 

(4) 

Calculation of the density-density correlator makes 
it possible to follow the manner in which a quasilocal 
electronic state becomes smeared out under the influ­
ence of the interaction with the phonons. We shall de­
termine in passing the diffusion coefficient. 

The correlators will be calculated by the Keldysh 
matrix technique,P3j Accordingly, we represent the 
electron and phonon Green's functions in the form of 
the matrices rffow' and (flo. a' . When ordered in time, 
all the operators with index a = 2 in the Green's func­
tions are to the left of (Le., "later" than) the operators 
with a = 1, The operators with a = 1 are arranged rela­
ti ve to one another in the usual chronological order, 
while the operators with a = 2 are arranged in inverse 
order. 

In the absence of interaction, the electron Green's 
function takes in the coordinate-energy representation 
the form 

Here G~ and Go are the retarded and advanced quan­
tum-mechanical Green's functions 

dp e1P (.1:-.{') 

Co'(xx'le)= S 
2n e-e(p)±iO 

i 
+--exp{±ip(e) Ix-x'I}, 

ute) 

(5 ) 

(6) 

where E(P) is the electron dispersion law, p(E) is the 
positive root of the equation E = E(P), and V(E) = dE/dp 
is the electron velocity. The dot in (5) denotes a dyadic 
product of the vectors 

(7) 

which is defined in the usual manner: (A. B hj = AiBj. 
In (7), n(E) is the Fermi distribution function. The pho­
non Green's function is given by 

where Cq is the matrix element of the electron-phonon 
interaction and Nq is the Planck distribution function. 

In such a technique, we can calculate directly the 
matrix correlators 

~ ~ 

£!raa'(w,k) = S d(x-x') S d(t-t')e,·,,-t'H'('-"l 

x (Sp pT {la" (t, x) la'" (t', x')}), (9) 

the time ordering in (9) being effected with allowance 
for the values of the times (t, t') as well as of the 
matrix indices (a, a'). The correlators gea(w, k) are 
expressed in terms of ffa(w, k) in the following manner: 
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1 ~ 

gcG(w,k)=-S £!r2l(w',k) 
2ni 

dOl' 
x w'-w-iO' 
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(10) 

The quantities .ra correspond to diagrams in the form 
of the electron loop shown in Fig. 1, in the two vertices 
of which are located the operators ja (the exclusion of 
more complicated diagrams is discussed in the Appen­
dix). On the diagrams, the electron Green's functions 
are shown by solid lines (single for G~ and double for 
Go), the phonon functions by dashed lines, and the cor­
relators of the random potential by wavy lines. 

3. DIAGRAM TECHNIQUE FOR AN ELECTRON IN 
THE FIELD OF IMPURITIES 

We start with a model of randomly distributed cen­
ters, and consider the scattering of the electrons by 
these centers in the Born approximation. The potential 
of an individual impurity is assumed to decrease 
rapidly, i.e., its width d is much less than the average 
distance c-1 between the impurities (c is the impurity 
concentration). 

In the Born approximation, the mean free path li is 
much larger than the distance between impurities, so 
that d« c-1 « li. Under these conditions, the impurity­
potential correlator 

U(x-x')=(V(x) V(x') (11) 

has a width on the order of d; it reflects the form fac­
tor of the impurity potentiaL The electron wavelength A 
is also assumed small in comparison with li (A « li); 
the ratio of A to d can be arbitrary. 

We show first how to change over from diagrams 
containing the matrix functions ':#0 to diagrams contain­
~ng G!. Each impurity vertex corresponds to a matrix 
V = Vcrz. The dyadiC structure of the function ':#0 (see 
(5» makes it possible to assign the individual vectors 
I and K (or N and I) to vertices in which an electron 
line terminates and begins, respectively. Carrying out 
matrix multiplication in the impurity vertices, we obtain 

la,[=A +a,A -=0, Ia,A-=A +a.l=1. (12) 

It follows from these relations that any impurity vertex 
to which a single and double line converge is annihilated. 
Vertices to which lines of one type converge enter in the 
diagrams with a factor V. Therefore each of the elec­
tron lines jOining the pOints x and x' consists exclu­
sively of single or of double lines, which yields as a 
sum the resolvents G± = (E - Ho - V ± iOfl where Ho 
= E(-iVx). Thus, the summation over the matrix indices 
leads to a simple technique for the internal vertices; 
its application to the external vertices is perfectly ana­
lous. In final analYSiS, the calculation of the mean 
values of the quantities ':#aa'':#a'a in ffaa' (cf, Fig. 1) 
reduces to a calculation of the mean values of GiGi' 
(i, i' = ±). For the latter mean values, a convenient 
technique, as applied to /i-function correlators U(x 
- x'), was developed by Berezinskii,[llj This technique 
is based on a consideration of diagrams that are 
ordered in accordance with the coordinate. In each in­
tegration interval it is possible to replace Ix - x'l by 
± (x - x') in the arguments of the exponentials in the 

FIG. I. Electron loop corre­
sponding to the correlator 
F aa'(xx' I w). 
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Green's functions G~ and Go (6), to break up the Green's 
functions into the factors 

(13 ) 

and to include these factors in the corresponding im­
purity vertices. It can then be verified that in the Born 
approximation only two types of factors appear in the 
essential diagrams (see below), corresponding to differ­
ent impurity lines: 

±_1_ U (x_x') II ±_1_ U(x-x')e±Zip"".-r", (14) 
,,' (e) v' (e) 

which correspond respectively, for example, to dia­
grams of type a, b and c, d in Fig. 2. 

To use the convenient technique developed for 0-
function correlators (which correspond graphically to 
vertical impurity lines), it is expedient when integrating 
over the coordinates of the impurity vertices to carry 
out the integration first with respect to the "internal" 
variables, i.e., with respect to the differences x - x' . 
These integrations for different impurity lines can be 
carried out independently if one excludes the more com­
plicated vertices, for example such as Fig. 2e. In these 
diagrams, the integrations corresponding to two differ­
ent impurity lines are carried out over one and the 
same region having a width on the order of d. Since the 
effective integration region in the diagrams is deter­
mined by the damping of the Green's functions and is 
therefore of order Ii, the contribution of the diagrams 
of the type of Fig. 2e is small in terms of the parameter 
dlli' 

All the contributions corresponding to the impurity 
lines in spatially ordered diagrams are expressed in 
terms of the integrals 

2 ~ l' 2 ~ 
_l_=_-JU(x)dX --±--' -=--J U(x)e±"""rdx. 
l,+(e) v'(e) 'I,-(e) I,'(e) v'(e} 

, 'I 

(15 ) 

The lines of the type of Fig. 2a correspond to a contri­
bution (-lit\ and the lines of the type of Fig. 2c corre­
spond to (-lit l ; diagrams band d merge into a Single 
one corresponding to the contribution (-21itl + (_21;/1 
+ i(-2Iit l • We see thus that the impurity lines can be 
drawn in the diagrams vertically (just as for o-function 
correlators), but they must be set in correspondence 
with different contributions for diagrams with rotation 
(Fig. 2c) and without rotation (Fig. 2a) of the electron 
lines, and also for the self-energy inserts (Figs. 2b and 
2d). The quantities zr and Ii have the meaning of the 
mean free path with respect to forward and backward 
scattering. 

It remains to select the essential diagrams, using 
the condition A « Ii, which is equivalent to €» Tt 
= Ii I v. This selection can be carried out at an external 
frequency w« €; the parameter WTi can then be arbi­
trary. The selection is based on neglecting the contri-

b d 

FIG,2 
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butions of the diagrams containing factors of the type 

e2iP(e:)x, which oscillate rapidly over the mean free 
path Ii in comparison with the diagrams that contain 
only smooth factors of the type eiwx/v• Since the struc­
ture of our diagrams is now practically the same as in 
Berezinskii's paper, we can use his results directly. 

Figure 3 shows all the types of the impurity lines 
that enter in the essential diagrams, and indicates the 
contributions corresponding to them. These contribu­
tions were calculated in the lowest order in wi €, so 
that the term linear in W is retained only in the argu­
ment of the exponential. With respect to the same 
parameter wi € it is necessary to retain in the loop of 
Fig. 1 only the products G+(€ + w)G-(€) and G-(€ 
+ w)G+(€). Since the second product vanishes in the 
integration in (10), we shall discard it throughout; this 
corresponds to a transition from the correlators §' to 
the corresponding quantities :!C (when used in the im­
purity problem, we shall designate them by X). 

We put x > x'. Then each diagram can be subdivided 
into three parts: right (to the right of x), central (be­
tween x and x'), and left (to the left of x'). Examining 
the "passages" of the indi vidual impurity lines through 
the point x as the latter is displaced, we can obtain the 
following equations for the right and central parts 
-Rm(x) and Zm'm(x', x): 

The index m shows that 2m single and 2m double 
lines enter in the point x in the right part Rm(x); the 
number of these lines is the same, since it is changed 
only by the vertices of type e and f of Fig. 3. In the 
central part Zm'm(x', x), 2m' + 1 lines of each type 
enter the point x', while (2m + 1) lines enter the point 
x. The coefficients of Rm =F 1 are determined by the 
number of manners in which the lines e and f can be 
connected (Fig. 3). The coefficient of Rm in (16) is 
made up of the contributions of the impurity lines 
a(a'), b(b'), c(c') and d: 

-2m( 1/2I,++112I,-+iI2I,') -2m (tl2l,++tl2l,--;/21,') , 
-2m (2m-1)/l/ -2m (m-i)/I,-+ (2m) '11'+=-2m'II,-. (18) 

We see that the final equations contain only the mean 
free path with respect to scattering with reversal of the 
momentum. This is quite natural, since only elastic 

a(a') 

T 
1 

b(b') 

FIG, 3. Types of impurity lines entering in the essential diagrams, 
A single line corresponds to G~ and a double line to Gii, The wavy line 
corresponds to the impurity correlator. Diagrams a', b', and c' differ 
from a, b, and c in that the single lines are replaced by double lines, The 
lines correspond to the following factors: a) - 1/2Ii- - 1/2lj - i/2W; 
a') -1/2t - 1/2lj + i/21i";b) -I//t:c, c') -I/lr;d} I/lj; e) e2i:.J YJ>(e)/lr; 
f) e- 2i:.JyJ>(e) /Ir, 

A. A. Gogolin et al. 170 



scattering of this kind is meaningful in a one-dimen­
sional system. 

The correlators (10) for the electrons in the field of 
the impurities, with allowance for the matrix structure 
of the Green's functions (5), are expressed in terms of 
the mean values (n (1 - n) G-(E) G+(E + w» and are equal 
to 

J de 1 
X'(w,k)=4 -n(e) (1-n(e»-( -).X"(e,w,k), 

2n v e 

(19) 

X"(e,w,k)= 2/,- [vee) ]'"~ Pm"(W) {Qm"(w,k)+Qm"(w,-k)}. (20) 
vee) 2 ~ 

m~' 

The factor n(l - n) in (19) is due to the external 
vertices. The quantities P~(w) and Q~(w, k) in these 
formulas are connected with Rm(x) and Zm/m(x) by 
the relations 

(21) 

1 - -
Qm' (w, k) = 1,- L S dx e"'X'-.' e-2Owm 'x'l, Zm'm (x', x) e"wmxl, Pm'"' 

m'=O ",' (22) 

The quantities Rm and Q~ are determined by the 
system of equations 

ivRm +m (Rm~'+ R m-,-2Rm) =0, (23) 
iv (m+'f,) Qm'+ (mH) 2 {Qm+.'-Qm '} -m2 {Qm "-Qm-'"} 

-ixQm"+Pm"=O. (24) 

The dimensionless frequency and momentum are equal 
to 

v=2/,-w/v=2wT" x=kl,-. 

4. CORRELATION FUNCTIONS FOR AN 
ELECTRON IN THE FIELD OF IMPURITIES 

(25) 

Formulas (19) and (20) for the correlators enables 
us, first, to solve the problem of electron localization 
in an impurity field. The character of the localization 
of the electron states is determined by the behavior of 
the correlator of the electron density at large distances 
I x - x'I» li and at large times It - t' I » Ti = li/v. 
These times correspond to low frequencies II « 1. In 
this limit, the decisive contribution is made by diagrams 
with large m ~ 11-\ and it is therefore possible, just as 
in Berezinskii's paper ,ell] to go over from the algebraic 
systems (23) and (24) to differential equations, and from 
summation over m to integration. From the equation 
for Rm it follows that[ll] 

(26) 

K1 is a Bessel function. The equation for QO( 1;, K), with 
(26) taken into account, is of the form 

d dQo 
_~Qo + _( ~2 _) -ixQo+2~'hK, (2~'!') =0 

d~ d~ , 
(27) 

and we shall investigate its solutions in detail below. 
The substitution z = 21;1/2 transforms (27) into an in­
homogeneous Bessel equation for the function zQo(z). 
A solution of this equation, integrable at zero and de­
creasing at infinity, is 

4 ~ , (28) 
QO(z)=-;-[h(z) S;d;K,(;)K,(;)+K,(z) S;dV,(;)K,(;)] 

, 
A=(1+4ix)"'. 

Going over in (20) from summation over m to inte­
gration with respect to E, = -ivm and rotating the inte­
gration contour from the imaginary axis to the real one, 
we obtain 
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1 -
X'(e, w, k) = -.-J d~P'(~) [Q'(~, x)+Q'(~, -x) 1. 

-'w (29) 

We see from this that the Singularity in w = 0, and 
therefore the long-term asymptotic behavior of the 
density correlator is indeed determined by the behavior 
of XO(E, w, k) at small w. From (28) and (29) we obtain 
an expression for the long-term density correlator 

1 - dx 
XO(e, t ~ 00, x) ==p_ (x) = -J -cxp(ixx/i,-) [j(x) +f(-x)], (30) 

[- 2lt 

where - -
!(x)=4J zdzK,(z)h(z) J;d£K,(;)K,m. 

(31) 

The integral in (30) is an even function of x~ so that 
it sufficies to evaluate it at x> O. It is convenient to 
change the order of integration, first integrating with 
respect to K. At any finite value of z the only singular­
ity of the integrand in the upper half-plane is the branch 
point K = i/4. By shifting the contour of integration with 
respect to K into the upper half-plane in such a way 
that it follows the edges of the cut drawn from this point 
upward along the imaginarl axiS, and making the sub-
stitution A 2 = 1 + 4i K = -11 , we obtain . 

-S-· -i-J (-(']'+1)l') d%cxp(,xx/i,-)l,(z)K,(s)=- l1d']exp _ 
rr 41, , 

(32) 
x sin (rri']) K,,(z) K".(s). 

At x » li the significant values in the integral with re­
spect to 11 are 11 ~ (li/X )1/2« 1, so that Kin can be 
replaced by Ko and sin(1Ti11) by 1Ti11' As a result we have 

1 (lt2)'(4[,-) 'I, ( Ixl) 
p- (x) '" 4rr"'I,-"8 "GT exp - -;;z;- , Ixl :»/,-. (33) 

The correlator thus decreases at large x, for the 
most part exponentially with a characteristic length de­
termined by the mean free path, (in full accord with 
Mott's qualitative conclusions[3J). This decrease is 
further enhanced by the pre-exponential factor ~Ix r3/ 2 • 

It is seen from this conclusion that the argument of the 
exponential is determined fully by the position of the 
branch point K = i/ 4. The magnitude and the coordinate 
dependence of the pre-exponential factor are determined 
by the behavior of the integrand on the edges of the 
cut, Our result for the asymptotic value of the density 
correlator differs from that obtained by Berezinskil[ll] 
who determined the asymptotic form from the behavior 
of XO(E, w, k) at small K« 1 (when comparing with 
Berezinski'i's result it must be taken into account that 
owing to the difference in the notation our li in[ll] cor­
responds to 4l). 

It follows from (33) that localized eigenfunctions 
exist. However, (29) contains in essence an even 
stronger statement, that all the eigenfunctions are 
localized. This statement follows from the fact that 
(29) breaks up into a product of functions of w and K; 
the numerator, which depends on K, is equal to 1 at 
K = 0 and changes over distances on the order of K ~ 1 
(which do not depend on w). 

The next task is to find the behavior of XO(E, w, k) 
at small momenta K« 1 and low frequencies v « 1. It 
will be shown below that this behavior determines the 
diffusion rate in the presence of weak interaction with 
phonons. In this region of parameters, the expansion of 
formula (29) for XO is of the form 

X'(e, w, k)=i(1-Ax')/w. (34) 
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The expansion in powers of K is best carried out by 
differentiating (27) in succession with respect to K and 
then putting K = O. This yields a chain of equations 
similar to (27), with only the free terms different. 
Solving them in succession, we obtain expressions ana­
logous to (28). Ultimately, 

Q"(~.x=O)=--; ". =-- pOln~+2CPo-_ • dP' dQ' (> X)' I i [ dP' ] 

d~ dx K~' 2~ d~ 

d'Q~:',>:LIK~' =- ~~,{1'(2~'!) j ~~ K,(s) [(C+ln: )sK,(s) 

Zt'!, 

,t'l, (35) 

+K,(s) ] +K,(2~,!,j S ~: I,m [ (c + In : ) £K,(s)+K,(S) n, 
o 

where C is the Euler constant. Substitution in (29) after 
integration leads to 

A=8f d: Ko(z) [ (C+ln; ) zK,(z) +Ko (z) ]. (36) 
, 

Calculation of this integral is best carried out by intro­
ducing a finite lower integration limit and integrating by 
parts: 

. [ K? (zo) ( z, ) 3 S~ , dZ] 
A=,~~~8 --2-- C+lnT +2 K, (z)~ . (37) 

'. 

The resultant indefinite integral can be calculated by 
using formula (5.55) of[lS]. Taking the limit as Zo - 0 
we obtain A = 41;(3) ~ 4.81, where 1; is the Riemann 
zeta function.l) As shown by Berezinskii[ll] the same 
integral (36) determines also the low-frequency corre­
lator (II « 1) for an electron in the field of impurities: 

X'(e, w)=-iwA(/,-(e»'. 

5. DIAGRAM TECHNIQUE FOR AN 
ELECTRON INTERACTING WITH PHONONS 

We now proceed directly to a solution of the main 
problem of the influence of phonons on the kinetic 
properties of the electron system. 

(38) 

The scattering of the electron by the phonons is ac­
companied by a change of energy, and differs qualita-
ti vely in this respect from scattering by the impurities. 
Allowance for the interaction with the phonons leads to 
the appearance in the diagrams of a new scale of the 
order of the phonon frequency Wq. We assume the 
characteristic phonon frequency wand the width of the 
phonon spectrum t.. to be large in comparison with the 
probabilities of scattering by the impurities and phonons : 
W, t..» Ti\ Tph. 

It is convenient first, in analogy with the procedure 
used in Sec. 3 for impurity lines, to integrate with re­
spect to the "internal" variables in diagrams contain­
ing phonon lines. The effective spatial width of the pho­
non D-function is of the order of x ~ (qt\ where q is 
the characteristic momentum of the phonons. Therefore 
the contribution of diagrams in which the integrations 
for the different phonons fall in one spatial region of 
width ~(Cj)-l (they are analogous to diagram 2e for im­
purities) will be small in terms of the parameters 
(qlit1 and (qlpht l. Neglecting diagrams of this kind, 
we can integrate with respect to the "internal" vari­
abIes. Then the phonon line corresponds to a contribu­
tion proportional to the integral 

2 S d(x,-x,)exp{i(p(e) =Fp(e-Q» (x,-x,) }D(Q, x,-x,) =L±D+iL±'D. 
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d'q 
UD= S (2,,), D(Q q)6(qx+p(e)=Fp(e-Q». (39) 

The contributions L+D and L-D correspond respectively 
to diagrams a and b of Fig. 4, i.e., to scattering with­
out and with rotation of the electron lines. 

The phonon lines can now be drawn in the diagrams 
vertically, and it remains only to carry out the integra­
tion with respect to their positions. 

The next step is to sum o-ver the matrix index in all 
the internal vertices. This operation is performed, 
just as for the impurity vertices, USing the dyadic struc­
ture of ':i (cf. (5», by referring the individual vectors 
of the dyad to neighboring vertices. The contributions 
obtained in this manner for those phonon lines which 
are of importance to us in what follows (see Fig. 5) are 
shown below: for diagrams a(a') we have 

-1 i 
(L+±iL/+L-=FiL_') [(1-n(e-Q) )D" (Q) 

v(e)v(e-Q) 2 
+n(e-Q)D,,(Q) J. 

The upper signs correspond to diagram a' and the 
lower to a. For diagram b we have 

, 1 exp{iw y ( __ 1 ___ 1 __ ) }iL+[Il(e)D,,(Q) 
v(e)v(e-Q) v(e-Q) v(e) 

+ (l-n(e) )D" (Q) ]. 

For diagrams c and d we have 

___ 1 __ exp {±iWY ( __ 1_+_1_ )}iL-[n(e)D,,(Q) 
v(e)v(e-Q) v(e-Q) v(e) 

+ (l-n (e) )D" (Q) J. 

The upper and lower signs correspond to diagrams c 
and d, respectively. 

As a result we obtain a technique in which the 
matrix index is no longer involved and which differ from 
the usual Feynman technique mainly in that the retarded 
and advanced functions (single) and double lines) enter 
in it separately. This technique can be used to conSider 
kinetic phenomena at finite temperatures. 

The selection of the essential diagrams is based on 
taking into account expressions that contain only 
smooth factors of the type exp (iwx/ v), and neglecting 
the diagrams containing rapidly oscillating factors of 

E+W 

a(a') 

~~w 
E-~ 

x, \ 

\n 

7E - n \ 
I Z 

E 

FIG. 4. "Canted" phonon lines. 
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FIG. 5. Types of phonon lines entering in the essential diagrams. 
The lines a' differ from a in that the single lines are replaced by double 
ones. 
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the type exp{i (p (E) ±: p( 10 ±: Wq))y}, exp{i (p (E) ±: p(E 
+ wq - wt))y}, etc. Integrals containing these factors 
are small in comparison with integrals of the smooth 
functions with respect to the parameters (TEt\ (TW t\ 
and (Tlltl. The values of the parameters wTi and WTph 
remain arbitrary for the time being. 

First to appear, owing to the presence in the dia­
grams of electron lines corresponding to different 
energies (that differ by amounts on the order of W or 
Il), are additional restrictions on the impurity lines. It 
is easily seen that electron lines with different ener­
gies can be joined only by impurity lines of the type 
b(b') and d of Fig. 3. The impurity lines c(c'), e, and 
f can join only electron lines with equal energies; in 
other cases the contribution of these diagrams is small 
in terms of the parameters (Tiwt l and (Tillt1. 

Figure 5 shows all the essential phonon diagrams. 
In connection with the construction of these diagrams 
we note that, owing to the additional limitations due to 
the expansion in the parameters (TWt1 and (Tllr\ cer­
tain phonon diagrams turn out to be inessential, al­
though the impurity diagrams that are analogous to 
them are large. On the other hand, the class of com­
peting diagrams is larger,. since lines of different types 
can converge in the phonon vertices (in contrast to the 
impurity vertices!). Examples of such diagrams, in 
which single lines are transformed into double lines, 
are shown in Fig. 6. The first of these diagrams 
vanishes in the general case. This can be demonstrated 
by direct calculations, if it is recognized that 

J dQGo+(E-Q) (D,,(Q)-D,,(Q))= J dQGo-(E-Q) (D,,(Q)-D;,(Q))=O. 
(40) 

The contributions of diagrams band c of Fig. 6 differ 
from zero only if the energies of one of the upper and 
one of the lower electron lines do not coincide. This 
can be verified by direct calculation USing the relation 

D,,(Q) (1-n(E) )n(E-Q) =D" (Q) (l-n(E-Q))n(E), (41) 

which represents the detailed-balancing principle, and 
using the identity[ 13] 

At 10 -" 10' the contribution of these diagrams differs 
from zero, since the occupation numbers. n(E) and 

(42) 

n(E') are not cancelled out. The contribution of diagram 
d of Fig. 6 differs from zero at all times. 

Diagrams b-d of Fig. 6 can introduce either the 
usual oscillatory factors of the type exp{i(p(E) ±: p(€ 
± wq))y}, or factors of the type 

exp{i(p(E)-p(E-Q)+p(e'-Q)-p(E'))y}"" exp{iE.. dV(E) (E'-E)y}; 
v' dE 

IQI,le'-EI<t:e. (43) 

The diagrams containing the former factors are small 
in the parameter \wT t 1. The factors of the latter type 

L 
I ~ ? 
I I I 
I I I 
I I I 
I 

-7 
I 

$' I I 
I 

.(a') b d 

FIG. 6. Phonon vertices in which electron lines of various types 
converge. 
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oscillate over distances ~ EV/W2 (at \ 10' - 10 \ ~ w) and 
make a small contribution only if wT{3 = WTW/E » 1. 
Under quasielasticity conditions {3« 1 this criterion 
is much more stringent than WT » 1. Nonetheless, 
whenever we refer to a degenerate electron gas below 
we shall assume this criterion to be satisfied. 

The diagrams containing lines of the type b-d of 
Fig. 6 are proportional to higher powers of the occupa­
tion numbers n and in the case of a nondegenerate elec­
tron gas (n« 1) they can be omitted regardless of the 
value of the parameter WT{3. The diagrams of Fig. 6 
will be omitted throughout from now on. 

We proceed now to phonon vertices that have analogs 
among the impurity vertices. By way of examp~e we 
point out diagrams a and b of Fig. 7, which are analo­
gous to diagram b of Fig. 3. The phonon line of diagram 
a of Fig. 7 introduces by itself a rapidly-oscillating 
factor that leads to the appearance of the small factor 
(WTph t1. 

The situation is much more complicated with the 
phonon line b of Fig. 7. By itself it does not introduce 
a rapidly oscillating factor, but it can be included in the 
diagrams only in the presence of rotating vertices, im­
purity or phonon. The corresponding impurity lines 
(e.g., of type e or f of Fig. 3) will always join lines 
with different energies, and the diagrams will be small 
in the parameter (wTit1. On the other hand if line b of 
Fig. 7 is included in the diagram with the aid of rotating 
phonon vertices of the type c or d of Fig. 6, then this 
entails the appearance of a factor (wT{3f1. As a net re­
sult both diagrams a and b of Fig. 7, as well as certain 
other diagrams, can be left out. 

A typical diagram constructed of phonon lines of 
Fig. 5 is shown in Fig. 8. It has the same structure as 
the diagrams that are usually taken into account in the 
derivation of the kinetic equation. It contains two types 

·e-Il+w e +£1) 

I 
I 
I til 
I 

E-ll+w ! E+W 

FIG. 7 
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i .. 
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t:+w : &-I1+w 

b 

FIG. 8. Typical skeleton diagram for a correlator with allowance 
for the essential phonon lines. The impurity lines are not shown. The 
dashed loops correspond to the self-energy diagams of type a(a') of 
Fig. 5. 
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of phonon line. The first, represented by the loops, are 
self-energy parts of type a(a') of Fig. 5, They corre­
spond to outflow of the particles from the given state. 
The second, which join the upper and lower electron 
lines, divide the diagrams into sections within which the 
energies corresponding to these lines are identical, ac­
curate to a small external frequency w (they correspond 
to the inflow of particles). This is a skeleton diagram, 
since it must be supplemented with all the admissible 
impurity lines. The structure of the resultant diagrams 
becomes very much more complicated, and these dia­
grams are no longer in the class corresponding to the 
kinetic equation. The next section is devoted to the 
analysis of these diagrams. 

We note here only that in the skeleton phonon dia­
grams of the type of Fig. 8 each of the electron lines 
joining x and x' consists of lines of only one type 
(either single or double). Therefore the picture dupli­
cates to a considerable degree the situation considered 
above as applied to impurity scattering (cL Sec. 3). In 
particular, owing to the subsequent integration with re­
spect to frequency in formula (10), it is necessary to 
retain in the correlators ~a only the Green's-function 
products G+(€ + w)G-(€). 

Let us dwell in conclusion on the physical meaning 
of the performed selection of the diagrams. Berezin­
ski! has shown that in the case of scattering by impuri­
ties certain diagrams that can be omitted in the deriva­
tion of the kinetic equation in the three-dimensional 
situation become in the one-dimenSional situation of the 
same order of magnitude as the diagrams taken into 
account in the kinetic equation. The reason lies in the 
multiple interference of the electrons scattered by the 
impurity centers. As a result, in addition to the usual 
criteria for the applicability of the kinetic equation, 
wl€ « 1 arid €Ti» 1, a new criterion arises, namely 
WTi» 1. 

The classification given by us above for the phonon 
diagrams has shown that the essential phonon lines are 
those shown in Fig. 5. They give rise to a class of pho­
non diagrams of the type of Fig. 8, summation of which 
leads to the usual kinetic equation. However, the cri­
teria under which these diagrams dominate turned out 
to be quite unusual. All the discarded diagrams are of 
the order of (ETphr l in the three-dimensional case. In 
the one-dimensional case some of them acquire a value 
(wTphtl = (€Tphrll {3 or even (ETphtll {32 (Figs. 6b-6d 
and Fig. 7b). At f3« 1 these criteria differ very 
strongly. 

We note that we are operating in an apprOximation in 
which polaron corrections to the electronic spectrum 
are neglected. Therefore the contribution from the dia­
grams of Figs. 6 and 7 is connected with interference 
effects in electron-phonon scattering. The anomalously 
large value of their contribution must be attributed to 
the specific character of this interference in the one­
dimensional system. It is interesting that this effect is 
particularly strong in a degenerate gas. Indeed, the 
factor (WTphf3r l is due to the rotating phonon vertices; 
the simplest diagram of this type is shown in Fig. 9. In 
these diagrams the .internal vertices always give rise to 
additional factors of the type n(l - n) and it is natural 
to connect them with the electron interaction via the 
phonons. From this point of view, the appearance of 
stringent limitation on the side of small W can be re­
garded as a manifestation of the "infrared" divergences 
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typical of one-dimenSional systemsY6,17] In the Boltz­
mann case (n - 0) the role of the interference effect is 
determined entirely by the factor (WT rl. 

In confining ourselves to the ladder diagrams of Fig. 
8, we have neglected all the interference effects brought 
about by the scattering of electrons by phonons. In this 
approximation we can trace the manner in which the 
localized states are gradually destroyed with increaSing 
electron-phonon coupling (these states are due to the 
interference effects in the impurity scattering of the 
electron), and how the system goes over into the usual 
resistance regime determined by the electron-phonon 
scattering. 

6. INDEPENDENCE OF THE ELECTRON BLOCKS 
WITH DIFFERENT ENERGIES 

Our final purpose is to calculate the correlators and 
Simultaneously take into account the interactions with 
the phonons and impurities. The skeleton diagram of . 
Fig. 8 must therefore be encumbered by including all 
possible impurity lines. 

Consider for example the diagram of Fig. 10, which 
contains on phonon line. This line divides the diagram 
into two blocks, in one of which the electron lines have 
energy € and € + w, and in the other energy € - Q and 
€ - n + w. We investigated first the contribution from 
the impurity lines joining electron lines of different 
blocks. 

It was indicated in the preceding section that elec­
tron lines with different energies can be joined only by 
impurity lines that do not contain rotating vertices, i.e., 
by lines b, b', and d of Fig. 3. We conSider, taking 
these lines into account, the derivation of the equations 
for that part of the diagram of Fig. 10 which lies to the 
right of the point x; we shall denote this part by ~. The 
equations for ~ are derived in analogy with the deriva­
tion of Eqs. (16) for the right-hand parts in the impurity 
problem. Since the impurity lines with rotating vertices 
join only single and double electron lines with equal 
energy, it follows that in any section of the diagram the 
number of single line with gi ven energy is equal to the 
number of double lines having the same energy (more 
accurately, differing by the small external frequency 
w). We denote by ml the number of pairs of single 

FIG. 9. Example of diagram containing the factor n(wTphr'. 

y 

FIG. 10. Schematic representation of a diagram for the density cor­
relator with a single phonon line. The diagram is drawn for x' < y < x. 
The impurity lines that enable the electron lines of the diagram to . , 
"crawl out" behind x and x . 
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lines with energy E + w, passing through the diagram 
section x + O. The equation for qm1ma is (see Fig. 11) 

d - - - ) 
- dx 91'= (V,+V,+V,,)9I', (44 

A • 

where the operators V 1 and V 2 correspond to inclusion 
of the impurity lines within the groups of electron lines 
with equal energy, and V 12 corresponds to inclusion of 
the impurity lines between these groups. The quantities 
V1 q and V2 Q are constructed in analogy with (16): 

We shall show that V 12 Q = O. Indeed, the electron 
lines with different energies are joined only by the im­
purity lines b (b') and d of Fig. 3. The lines b (b') cor­
respond in this case to the factors [- (ti (E)li(E _ n»-1 a 
- n»-1/2), while the lines d correspond to the factors 
Ui (E)l; (E - n »-1/2. Summation over all the line there­
fore yields 

CV,,9I')m,m,== {-2m,m,(Z/(e)l,+(e-Q» -', 
+2m,m,(l,+(e)Z,+(e-Q» -"'}9I'm,m,==O. (46) 

Turning to Eq. (44) we see that when V 12 Q = 0 is 
taken into account the solution of this equation can be 
factorized: 

9I'm,m,(e, e-Q,oo, x)=Rm,(e,oo, x)R",,(e-Q, (ii, x), (47) 

where Rm(x) is determined from (16). This factoriza­
tion shows that the diagram blocks corresponding to the 
lines with energies E and E - n can be calculated inde­
pendently of each other. Since the point y for the block 
with energy E can be regarded as the pOSition of the 
left-hand outer vertex (and as its right-hand vertex for 
the second block), we have for the diagram of Fig. 10 

~L,,(e-Q, OO,x')Z".,(e-Q, oo,x', y)R,,,(e-Q, (ii, y) 

x ~L,,(e,oo,Y)Z"m,(e,(iI,y,x)Rm,(e,oo,x), (48) 

where L are the left-hand parts. Formula (48) was 
written out as applied to the diagram of Fig. 10, which 
contains a phonon line of the type of Fig. 5b; this line 
corresponds to a contribution L+D. The diagrams con­
taining phonon lines of other types correspond to ex­
pressions that differ somewhat from (48). For example, 

Iff, { i-JZ+w 

n 

I 
m, { e+w 

+ r + r + '" 

m, { Ii 

mz { Ii-!/ 

FIG. II. Scheme for the construction of the right-hand sides. The 
joining of only three impurity lines is 'shown by way of example. 
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the lines Fig. 5b corresponds to the substitution Rna 
- Rn2+1 in the phonon factor L-D. This difference be­
comes inSignificant in the important limiting case 
II « 1, to which we confine ourselves below. In this case 
Rn with n ~ 11- 1 » 1 predOminate. Since Rn+1 = Rn(l 
+ O(l/n», we neglect the difference between Rn and 
Rn+1, the resultant error being ~II « 1. As a result, in 
the lowest-order approximation in II « 1, we obtain for 
the diagrams of the type of Fig. 10, after summing over 
all types of phonon lines and external vertices, 

I I dQ L++L-
4i dy z;-n(e-Q) (1-n(e-Q»-2-((1-n(e»D,,(Q) 

1 1 ) 
+n(e)D,,(Q»v(e) X'(e,(iI,x-y)v(e_Q)X'(e-Q,oo,y-x'), (49 

where the integration with respect to y is along the en­
tire axis. It follows therefore that in the momentum 
representation the diagram of Fig. 8 breaks up into a 
product of blocks with different electron energies, 
separated by phonon lines. These blocks must be calcu­
lated independently, with allowance for all the. impurity 
lines and phonon lines a (a') of Fig. 5, with integration 
over all the phonon frequencies. 

7. CALCULATION OF THE CONDUCTIVITY 

Individual blocks with fixed electron energy differ 
from the electron correlators in the pure impurity 
problem only in the presence of self-energy inserts of 
the type a (a') of Fig. 5, corresponding to outflow of the 
particles from a given state as a result of interaction 
with the phonons. They can therefore be obtained in 
analogy with the procedure in Sec. 3. In particular, the 
equations for the right-hand Sides H, 

dRm_ m' {R- e".'/'+" e-".'/'-?R-}- 2m R- (50) 
----- m-l Llm+t .... m -- m, 

dx Zi- V'p' 
differ from (16) only in the last term. The time of relax­
ation on the phonons, which enters in this term, is given 
by 

_1_ = i I dQ --1_-[L++iL+'+L--iL'+L+-iL+'+L-+iL_'l 
T,h(e) 2:1 2l!(e-Q) 

x [(l-n(e-Q) )D,,(Q)+n(e-Q)D.,(Q)]= I de' W(e', e), 
(51) 

where 
W(e', e)=W+(e', e)+W-(e', e), 

I d'q i-n(e') 1 
1V±(e',e)= (2n)' 1e.1' 1-n(e) v(e) 6 (q,+p(e)'Fp(e'» 

(52) 
x [(N.+ 1)6 (e-e' -00.) +N.6(e-e'+oo.)]. 

The terms i4, cancel out when the contributions from 
the single and double lines are summed (in perfect ana­
logy with (18». 

The quantity W(E', E) is the probability of the out­
flow from the state E into the state E'; it enters in the 
linearized kinetic equation and satisfies therefore the 
relation 

ute') n(e) (1-n(e» W(e', e) =u(e)n(e') (1-n(e'» W(e, e'). (53) 
- - 2imwx/v 

If we use the substitution Rm(x) = Rme to 
change over to equations of the type (23), then we see 
that 

(54) 

The central and left parts Z and I. are perfectly ana­
logously expressed in terms of Z and L. As a result, 
the contributions of the individual blocks are obtained 
from the corresponding correlators for the pure impur­
ity problem by a frequency shift equal to i!rph' 
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The criterion I v I « 1 used above both in the deri­
vation of (49) and in the determination of the explicit 
form of the electron correlators for the impurity poten­
tial (see Sec. 4) reduces, when the frequency shift is 
taken into account, to a simultaneous satisfaction of the 
conditions 

(55) 

The second of these conditions denote weakness of the 
scattering by phonons in comparison with the impurity 
scattering. 

The diagram expansions of the type of Fig. 8 for the 
current-current correlators ff1 contain current opera­
tors in the external vertices x and x'. All the internal 
blocks (e.g., between the points Y1 and Y2 of Fig. 8) are 
equi valent to the density-density correlators of the im­
purity problem. The two outer blocks (between Y1 and 
x and between Y2 and x') are equivalent to the current­
density correlators of the impurity problem. Calcula­
tion of these latter correlators shows that they are 
proportional to the quantities Qm(K) - Qm(-K), which 
vanish as K - O. Therefore, as K - 0, from among all 
the ladder diagrams of the type of Fig. 8 we are left 
only with the simplest ones conSisting of one block. It 
constitutes the current-current correlator for the im­
purity problem with shifted frequency. Therefore, tak­
ing (10) and (19) into account, we have 

~'{fl, 00) =X'(e, oo+i!-rph). (56) 

The final formula for the conductivity follows from this 
with allowance for (4), (19), and (38) 

8 S de ( iJn ) ( 1) 0(oo)=-~(3)e' - -- (I,-(e»' -ioo+-- . 
n vee) iJe '(Ph(g) 

It becomes simpler for a strongly degenerate gas: 

8 --0(0)= -~ (3)e'v.'(,''(p,-', 
n 

(57) 

(58) 

vF is the Fermi velocity. If we compare (57) with the 
usual formula that follows from the kinetic equation, 
then we obtain for the effective free path and for the ef­
fective free-path time 

lie) =v(e) '(e) =4~ (3)1,- (e) '(,(e)I1:'h (e). (59) 

According to (58), the conductivity is due entirely to 
the electron-phonon interaction and increases in direct 
proportion to the rate of electron scattering by the pho­
nons. We see that both types of phonon scattering, with 
momentum transfers I 6.p I "" 2PF and I 6.p I « PF enter 
perfectly symmetrically in formula (51) for Tph. This 
means that the delocalization of the electrons occurs 
when they are scattered by the phonons both forward 
and backward. At low temperatures T < W2pf, the first 
type of scattering dominates. 

At Tph» Ti the effective time is T ~ T:/Tph« Ti. 
The temperature dependence of Tph is determined by 
the ratio of a number ~arameters .:..!.or a one dimen­
sional metal we have Tph c.c T3 and T-h c.c T at T « WD 

and T ~ WD, respectively (wD is the f)ebye frequency). 
Therefore T, and consequently also a, first increases 
like TS and then like T. At the boundary of the region 
of applicability of (57) we have Tph ~ Ti and the time T 
reaches a value T ~ Ti. 

8. ELECTRON DI FFUSION 

It was shown in the preceding section that the static 
conductivity of the electron system assumes a finite 
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value if account is taken, beSides the electron-impurity 
interaction, also of the weak electron-phonon interac­
tion. It must be assumed that the finite value of the 
conductivity is due to delocalization of the electronic 
states as a result of the interaction of the electrons 
with the phonons. We shall calculate the denSity corre­
lator with an aim at follOwing the diffusion of the elec­
trons under these conditions. 

The diagram series for the denSity correlator is a 
ladder of the type shown in Fig. 8, each block of which 
is an electron-density correlator in an impurity field 
with shifted frequency (see (54» and is equal to XO(E, 
W + i/ Tph, k). It is convenient to sum this series by 
writing down the equation for the quantity g>°(E, W, k),' 
which is connected with the denSity correlator by the 
relation 

S de 
f!l"(oo,k)=2 z;-aJ°(e, oo,k). (60) 

The actual form of the equation can be easily established 
by recognizing that its first iteration is given by (49). 
As a result we get 

2 . 
aJ°(e, oo,k)=n(e) (l-n(e»-( -) xO(e,oo+-'-, k) 

v e 1"PI! 

2 i 
+-( -) XO(e,oo+-, k)i 

v E "[ph· 

S dQ L++L-
x ---{(l-n(e»DI2(Q)+n(e)D,,(Q)J~O(e-Q,oo,k). (61) 

2n 2 

Taking into account the explicit form of XO(E, w. k) at 
I v I « 1 and I K I » 1 (see (34», we obtain in the coordi­
nate-time representation and at Ix I » li and t » Ti 
the following equation: 

iJ r 
a-taJ°(e, t, x) =4~(3) (I,-(ll»' S de' Wee, e') iJx' aJ°(e', t, x) (62) 

+ S de'[W(e, e')aJ'(e', t,x)-W(e', e)aJ°(e,t, x) J. 

This equation lends itself to a simple interpretation. 
The first term in the right-hand side describes the pho­
non-induced spatial diffusion of the electron, wherein 
electron hops take place at time intervals ~Tph over a 
distance ~li that determines the dimension of the 
region of the electron localization in the impurity field. 
The second term coincides with the linearized collision 
integral and determines the energy relaxation of the 
electrons in a given point of space. 

We shall show that at long times t » Tph and in the 
case of weak spatial inhomogeneity the density corre­
lator 8l'°(t, x) satisfies the diffusion equation. To this 
end we integrate (62) with respect to E. The integral 
of the second term in the right-hand side vanishes 
identically for all functions ~o(E, t, x). In the resultant 
equation 

~8l'0(t,x)=4W) Sde (1,-(e»'Sde' W(e,e')~8l'O(e',t,x) (63) 
iJt n iJx' 

it is necessary to substitute 8l'°(E', t, x) in the form 

8l'°(e', t, x) =_(1, ;lee') (i-n(e') )N(t,X), S dx N(t, x)=l, (64) 
j) e ) 

since it is just this expression that causes the vanishing 
of the collision integral, which is literally the principal 
term in (62). We then obtain for the function N(t, x) the 
diffusion equation 

iJ iJ' 
atN(t,x)~Da7N(t,x). (65) 

The diffusion coeffiCient 
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(66) 

is cOIIDected with the mobility u by the Einstein rela­
tion 

D=u J v~:) n(e) / J v~:) (- ::) , (67) 

which follows from (66) and (57). 

If the criterion wiT « 1 is satisfied and the spatial 
gradients are large enough to have li fJ~O!ax » w1JJO!T, 
then the spatial diffusion takes place independently at 
each energy level in accord with the equation 

a (/,-(e»' a' 
-W'(e,t,x)=4t(3)--(-)--a ,W'(e,t,x), 
at r. e x 

(68) 

where 4t(3) (li (,,»2hph (") = Dk) is the diffusion coef­
ficient of an electron with energy L 

CONCLUSION 

Let us summarize our results. 

The decrease of the wave functions of the electrons 
in an impurity field is characterized by the asymptotic 
behavior of the density correlator at large distances 
and long times 

poo (x) '" ixi-1, exp (-ixi/41,-). 

Here li(,,) is the mean free path of an electron of en­
ergy € in the impurity field; this length is calculated in 
the usual manner from its backscattering amplitude. 
The presence of a power-law factor alongside with the 
exponential is due to the fact that the asymptotic form 
is determined not by a pole but by a branch point in 
k-plane. 

The conductivity and the diffusion coefficient are de­
termined by formulas (57) and (66). They correspond 
fully to picture in which the electron moves by diffusion 
but executes hops over a distance ~LH€) with a fre­
quency Tph(€) corresponding to the reciprocal electron­
phonon scattering time. The quantity Tph includes two 
contributions, from scattering with small (~p « PF) 
and with large (~p,::; 2PF) momentum transfers (PF is 
the Fermi momentum). At low temperatures, the first 
contribution predominates; at high temperatures they 
are of the same order. The temperature dependence of 
the conductivity should be of the type (J ..x: T3 or (J 0:; T, 
depending on the ratio of T to the phonon Debye fre­
quency. 

Of course, a regime in which scattering by phonons 
induces conductivity is possible only if Tph ;:, Ti = lj/ VF. 
In the opposite limiting case the scattering by the pho­
nons is the main mechanism of the resistivity, and the 
conductivity can be determined from the kinetic equa­
tion 

0(0)= ~ e' J de v(e) (- :en )rp,,-(e). (69) 

Here, as usual, (J is proportional to the relaxation time. 
It is important that (69), in contrast to (57), contains 
only phonon backscattering (Le., with a transfer ~p 
,::; 2PF)· 

From a comparison of (57) and (69) it follows that 
for quasi-one-dimensional metals the temperature de­
pendence of (J should have a maximum (corresponding 
to Tph ~ Ti) and the temperature dependence should be 
of the type shown in Fig. 12. Similar dependences were 
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indeed observed for certain systems,[l8] but their origin 
is not yet clear. 

In the derivation of the fundamental equations it was 
necessary to assume, besides the usual condition 
€T» 1, also that WTio WTph » 1 and WTphw! € » 1. At 
W « € these criteria are much more stringent than the 
first one. The criteria containing Tph are the condition 
for the suppression of the interference effects in phonon 
scattering, which has turned out to be very strong in the 
one-dimenSional system. It appears that they are of the 
same character as the interference effects that lead to 
localization in impurity scattering. It is interesting that 
the last and most stringent criterion drops out for non­
degenerate electrons. 

We did not take into account electron interaction, 
whether direct or via phonons. The latter is formally 
small because of the electron-pholl.on coupling constant 
and can be left out if it does not lead to a restructuring 
of the spectrum, as is indeed assumed. 

We calculated above the conductivity in a homogene­
ous electric field and did not consider the usual effects 
of the percolation type.[l9] If TTi» 1, then a section of 
length li in a layer of thickness T will contain many 
levelS, and the fluctuations will be small on the average. 
Flow around the sections with large resistance will be 
due to the finite conductivity between the filaments and 
the displacement currents (at w;t. 0), and the conduc­
tivity is then given by (57). 

We are grateful to V. L. BerezinskiI, L. P. Gor'kov, 
and G. M. Eliashberg for a discussion of the results. 

APPENDIX 

In the main text we have considered diagrams of the 
electron-loop type of Fig. 1; we shall now indicate the 
reason why more complicated diagrams can be omitted, 
with the density correlator as example. 

The diagrams of type a in Fig. 13, in which the 
electron loops are cOIIDected by an impurity line, vanish 
identically at w;t. O. The phonon line joining the loops 

FIG. 12. Temperature de­
pendence of the conductivity in 
metallic quasi-one-dimensional 
systems; the maximum corre­
sponds to Tph ~ Ti' 

'z 

FIG. 13. Correlator diagrams that include several electron loops. 
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on Fig. 13b corresponds to a factor of the type 

(DII (w) -D" (w)) (n(E,) -n( E,+W)). 

It is of the order of W/TTph and the individual loops, in 
analogy with (34), are of the order of w- l • Therefore the 
diagrams b of Fig. 13 are small in comparison with 
Fig. 1 if (TTpht 1 « 1. Since w:S T, this criterion is 
here not stronger than (wTpht ' « 1, which was used in 
Sec. 5. In diagrams of type c of Fig. 13, in contrast to 
diagram b, the frequency corresponding to the phonons 
is not small. But in these diagrams the phonon lines 
join electron lines with different energies, so that the 
diagrams are small because of the parameter (WTphi3t ' 
« 1 (cf. Sec. 5). 

Since each of the loops is proportional to the elec­
tron occupation numbers n, it follows that for a non­
degenerate gas all the diagrams of Fig. 13 are small 
because of the parameter n « 1. 

'Yfhe value A = 2(7T 2 - C3) given in [II] for this integral is in error. 
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