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It is shown that if flute oscillations are excited in a plasma an appreciable diffusion of the latter can be 
caused even by rare Coulomb collisions. The diffusion mechanism under consideration may resemble that 
of neoclassical diffusion. In both cases, the particles are transported across the magnetic field along 
determined trajectories, whereas Coulomb collisions simply transfer the particles from one trajectory to 
another. 

PACS numbers: 52.25.Fi 

INTRODUCTION 

Adiabatic traps frequently operate with constant and 
prolonged (several seconds) plasma injection. Under 
these conditions, the stationary level of the plasma den
sity sets in as a result of balance between the entry of 
the particles into the trap via injection and their depar
ture through charge exchange with the residual gas. If 
the plasma density exceeds a certain critical value, then 
the so-called flute instability is excited in traps with a 
Simple mirror field. The development of this instability 
leads quite frequently to establishment of a new station
ary state. [lJ Regular constant-amplitude oscillations are 
then present in the plasma, and the plasma itself goes 
off quite rapidly to the chamber walls. The processes 
that lead to the plasma ejection have remained unclear 
so far. Indeed, the regular periodic oscillations cannot 
cause a directed motion of the particles, and the plasma 
densities typical of the discussed experiments are so 
low that the diffusion flux calculated in accord with the 
classical theory should be quite negligible. 

We show in this paper how ordered oscillations can 
lead at a low plasma density to the loss of the particles 
from an adiabatic trap. The proposed loss mechanism 
takes into account essentially certain peculiarities of 
adiabatic traps. The ions are contained in the traps by 
magnetic mirrors, and the electrons by an electric po
tential that is produced spontaneously. The potential 
reaches a maximum at the center of the trap and falls 
off both along the magnetic field and in the transverse 
direction. Since the chamber walls are kept at a con
stant (zero) potential, the radial electric field should 
depend on the coordinate along the magnetic field (the z 
coordinate). The frequency of the oscillations of the 
electron in the potential well along the magnetic field 
greatly exceeds the frequency of the flute oscillations. 
Therefore when the latter are considered it is necessary 
to use the value of the radial electric field averaged 
over OZ. The result of the averaging depends on the 
distance to which the electron penetrates in the traps, 
i.e., in final analysis, on the energy of its longitudinal 
motion. 

The radial electric field leads to a drift of the elec
trons in azimuth. The flute oscillations also travel in 
this direction. In the flute oscillations, the electrons 
oscillate along the magnetic field, and the amplitude of 
the displacement depends on the mismatch between the 
phase velocity of the flute oscillations and the electron 
drift velocity. Since the drift velocity depends in turn on 
the energy, the Coulomb collisions should lead to random 
changes of the electron displacement amplitude in the 
flute oscillations. This process, as shown in the present 
paper, causes an anomalously rapid diffusion of the elec-
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trons across the magnetic field. Its mechanism has 
much in common with the mechanism of neoclassical 
diffusion (see, e.g., [2]). 

We consider in this paper electron diffusion, but the 
ions can diffuse in similar fashion. Indeed, the oscilla
tion amplitude of an ion along the magnetic field, and 
consequently also the average radial electric field acting 
on the ion, depends on the ratio of the ion energies in the 
directions along and across the magnetic field. In addi
tion, in adiabatic traps, drift due to inhomogeneity of the 
magnetic field, with a velocity proportional to the ion 
energy, is superimposed on the drift of the ions in the 
crossed fields. The frequency of the ion-ion Coulomb 
collisions in adiabatic traps is usually very low, but the 
ion energy can vary, for example, under the influence of 
cyclotron oscillations, which are very frequently excited 
spontaneously in such systems. 

1. BASIC EQUATIONS 

An adiabatic trap with a simple mirror field is an 
axially-symmetrical system. To simplify the calcula
tions we replace the axial symmetry by a planar sym
metry. We introduce a Cartesian coordinate system with 
the OZ axis along the magnetic field. We set the OY axis 
in correspondence with the azimuth, and OX to the rad
ius. We consider the motion of an electron in an electric 
field with a potential 

q>(r, t)=q>.(x, z)+q>,(y, t). 

Here cpo(x, z) = CPo(x)(l - (z/Ln simulates the constant 
potential that retains the electrons in the trap, and 
cpl(y, t) = CP1COS (ky - wt) is the potential of the flute 
oscillations. The equations of motion of the electron 
take the form 

ckq>, 
i=-usin(kY-Cilt) , 

y= ; :. (1- (~ ) ') , 
2e z 

;:=---;;;-q>.(x) L" 

(1) 

(2) 

(3) 

Since the frequency of the flute oscillations is small in 
comparison with the electron-cyclotron frequency, and 
the wavelength is large in comparison with the electron 
Larmor radius, we have assumed for the velocity of the 
electron motion across the magnetic field the expression 
v = CH-2[H x vcp]. 

Taking (3) into account, we average (2) over the fast 
oscillations along the magnetic field: 

c dq>. ( ell \ 
y= Hdx 1 - 2ecp. ). 

(4) 
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Here E II is the energy of electron motion in the direction 
along the magnetic field, taken at the point z = 0, Le., at 
the bottom of the potential well. 

It is quite important in what follows that the average 
electric field, and with it also the average drift velocity, 
depends on the longitudinal electron energy. It is obvious 
that this dependence arises for any shape of the potential 
well except the square well. Since the exact form of the 
potential qJo(z) produced in the trap is unknown, we have 
assumed the simplest parabolic dependence. 

Under the action of the Coulomb collisions, the elec
tron energy fluctuates about a certain mean value E 110' 
The simplest model equation describing these fluctua
tions is of the form 

(5 ) 

Here 6 Ell = Ell - E 110 is the frequency of the Coulomb 
collision and (t) is a random function that is 6 -correlated 
in time: 

<~(tl)~(t2) >~a'Il(tI-t2)' a'~2T,,'v, Til""f"o. 

The angle brackets denote averaging over the statistical 
ensemble. 

It follows from (5) that l ) 

I 

68,,= S dt'e"'·-O~(t'). (6) 

Using (6), we reduce (4) to the form 

._ c dqJo (1 8no 1 Sl dt' ""-O'(t'») y--- ------ e _ . 
H dx 2eqJo 2eqJo_~ .. 

(7) 

It is convenient in the subsequent calculation to intro
duce the dimensionless variables 

I']=n+ky-wt, ~=xwH/kcqJ" T=/W. 

Equations (1) and (7) then take the form 

d;ld-r=-sin 1'], 

Here 

a=~, w(T", s) ... w(;)=~ (1-~) -1, 
w w 2eqJo 

kv 1 
x=~-2-2-' w eqJo 

,_ 1 (.!!!...)'( 00 )' ~-- --. 
w w 2e<[0 

2. HOMOGENEOUS ELECTRIC FIELD 

A. Diffusion Mechanism 

(8) 

(9) 

u=~ dqJo 
H dx ' 

If the stationary electric field is homogeneous and 
consequently the drift velocity along OY does not depend 
on ~(w(~, E) =W(E), w(TII'~) == w), then Eqs. (8) and (9) 

FIG. I. Electron trajectories in a 
homogeneous electric field at various 
values of the energy W(E2) < W(E I), 
W(E 3)· 

the difference between the phase velocity of the oscilla
tions and the drift velocity of the electron, Le., the 
smaller W(E), the larger the amplitude of the sinusoid. 
Assume that initially W(E) is large-the electron is on 
the trajectory labeled 1. Under the influence of the 
Coulomb collisions its energy can change in such a way 
that W(E) decreases, and then the electron goes over to 
trajectory 2. If the electron energy again increases at 
the instant of time when it is located in the lower part of 
trajectory 2, then it goes over to trajectory 3. The end 
result of these processes is a displacement of the elec
tron along the ~ axis, i.e., across the magnetic field. It 
is easily seen that the diffusion mechanism considered 
by us is similar in character to the neoclassical diffusion 
mechanism (e.g., [2J ). Indeed, in both cases the particle 
moves across the magnetic field along definite trajec
tories, and the Coulomb collisions only transfer the par
ticles over from one trajectory to another. 

B. The Diffusion Coefficient 

Let us determine with the aid of (10) and (11) the var
iance of the values of the coordinate T/: 

d,( ,) =< 1']'>_ « 1']» '=~(e-"-1 +aT), 
2a" 

(12) 

and also the rate at which the variance of the coordinate 
~ changes: 

(13) 

It follows from (12) that dT/(T) increases with time. We 
consider time intervals T satisfying the condition T » Tt, 
where Ti is defined by the equation dT/(Ti) = IT. In this 
case we can leave out the second term of (13). We shall 
see below that for sufficiently long time intervals D ~ (T) 
tends to a finite limit, D ~ (T) - D ~, as T - 00. This limit 
has the meaning of the diffusion coefficient 

(14) 

The integral in (14) is a certain modification of the 
integral, introduced by Wiener, over random trajector
ies. We calculate it by a standard procedure (see, 
e.g., [3J). We replace the integrals in (11) and (14) by 
sums. In particular, we represent the difference T/(T) 
- T/(T') in the form 

'CIA" 

l](T)-l](T)=lc(,-T)+ I: a.x.dol:, (15) 

can be integrated: where 
, 

;(,)=;(0)- Jdl:' sin I'] (,'l. (10) 

, " 
I] (T)=I'](O)+w,- J d,' J d,"eo,,"-"'x(''')· (11) 

Assume that the Coulomb collisions have been turned 
off (X == 0), and then the electron trajectories on the 
(~, T/) plane become sinusoidal (see Fig. 1). The smaller 
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a'I=ct,.-I(e-O:f-e-r:H') as n<-r'/,1:r, 

a,=a- I (e-~"-""-1) as n>T'/dol:. 

We assume that Xn = X (nilT) has a normal disfribution 

( dol: )'" (X.2dol:) 
p(zJ= 2n~2 exp-:w- (16) 

and is 6 -correlated in the index n: 
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{ ~'/AT' n=m 
(X.X,,,) = 0 ~. 

., n-r-m 

As .:l T - 0, the last equality goes over into 
(x (',)l( (.,) >=~'6 Cr,-T,) 

(17) 

(cf. (5)). Averaging in (14) with the aid of (16) and (17) 
and returning from summation to integration, we get 

= exp { - :~, [ (e-"'-e-"')' {~t' e'''OO+ {(i-e"('''-''')'dt' ]} 

" 

(18) 

As a result, the expression for the diffusion coefficient 
D ~ takes the form 

1 - r D, = - JdT Cos(wT)exp ( - -(a.-l +e-"'»). (19) 
2 t, 2a3 

We have succeeded in evaluating the integral (19) only 
in the Simplest limiting cases. Assume that the condition 
(3 » max(2 1/ 2a 3i2, 2awli2) is satisfied; then we can put 
cos (wT) = 1 in (19) and expand the argument of the ex
ponential in a series up to second order inclusive: 

D',""~J- dTexp(-L-r')= (rca)'" . (20) 
20 4a 2~ 

At 2ali~ » {3 » 21i2a 3 / 2 the integrand in (19) oscillates 
rapidly and asymptotic methods must be used to calcu
late the integral (see, e.g., [4J ): 

D'2""~'/4w'. (21) 

Finally, at (3 « 2113 a 2h we can retain in the argument of 
the exponential in the integrand only the first term 

1 - ~. ~' 
D,,""-JdHos(w-r)exp (---2) (22) 

2 0 2a' 4a' (w'+~'/4a') 

The dependence of the diffusion coefficient on the 
, collision frequency is shown schematically in Fig. 2 (cf. 
the analogous dependence of the coefficient of neoc~ass
ical diffusion[2J). It must be recalled here that to calcu
late the diffusion coefficient we used the condition 
T » a-I (see above), and therefore the expressions ob
tained by us are suitable only for the description of slow 
processes with a characteristic time scale to much lar
ger than V-I, 

C. The Diffusion Equation 

It is known (see, e.g., [5J) that random processes 
whose duration greatly exceeds the "correlation distri
bution" time T* can be described by a diffusion equation 
of the Fokker-Planck type, We assume T* = max(Ti), 
where i = I, 2, 3. The time T1 was defined in the pre-

---, 
~ FIG. 2. Qualitative dependence 

f----+--J.-,~----.. ~'I". of the diffusion coefficient D~ on 
1;' ,sla'I, ,s1{)(W 'leu 

'" the collision frequency v: a) w 
b < (3/0l 1 12, b) w > {3/0l 1 12. 
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ceding section as the time of mixing over the coordinate 
1/ (d 1/ (T~) = 11) • 

At T » Ti it is possible to disregard the dependence 
on this coordinate in the Fokker-Planck equation. In 
addition, at T » T1' the dynamic friction coefficient F~ (T) 
= (~) = (sin 1/) vanishes (see (8)). As a result, the diffu
sion equation takes the form 

oj 0'1 
--D,-=Q(· or) 

,'iT • ii~' ",. 
(23) 

Here f = f( ~, T) is the electron distribution function and 
Q(;, T) is the source function. 

The time T: properly speaking has also the meaning 
of the time of uncoupling of the correlations in the values 
of the coordinate ~, viz., D~ (T) = D~ = const; here D~ (T) 
is defined by (13), Finally, the time T: is equal to 
a -I, At T » T: the electron "forgets" the initial energy 
value, so that the diffusion process can be considered by 
using a distribution function that does not depend on the 
electron energy. This approximation is reasonable, 
since usually the time of containment of the electrons in 
adiabatic traps greatly exceeds the time V-I between 
collisions. 

The analysis shows that the expression for T* can be 
reduced to the form 

(24) 

Let us determine also the characteristic space scale 
over which the decoupling of the correlations ~ * takes 
place. The quantity ~ * is equivalent to the mean free 
path in ordinary hydrodynamics. At sufficiently small 
values of w it is equal to the path traversed by the elec
tron during the time T* between collisions ~ * = T*, and 
at large w it is equal to the electron displacement ampli
tude in the field of the flute oscillations. Using these 
arguments, we obtain 

s'=a-', ~;;!>max(2"'a\ 2aw"'), 
~'=a'/~2, 2'/'a'l';;!>~;;!>2'i'aw"'. 

s'=w-', 2';·aw"';;!>~. 
(25) 

We note in conclusion that the expression for the 
dimensional diffusion coefficient Dx = D~ (dx/d ~ )2dT/dt 
contains the oscillation frequency w only in the combina
tion w - kv, This diffusion coefficient differs from zero 
at w = 0, and consequently electron diffusion can be 
brought about even by static perturbations of the electric 
potential, 

3. INHOMOGENEOUS ELECTRIC FIELD 

A. Motion in the Absence of Collisions 

The inhomogeneity of the stationary electric field 
influences particularly strongly the electron motion if 
somewhere within the confines of the system the phase 
velocity of the oscillations coincides with the drift veloc
ity' Le., if w(O vanishes. We consider the motion in the 
vicinity of the resonance point. We expand w( ~) in this 
region in a series, and retain only the first term of the 
expansion, w (~) "" a ~; here a = dw /d ~ I~ = 0 and the origin 
is at the resonance point. If there are no Coulomb colli
sions, then the system (8), (9) takes the standard form 

(26) 

It is precisely equations of this type that describe, 
for example, the motion of charged particles in the prob
lem of nonlinear Landau damping. [6J This problem has 
by now been investigated in sufficient detail, so that it is 
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useful to compare it with our problem. In nonlinear 
Landau damping it turned out to be convenient to sub
divide all particles into those trapped by the wave and 
the untrapped ones. On the ~T] plane, the trapped parti
cles lie in the vicinity of the line ~ = O. Since the reson
ance condition is approximately satisfied for these par
ticles. They are acted upon particularly strongly by the 
oscillations. In our case the trapping phenomenon con
sists in the fact that the flute oscillations cause the par
ticles to move along OY with an average velocity equal 
to the phase velocity of the oscillations. In Fig. 3, the 
trajectories of the trapped particles are shown by closed 
lines. The trapping region is bounded by the values I ~ I 
< a-1 /2. The untrapped particles move relative to the 
wave, and the corresponding trajectories are open in 
Fig. 3. 

B. The Diffusion Coefficient 

The Coulomb collisions cause a random variation of 
the electron energy. The energy variation is accompanied 
by fluctuations of the position of the resonance point, 
which we choose to be the origin, and consequently the 
entire phase-trajectory picture in Fig. 3 vibrates as a 
unit. This vibration limits the phase memory of the 
electron and causes it to be ultimately knocked out of 
the trajectory. If the characteristic time T * of the de
coupling of the phase correlations is much less than the 
period 21T/n of the revolution on the trajectory, then the 
electron has no time to "feel" the inhomogeneity of the 
system. In this case we can use the results obtained in 
Sec. 2, taking the dependence of w on ~ into account 
parametrically. This will be called the frequent-COlli
sion regime. It must be noted, however, that the fre
quency n varies on going from one trajectory to the 
other. For this reason, collisions that are frequent in 
some region of the phase space may turn out to be rare 
in other regions. 

If the condition nT » 1 is satisfied (the rare-colli
sion regime), then the phase memory of the electron 
spans many periods of the oscillations. In this case it 
can be assumed that the electron moves along the orbits 
shown in Fig. 3, going over slowly from one orbit to the 
other. In the rare-collision regime, the effect of the 
collisions on the electron motion can be taken into ac
count within the framework of a successive approxima
tion method, as will be done below. 

At w(O = a~, Eqs. (8) and (9) can be obtained from 
the Hamiltonian 

H = +-a~'-cos 11-~_I d,;'x(-r')e· r,'-". 
(27) 

Motion that is not perturbed by Coulomb collisions (see 
(26)) is conveniently described by the action variables 

1 .. 1 4k 1 (28) 
['O'=-Sd'l£=-, -E(-)=const, 

2" 0 a' n k 
8'Q)=QT+const, (29) 

Here 

Q(I)=nka"'K-'(f) , k=C;H)'" (30) 

Ho is the unperturbed Hamiltonian, and K and E are com
plete elliptic integrals of the first and second kind, 
re spectively. 

Equations (28) and (29) describe the trajectories of 
the untrapped particles. Analogous expressions can be 
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FIG, 3, Trajectories of elec
trons having equal energies in an 
inhomogeneous electric field, The 
electron drift velocity in crossed 1;=0 --;~-E'--~~*-~;-..-

'1 fields is equal to the phase velocity 
of the oscillations on the line ~ = O. 

derived also for the trapped particles. We shall show, 
however, that the trapped particles playa rather minor 
role in the processes of interest to us. 

The Coulomb collisions alter the action and the phase 
in accord with the equations 

(31) 

. OQ o~'o, < 

8"",=-1'" -.--!d,;'X(1:')e·"'-" 
ill ill _~ . (32) 

Here ~ (0) is the unperturbed value of the coordinate 

2k (8 (1)) fr.~ ;,o'=--=dn -, K - =-;;- AncosnS, 
Ya . n k a' 

(33) 
n;;;O 

where 
4Q qn 

An;>. =7> l+q,n' q=exp(-nK'/K). 

With the aid of (31) we find the diffusion coefficient 

~,< iI;'Q) 0;'0' 
D1=(I("l'I)=-j d,;' (--(T)--(';'» e""-" 

2a " as ao , 

(34) 

The angle brackets labeled e denote here averaging over 
the initial phase. 

Far from the resonance region (~ »l/al12) we have 
I - 1; and accordingly DI goes over into D1;' This can be 
easily verified by recognizing that An ~ (a 1; 2)-n+ 112, and 
therefore at 1; » l/al12 we need retain in (34) only the 
first term of the series 

~2 1 
De"" 410'(;) a'+1O'(;) (35) 

We have used here the equalities n ~ 2ka1 /2 ~ a1; ~ w(~). 

Depending on the ratio of Ci to w(O, Eq. (35) goes over 
into (21) or (22). The latter occurs only if {3 « 21/2aw1/2• 

This restriction is quite natural, since the successive
approximation method used in this section is valid at 
sufficiently small values of (3. 

Expression (35) is the first term of the expansion in 
terms of the square of the ratio of the amplitude of the 
electron displacement 61; ~ l/a~ in the flute-oscillation 
field, to the distance 1; from the resonance pOint. At 
61; «1; the inhomogeneity of the system can be regarded 
as weak and quite naturally it is possible to use in this 
case the expressions obtained in Sec. 2B, taking parame
trically into account the dependence of the electric field 
on the coordinate. 

It was assumed in this analysis that the Coulomb 
collisions have little effect on the electron motion. This 
assumption does not hold in the vicinity of the separatrix 
between the trapped and untrapped particles, where n(I) 
- O. We shall show later on, however, (see Sec. 3D) that 
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this region makes small contributions to the quantities 
of real significance in the experiment. 

C. Dynamic Friction Coefficient. Diffusion Equation 

The Fokker-Planck equation contains, besides the 
diffusion coefficient, also' the dynamic friction coefficient. 
We have shown above that if the electric field is homo
geneous then the dynamic friction coefficient vanishes. 
Let us determine this coefficient for the case when the 
inhomogeneity of the electric field can be taken into ac
count parametrically, i.e., for the frequent-collision 
regime. and also for the rare-collision regime far from 
the resonance region. 

In the zeroth approximation in the inhomogeneity we 
have ~o = const and 1)o(T) is given by (11). The next ap
prOXimation is determined by the equations 

~,=-sin 110 ('r) , (36) 

(37) 

In the second approximation we shall need only the equa
tion 

(38) 

Averaging (38) over the statistical ensemble we obtain 

(39) 

On the other hand, the expression for the diffusion co
efficient can be represented in the form 

D,=(~A'>= ~ J d,'(cos (l1o(-r')-l1o (-r))), (40) 

Since we are considering large time intervals T »T*, 
the lower limit of integration in (39) and (40) was made 
infinite. 

It follows from (39) and (40) that the diffusion coeffi
cient and the dynamic-friction coefficient satisfy the 
relation F ~ = dD ~/d~, and consequently the Fokker
Planck equation takes the form (cf. (23)) 

fit a at at -~ D, ~ =Q (;, t). (41) 

In the rare-collision regimes it is convenient to use 
the action variables in the vicinity of the resonance 
point. Simple but much lengthier calculations lead to the 
relation FI = dDrdI, and consequently the diffusion equa
tion in terms of the action variables takes a form analog
ous to (41). The use of a diffusion equation that contains 
a single variable is possible if rapid averaging over the 
phase takes place. It can be shown that the equation for 
the variance in e contains a term (OT)2dI' where dI is the 
variance in 1. Thus, in the rare -collision regime OT* 
» 1 of interest to us the distribution function should 
indeed become very rapidly smeared out with respect to 
the angle e. 

D. Averaged Diffusion Coefficient 

The experimental data usually include information on 
a certain averaged diffusion coefficient. We shall calcu
late it for the following model problem: We consider a 
plasma layer ~ 1 :oS. ~ :oS ~ 2. We assume that there is no 
flux of particles through the left-hand boundary ~ = ~ 1, 

which corresponds to the center of an axially-symme
trical system, and that all the particles are absorbed on 
the right-hand boundary ~ = ~ 2 (the wall). We consider a 
stationary process of/at = 0 at constant Q( ~, t). We in-
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troduce an average diffusion coefficient D~ defined in 
such a way that the correct value of the difference LI.f 
= f ( ~ 2) - f ( ~ 1) between the distribution functions is ob
tained in an equivalent homogeneous system having the 
same dimension 6~ = ~ 2 - ~ 1 at the same value of the 
source function. Simple calculations yield 

(42) 

It follows from (42) that the smaller the value of D~ (~ ) 
in a given region the larger the contribution made by this 
region to D~. This result is perfectly natural, since 
regions with the smallest values of D~ offer the greatest 
resistance to the flow-the particles are delayed in them 
for the longest time. 

li the resonance point falls in the interval (~1' ~ 2), 
then expression (42) is valid only for the frequent-colli
sion regime. The rare-collision regime calls for a 
special investigation. Assume that the zone occupied by 
the trapped particles constitutes a small fraction of the 
system ~ »a-li2 and is located inside the system. In 
this case the electron trajectories at the boundary 
(~ = ~ 1, 2) are close to straight lines. We hope that the 
results obtained in the investigation of problem describe, 
at least qualitatively, the greater part of the possible 
experimental situations. Indeed, if the plasma is bounded 
by a metallic wall, then, no matter how large the reson
ance zone and no matter where it is located, the electric 
potential still vanishes at the edge of the plasma, and 
consequently the trajectories of the electrons are close 
to straight lines. In this region, the electron displace
ments transverse to the magnetic field are minimal, and 
this is why it is precisely this region which determines 
the average diffusion coefficient. 

Two circumstances play an important role in what 
follows: first, at the plasma boundary (I ~ I »a-112) we 
have the approximate equality ~ "" I, and consequently 
f( ~) "" f(1); second, since the transformation L 1) - I, e 
is canonical, we have Q(~, 1)) = Q(I, e). 

To calculate the average diffusion coefficient, just as 
in the frequent-collision regime (see above), we obtain 
the difference 6f = f( ~ 2) - f( ~ 1)' In the stationary case it 
is determined by the untrapped particles, whereas in the 
trapping region we have f = const. We explain this situa
tion in Fig. 4. It shows the action I as a function of the 
value [<0) = 0 average on the trajectory (see (33)). For 
the trapped particles ~ (0) = 0 and therefore they lie on 
the ordinate-axis segment 0 < I < 8/rr. It follows from 
Fig. 4 that a particle can go over from the region PO) 
< 0 into the region PO) > 0, bypassing the trapping reg
ion. On the other hand, if it is trapped by the wave, then 
simultaneously another particle must go from the trapped 
particles to the untrapped ones. For this reason, the 
total flux through the trapping region is zero, and f(1) is 
constant in this region. The contribution of the trapped 
particles to LI.f is obtained from an equation similar to 
(41): 

" I dl 
tlf=-2QS-· 

Sin DI 
(43) 

We consider here for simplicity the symmetrical system 
~ 1 = -~ 2. At the same time, in the homogeneous case we 
would obviously have LI.f = 2Q~~!D. Comparing this ex
pression with (42), we get 

,. I dl -I 

15=;,' ([ n; ) . (42') 
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FIG. 4. Dependence of the 
action I on the average coordinate 
~(O) on the trajectory. The ordinate 
segment (0, 8/rr) corresponds to 
the trapped particles, and curve ab 
to the untrapped ones. 

This expression is similar to (42). The difference in the 
numerical coefficient is due to the fact that by virtue of 
the symmetry of the system the integration is only over 
the region ~ > O. 

The diffusion coefficient DI decreases quite abruptly 
with increasing distance from the region occupied by the 
trapped particles (see (35)). Therefore the integral (43), 
just like (42') is determined by the region at the plasma 
boundary ~ >::: ~ 2 : 

15 "" ~z 
w'(~,) a'+'I,w'(s} 

(44) 

CONCLUSION 

We have thus shown that in the presence of flute os
cillations the Coulomb collisions can lead to an anomal
ously fast diffusion of the plasma. Expressions have been 
obtained for the diffusion coefficient (see (19)- (22), (35), 
(42), (44)) and can be used for comparison with the ex
perimental data. 

In particular, an estimate of the diffusion coefficient 
with the aid of (21), which should be used under the ex
perimental conditions, yields D = Dcl(102-104), which 
does not contradict the experimental data. The scatter 
in the values of the diffusion coefficient is due to in-
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accuracy of the available data on the electron tempera
ture and the ambipolar electric potential. It must be re
membered at the same time that our results cannot 
claim only order-of-magnitude accuracy, inasmuch as 
the calculations were simplified by replacing the axial 
symmetry by planar symmetry, and we used the model 
equation (5) to take the Coulomb collisions into account. 

The authors are grateful to D. A. Panov, A. P. 
Popraydukhin, and Y. A. Chuyanov for a discussion of the 
work. 

l)Replacement of the lower integration limit by _00 is valid when we 
consider slow processes with a characteristic time scale to »v-1 

(ao» \). 
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