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The correlation correction to the pressure in a transition metal at zero temperature is estimated in the 
random-phase approximation (RPA). With the example of vanadium it is shown that when correlation is 
taken into account the part of the pressure associated with the Coulomb interaction of the d-electrons is 
several times smaller than in the Hartree-Fock approximation. 

PACS numbers: 64.30. 

1. INTRODUCTION 

The purpose of the present paper is to elucidate the 
possibility of using the Hartree-Fock approximation to 
calculate the equation of state of transition metals. 
In[1, 2), calculations of the pressure and compressibility 
in the primitive cell were carried out in the Hartree­
Fock (HF) approximation for diamond and aluminum 
respectively. In the case of diamond the results indicate 
that the correlations play an Wlimportant role, while the 
calculations on aluminum gave no definite results on this 
question. As regards the role of the d-electrons, it is 
fOWld that the HF approximation is Wlsatisfactory. Here 
we shall use the random-phase approximation (RPA). 
Although, as shown in(3), the perturbation-theory series 
evidently does not converge for this case, the RPA ap­
pears, nevertheless, to be reasonable for qualitative 
estimates. 

The pressure of a metal at zero temperature, which 
is equal to the volume derivative of the groWld-state 
energy, can be represented in the form of a sum of two 
terms[4, 5La term which may be called the kinetic pres­
sure, which is expressed in terms of derivatives of the 
one-electron density matrix at the bOWldaries of the 
crystal cell, and a term which may be called the Coulomb 
part of the pressure, which is expressed in terms of the 
Coulomb interaction between the cells, so that the strong 
intra-cell interaction is completely excluded. The Cou­
lomb interaction between cells is principally determined 
by the quantum oscillations of their charge density, in­
asmuch as the interaction of the neutral cells is small. 
In essence, the interaction associated with fluctuation of 
the charge of the cells determines the cohesion of the 
metal. It may be thought that the conduction electrons, 
and the oscillations of their density, are satisfactorily 
described by the HF approximation, although there is 
doubt about the applicability of this approximation for 
an unfilled d-shell. It is known[6) that, as the density of 
a metal is reduced to zero, in the presence of unfilled 
bands the Hartree-Fock description of the metal does 
not go over to a state of neutral atoms but preserves 
finite fluctuations of charge between them. Of course, 
on decrease of the density the metal ceases to exist; 
however, the d-electrons are in an analogous state even 
at normal density. Therefore, if they do give a contribu­
tion to the electrical conductivity and specific heat, the 
HF approximation should give a considerable error for 
them. An investigation of this question by perturbation 
theory was carried out in(3). There it was shown that 
the state of the d-electrons is considerably closer to 
the limiting case of electrons localized at the atoms than 
to the Hartree-Fock limit. Therefore, the fluctuations of 
the charges at neighboring atoms should be considerably 
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smaller. Consequently, the Coulomb pressure for the 
d-electrons will be considerably smaller than in the HF 
approximation. In the present paper we calculate this 
pressure directly in the approximations that were used 
in(3). We confine ourselves to the RPA, i.e., effectively, 
to first order of the modified perturbation theory. This 
appears reasonable, since the passage to the limit of 
isolated atoms already goes through in this approxima­
tion (see below). The calculation for vanadium in this 
approximation gives a decrease of the Coulomb pressure 
of the d-electrons by a factor of seven compared with the 
HF approximation, i.e., correlation effects are extremely 
important. 

2_ COULOMB PRESSURE OF THE d-ELECTRONS 

From formulas (5) and (6) of the paper(4), for the 
Coulomb part of the pressure in a metal we can obtain 

PCou)= 61~1 I:Sdr, S dr,p(r,lr,+R) :Jc IRH(~,-r,) II (1) 
H""c· W .., 

Here w is the crystal cell, 1:.11 is its VOlume, R has its 
origin at the center of the cell w and runs over the 
centers of all the other cells in the metal, and 

per, I r,+R) =2r(rd r,+R) -Z1 (r,)o(r,) 
-Z1 (r,+R) 6 (r,) +z'6 (r,) 6 (r,). 

Here yand r are the one- and two-electron matrices(4); 
the first term describes the interaction of two electrons 
situated at the points rl and r2 + R, the second and third 
describe the interaction of the electrons of a cell with a 
nucleus from another cell, and the fourth describes the 
interaction of the nuclei. 

The functionp(rllr2 + R) can be represented in a 
more convenient form: 

p(r,lr,+R) =[2r(r,lr,+R)-1(r,)1(r,+R) J 
+[ 1 (r,) -zll(r,) J 11 (r,+R) -zll(r,) J. (2) 

In the first term, which is in essence the two-electron 
correlation function, we shall be interested in the con­
tributions pertaining only to the mutual interaction of the 
d-electrons. Inasmuch as their density is principally 
concentrated near the nuclei, it seems reasonable to 
neglect the multipole interaction of the cells, i.e., to 
put r 1 = r2 = 0 in the kernel of the integral (1). Then it 
is all the more necessary to neglect the second term 
in the expression (2), as it corresponds to the interac­
tion of neutral cells having an almost spherically sym­
metric charge distribution. Finally, the expression (1) 
takes the form 

PC: ul= 6~wl 1:: ~ [S dr,dr,2rdd (r,lr,+R)-nl]. (3) 
R"., 

Here nd is the mean number of d-electrons per cell. It 
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can be seen from the expression (3) that if the two-elec­
tron part of the Hamiltonian of the metal is defined in 
the form 

Hdd(Il)=~t'[ i-8" +Il~], 
2 I'; Ir,-r,1 R'j 

(I:Jij = 1 if the i-th and j-th electrons belong to different 
cells with distance Rij between the centers, and I:J .. = 0 
if the electrons belong to the same cell), then the IJxpres_ 
sion (3) can be represented as 

dd 1 a 
Peou1= 31",IK a6 E(Il) (4) 

(K is the total number of cells in the metal). 

In fact, if H(I) is the total Hamiltonian, we have 

D a (1 011"1) K~1S To E({) = To(I11({)) 1>= '--ar;- =2 LJEi dr,dr,2f(r,lr,+R), 
k.,.o III 

since the exact, I)-dependent function I) of the ground 
state of the electron system of the metal is normalized 
to unity. This expression coincides with (3) to within a 
term related to nd' This fact will be taken into account 
when we write down the perturbing part of the Hamil­
tonian in the next Section. 

3. APPROXIMATION OF A COMPLETELY 
DEGENERATE d·BAND 

For a qualitative estimate of P~~UI we shall take the 
model of a completely degenerate d-band, introduced by 
Hubbard[7) and already used by US[3). Thus, we assume 
that the motion of the d-electrons within one cell of the 
metal is determined by the Hamiltonian[3) 

H,"= 1::e,ak,+ak'+ :K 1::a.~ .• ,a:, .• ,a.,.,a""Il.,+., ... +.,.. (5) 

Here v == mer takes ten values, m is the magnetic quan­
tum number, ex is the spin index, B is the interaction 
energy of two d-electrons of the same cell, and K is the 
total number of cells in the metal. The one-particle 
energy is taken in the form Ek = a(k/ko)2, where ko is 
the radius of the sphere with the volume of the first 
Brillouin zone and a is the width of the d-band in the 
spherical approximation[B). Conservation of the total 
quasi-momentum holds to within an arbitrary recipro­
cal-lattice vector. The perturbation of the two-electron 
part of the Hamiltonian, in terms of whiCh, according to 
(4), P~~ul is expressed, has the form 

Il,/ (0) = ~K 1:: ; 1: exp[ -i(k"-k,)Rja:, .• ,at, .• , ak""ak",Il.,+k,.,'+.,.. 
R~ ~) 

If here we throwaway the term with k2 = k2" formula 
(4) will then give the expression (3) exactly, i.e., this 
is equivalent to subtracting nd' 

4. COULOMB PRESSURE IN THE 
HARTREE·FOCK APPROXIMATION 

The HF approximation is, as usual, the first approxi­
mation of perturbation theory, i.e., the energy perturba­
tion is equal to the trace of the perturbation over the un­
perturbed ground state. Inasmuch as the term corres­
ponding to the perturbation with k2 = k2' and, consequently, 
the term with kl = kl, have been discarded, there re­
mains only the exchange part of the trace of the pertur­
bation: 

(OIH' (Il) 10>=- 2~ 1: ~1 exp[ -i(k,-k,) Rl (Ola.,;.ak,,,ak,":'iz ... , 10> 

{) ~ 1 
=- 2K LJ Eiexp[-i(k,-k,)R18(kF-k,)8(kF-k,), 

k"kJ,Y,RoFO 
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where, by definition of the unperturbed ground state ]0) 
we have akvlO) = 0 if k> kF and akvlO) = 0 if k::::: kF' 
Then, for the pressure of the d-electrons in the HF ap­
proximation we obtain, from (4), 

dd (HF) -1 i ~ i 
PCoul = 01",1 K'LJ ilexp[-i(k,-k,)R18(kr-k,)8(kF-k,) 

k,-,bkJ 

1 ~ S dk,dk,~ 1 
= -~ LJ -y;;;y LJil exp [ -i(k,-k,) R] 8 (kr-k,) 8 (kr-k,). (7) 

""'" R+O 
k • .,.Ir.: 

We introduce the notation 

(8) 

where ro is the radius of the spherical cell of the metal. 
The function F(Qro) has been tabulated by A. I.·Voropinov 
by Ewald's method[91• Then the final formula for the pres­
sure in this approximation is 

PC:uiCHF) 

-1 ~ S J dk,dk, =-6-1 -1-' LJ dQ -I -I,-F(Qr,)8(kF -k,)8(kr-k,)Il(k,-k,-Q). 
W 10 v 101" (d/C uh. (9) 

Here the pressure is obtained in atomic units of pres­
sure (1 a.u.p. i':l 293 x 106 atm) if the lengths are ex­
pressed in Bohr radii. 

5. CORRELATION CORRECTION TO THE 
PRESSURE 

The correlation correction to the energy is represent­
ed as the sum of all possible connected closed diagrams 
of second order and higher. This sum of diagrams can 
be obtained, e.g., as was done in[3), i.e., by detaching 
one of the ends of an interaction line and summing the 
diagrams already broken. In the given case we need to 
know only the small change, induced by the perturbation 
(6), in the intra-cell part of the correlation energy. It is 
equal to the same sum of diagrams, in which, however, 
one of the interaction lines is replaced by a line corres­
ponding to this perturbation and all the other interaction 
lines in the diagram correspond to the operator (5). It is 
simpler to obtain the sum of such diagrams, inasmuch as 
we must now detach only the Hne corresponding to the 
perturbation. Therefore, each diagram appears only 
twice in the sum, instead of the 2n times for an n-th 
order diagram in the calculation of the energy itself. 
Therefore, the factor l/n hindering the summation of 
the diagrams (a further integration is required to elimi­
nate it (31 ) is absent here. Taking into account these dif­
ferences between the desired sum of diagrams and that 
found in[3) and the difference between the metric element 
in (5) and that in (6), we can immediately write down the 
answer on the basis of formula (3) of the paper(3): 

K S dQ 1 'S'~' X'(GQ) 1 
ERP.,(8)=-1l 2B Tc,;J'"2;ri ds 1-X 1::R"e iQR

• 
(10) 

ro~ _i~ R*O 

The function X(~Q) in the random phase approximation 
has the form 

X(£Q) =B ~ S 'dk, dk, 8 (k,-kr) -8(k,-kF ) Il(k,-k,-Q). (11) 
LJ 1",,1 e,-e,-£ 

\' WI, 

Now formula (4) leads to the following correlation cor­
rection to the pressure: 

" 1 dQ t ,- X'(W) 
l'COU1(RPA)=-61",iBr, J !wJ'F(Qr');2;i1 dsi=X' (12) 

(0)" _1010 

To conclude this Section we shall show that as B _00 the 
transition to isolated atoms occurs, and the Coulomb 
pressure vanishes as it should. 
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We note here that P~~UI (HF) does not depend at all on 
the parameter B-the strength of the intra-cell interac­
tion, since this pressure corresponds to taking into ac­
count only one ordinary exchange diagram, the interac­
tion line of which is given by the operator (6). 

From the expression (12), for B _00, taking (11) into 
account, we obtain 

." . 1 S dQ 1 'J- X(iQ) 
hmPeoulRPA)=hm-1 -1-' ~-I F-. d£---B__ 8 __ 6 (/) 10 IWk' 2m_;.~ B 

1 S dQ ~ Sdk, dk, 
= 61wlro J;;;JF LJ TwJ 

[ (k k) 1 e,-E, 
x 6 ,-'F -6(k,-kF )]6(k,-k,-Q)--- (13) 

2 IE,-E,I 
1 S dQ ~ Sdk, dk, 

=- 6lwlr, J;;;JF LJ ~6(kF-k,)6(k,-q6(k,-k,-Q). 
III" v III" 

Now, combining (9) and (13), we obtain 

PC~:l( HF ) + lim P~ul(RPA) B __ 

= __ 1-S' dQ FS dk,dk, 6(k,-k.-Q)6(k,-k,) 
61w Ir, Iw.1 Iw.1 

= __ l-S dk, O(kF-k,) S~F(Qr,)=O 
61wlro :w.1 Iw.1 h'" ",. 

according to the expression (8). 

6. NUMERICAL CALCULATION 

(14) 

It can be seen from the expression (11) for the func­
tion X(~Q) that it is real and even on the imaginary axis. 
Therefore, the expression (12) for the correlation cor­
rection to the pressure can be rewritten in final form 
as: 

PC:~l(RPA)=-_a-S~~S- dw [ReX(iwQ)]'F(Qro). (15) 
6iwlBr, ·lw.1 ;t 0 1-ReX 

where w = W /a. Here the real part of the function X is 

ReX(iwQ)=~ 1:S dk,dk, 6(e,-eF)-6(ez-e,) (r,-r,) 6 (k,-k,-Q) , 
a •• , Iw.1 (r,-e,)'+(,), (16) 

where E = Ei/a. It can be seen from this expression that 
ReX ~ 0, and therefore (15) has no singularities. 

The relation B/a "=l 0.6/0.3 = 2 holds for a whole 
series of transition metals: V, Fe, Ni, Ru, Pd, Nb[S]. 

The function defined by the expression (16) coincides 
exactly with (-Dl) from[3], and has been computed in 
exactly the same way, but with ten points in Q instead 
of the previous three. All the details of the numerical 
calculation from this formula are described inP ]. The 
numerical calculation of the correlation correction to 
the pressure was performed only for vanadium in a non-
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magnetic state, corresponding to (kF/ko)3 = 3/10. Fur­
thermore, since IWkllwl = (211/, ro = 3.090 and does not 
depend on the metal. We now note the following. Accord­
ing to (8), the function F integrated over the whole vol­
ume of the cell wk should give zero. In practice, we 
have 

2,n 

S x'F(x)dx=0,095. 
o 

The effect of this error can lead to a minimum only in 
the total pressure, consisting of exchange and correla­
tion parts with opposite Signs. For this it is necessary 
that the regions of integration in k-space in the expres­
sions (9) and (16) be the same. Here, the region of in­
tegration in (9) has reduced to the region in (16). The' 
results of the numerical calculation are the following: 

PC~~l (HF) =-0.376 ·10-' a.u.p. "'-0.110 ·10' atm 

PC~~l(RPA) =0.323.10-3 a.u.p. "'0.0947 ·10' atm 

Pc:'l(HF) +Pc:~1(RPA)=-O.535.1O-· a.u.p. ""'-0.157 ·10' atm 

Thus, it can be seen that correlation effects in the 
d-bands are very important. 

The authors are grateful to G. M. Gandel'man and L. 
A. Maksimov for useful discussion of the results of this 
work. 
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