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Deformation of the Holtsmark absorption spectrum of hydrogen in a plasma exposed to strong 
electromagnetic (laser) radiation Eoe iw' is considered. The character of the spectrum is determined by the 
parameter Vo Tph(Aw), where Vo is the interaction between the atom and the field Eo, and Tph is the time of 
phase coherence loss by the atom due to thermal motion of the ions (Tph -(TF/Aw)1/2, where TF is the 
Chandrasekhar-von Neumann ion-microfield lifetime). The Holtsmark theory is valid if Vo T< 1. At 
Vo 1'> I, the absorption decreases by a factor (Vo Tph)3, depending on the fluctuation rate of the ion field: 

The effect can be used to determine ion temperatures or to study the dynamics of the ion microfield in a 
plasma. 

PACS numbers: 52.25.Ps 

1. INTRODUCTION 

The Holtsmark theory [1J for the spectrum of atomic 
hydrogen in a plasma presupposes from the very outset 
that the interaction of the atom with the emission 
(absorption) field Eo is arbitrarily weak. Therefore, 
within the framework of this very theory, the dependence 
of the absorbed power Q on the light intensity E~ is 
trivial, Q ex: E; This paper deals with the manner in 
which the absorption spectrum of hydrogen changes in 
the plasma in strong electromagnetic (say, laser) fields. 
This question is of interest both from the fundamental 
point of view in the sense of the limitations of 
Holtsmark's theory in strong fields E 0,- and from the 
point of view of plasma diagnostics with a laser. 

Let us dwell first on the premises underlying 
Holtsmark's theory: 

(1) The spectrum is formed as a result of Stark fre
quency shifts of the hydrogen atom K = aF in the micro
field F produced by the plasma ions (a is the Stark con
stant of the considered transition).1) 

(2) This microfield is static and has a Holtzmark 
distribution [1,2J : W(F)dF = F;r~(F/l0)dF, where f( (3) 
is the Holtsmark function, Fo = AN23 is the "normal" 
Holtsmark field (A = 2rr(4/15)2h "" 2.603 ... , N is the ion 
density). 

(3) The intensity distribution Q(AW) (AW == W - Wo, W 
is the observed frequency and Wo is the unperturbed fre
quency of the atom) at fixed F is proportional to 
(dE O)2{i (AW - K), which obviously corresponds to the 
energy conservation law upon absorption of a quantum 
tiw by an atom in the field F (d is the dipole moment of 
the transition). 

(4) The total intensity is obtained by averaging the 
{i-function {i (AW - K) over the field distribution W(F), 
which reduces to a direct substitution of the value 
F = Aw/a into the argument of the Holtsmark function. 

The question of the limitations imposed on the 
Holtsmark theory by the electromagnetic field intensity 
Eo never arose before at all, since Eo usually pertained 
to the spontaneous emission. It is clear, however, that 
such limitations should exist in principle. This follows 
at least from the fact that for a static field F, at a suffi
ciently large Eo, it is impossible to determine (without 
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introducing additional parameters), even the stationary 
absorption velocity Q, inasmuch as it is impossible to 
satisfy the energy conservation law in absorption: the 
arguments of the (i -function in \3) now cont,ins instead 
of Aw - K the quantity «Aw - K) + 4(dEo)2)1 2, which 
never vanishes (see Sec. 2). It 1s clear from the fore
gOing that a generalization of the Holtsmark theory to 
include the case of large Eo should require that we give 
up the premise (2) that the ionic microfield is static. It 
is precisely allowance for the ion motion which makes 
it possible to determine a finite (nonzero) value of the 
absorption Q in a strong electromagnetic field. The en
ergy conservation law is satisfied in this case as a re
sult of a change in the ion velocity. We note that a non
zero contribution to the absorption can be also obtained 
by taking into account the additional relaxation processes 
due to radiative damping or to electron collisions. In 
what follows, however, these extraneous (relative to 
ions) processes will not be taken into account; the 
corresponding criteria under which the ion width pre
dominates are sufficiently well -known in broadening 
theory[3,4 J (see also Sec. 2). 

An analysis of the temporal fluctuations of'the ion 
microfield, based on allowance for the action of all the 
ions on the atom, encounters considerable difficulties, 
since even the bivariate distribution W(F, F) for the 
field F and its second derivative F cannot be calculated 
exactly. [5J Therefore all the results that are pertinent 
here must of necessity be limited to the first few mo
ments of the distributions (Fa)F and (F~)F' which were 
first obtained by Chandrasekhar and von Neumann. [2J 
As applied to calculations of the hydrogen spectrum, 
allowance for the thermal motion of the ions has reduced 
to determination of the corrections to the static 
(Holtsmark) contour, and on their basis to a determina
tion of the criteria for quasistatic behavior. Within the 
framework of the adiabatic model of broadening, these 
corrections were calculated by Kogan [6J and later by 
Wimmel [7J 2). The non -adiabaticity effect and rotation of 
the atom were taken into account in [9J. We emphasize 
that the difficulties of taking into account the ion dynam
ics are due to the multiparticle character of the prob
lem, which greatly complicates all the calculations in 
comparison with the binary limit. In the latter case, 
however, the problem of hydrogen broadening can be 
solved exactly [10J . 
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2. QUALITATIVE TREATMENT 

We consider first, following [7), the formation of a 
Holtsmark spectrum in a weak field Eo. If the field F(t) 
varies slowly with time, we can confine ourselves to the 
first terms of the expansion of K in powers of t, 

where ("')F denotes averaging at a fixed value of the 
modulus. 

The internal integral with respect to T yields the line 
profile at a fixed ion field F, and should be proportional, 
according to condition (3) of Sec. 1, to Ii (<lw - aF). The 
factor under the ("')F sign describes the change of the 
phase due to the thermal motion of the ions and obviously 
leads, after averaging at a given F, to the loss of coher
ence by a train of waves radiated at a given value of the 
field F. The coherence-loss time Tph(F) can be estima-
ted by considering that the phase shift during the time 
Tph should be of the order of unity, so that 

< 1 ) (TF)'" 
Tph(F)- (a I./<, (0) I)'!' ;-;y . (2.2) 

where T F is the time of variation of the field F, see [2J • 

From this we easily obtain the criterion for the ap
plicability of the Holtsmark static theory, corresponding 
to the condition of formation of the Ii -function in (2.1) 
(cf. [7J): 

(2.3) 

Within the framework of the adiabatic model, for 
which formula (2.1) was in fact written, the criterion 
(2.3) is too stringent, [11,12J but when the non-adiabaticity 
effects are taken into account [9) the condition (2.3) is 
qualitatively correct. 

We now consider the process of absorption of a 
strong electromagnetic field. The probability w of a 
transition (by the instant T) from a lower level i of the 
atom to an upper level f at a constant field F oscillates 
with frequency n = [(<lW - K)2 + 4V2]l12, where 
V = dif' Eo (dif is the dipole moment of the transition), 
see [13J, p. 173. 

The stationary probability Q = wiT of the transitions 
per unit time can be estimated only as V - 0, when 
Q ex: Ii(<lw -K). 

In the general case, however, it is impossible to de
termine Q from the expression for w, without introducing 
some relaxation mechanism that cuts off the sinusoidal 
oscillations of the atom in the field Eoeiwt. Such a mech
anism is usually connected with radiative damping or 
with electron collisions, which make it possible to intro
duce Q by averaging w with a weight factor ye-yt . If we 
then integrate the results with the distribution function 
W(K), then we obtain at <lW »max(V, 1') the formula of 
the inhomogeneous-broadening theory «(14], Sec. 17, 
formula (17.80)). 

In this formula, the usual result of the static broad
ening theory is obtained at V « 1', whereas at V » I' 
there takes place a decrease of the quasistatic absorp
tion by a factor y Iv. 

In the case of interest to us, of broadening by ions, 
the situation is in many respects analogous to that con
sidered above. For a static field F, there is no absorp
tion, inasmuch as at V '" 0 it is impossible to satisfy the 

102 SOY. Phys.-JETP. Vol. 42. No.1 

"energy conservation law" n = O. However, if the 
thermal motion of the ions is taken into account, the ab
sorption becomes possible because of the finite coher
ence-loss time Tph' which plays the role of the relaxa-

tion parameter 1'-1. Just as in the case of inhomogeneous 
broadening. the ordinary Holtsmark theory is valid at 
VTph(<lw) « 1, whereas at VTph(<lw) » 1 the absorp
tion is decreased by a factor (VT h)k. The exponent k is 
determined by the concrete mec~nism that causes the 
detuning from coherence and, as shown by calculation, 
is equal to three (see formula (4.4) below). We note that 
the time T ph' as will be shown below, is in this case a 
parameter of the inelastic relaxation, since this time is 
connected with the inelastic process wherein. the ion 
velOcity is changed when the atom absorbs light. In con
trast to the ordinart treatment of saturation in inhomo
geneous broadening 14), we consider here a new inelas
tic-relaxation channel connected with the motion of the 
broadening particles themselves. 

3. CALCULATION OF THE ABSORPTION 
PROBABILITY 

We cqnsider the absorption of electromagnetic radia
tion Eoe1wt by a hydrogen atom in a plasma. We are in
terested in the case of quasistatic broadening, which is 
realized at sufficiently low velocities v and large densi
ties N of the plasma ions (criteria will be given below; 
see also [3, 4J). Under these conditions, the Stark com
ponents of a hydrogen atom situated in the electric field 
F of the plasma ions can be regarded independently of 
one another. Then, taking into account the interaction 
with the radiation, it suffices to confine oneself to a two
level scheme corresponding to a transition between 
Stark components of the upper and lower levels. 

We write down the SchrOdinger equation for the ampli
tudes of the lower (ai) and upper (af) components of the 
levels: 

i~,=U,(t)a,+ V (t)e'h'af. 

iCtI=U1(t)a,+ V(t) e-"·'ai_ 
(3.1) 

Here Ui f = ai f/F(t)/ are the Stark shifts of the corre
sponding comp'onents (ai and af are the Stark constants); 
V(t) = dif(t)Eo. Equations (3.1 were written in a coor
dinatesystem with the oZ axis along F(t), where the 
Hamiltonian of the interaction of the atom with the ion 
field is diagonalized. In the course of time, this system 
rotates with the field F(t), so that the angle between 
dif and Eo, and by the same token also V(t), depends on 
the time. 

The system (3.1) has been written, as already noted, 
on the assumption that the Stark components are suffi
ciently well isolated. This means, first, that the non
adiabatic transitions between the components can be 
neglected and, second that the interaction with the field 
V is sufficiently weak so that the Stark structure of the 
terms is not too distorted. The first of these conditions 
is ensured by the known criterion (2.3) that the ion be 
quasistatic. 

The second condition requires, obviously, satisfaction 
of the inequality 

(3.2) 

When conditions (2.3) and (3.2) are satisfied, the problem 
of finding of the i - f transition probability, which de
termines the absorption of the light, is equivalent to the 
problem of the elastic transition between two terms in 
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slow collisions of particles ([13J , Sec. 90). It is known 
in this case that the main contribution to the transition 
probability is made by the term -intersection pOint tk 
corresponding to the energy conservation law: 

(3.3) 

where the instantaneous frequency shift of the transition 
is I< = aF(t) (a == ai - af). 

The condition (3.3) can be regarded as the condition 
for the intersection of the terms of the composite "atom 
+ electromagnetic field" system (for details see[15,16J). 
On the other hand, the interaction with the electromag
netic field causes these terms to repel each other by an 
amount V which is small in comparison with ~w. 

The indicated analogy with the theory of inelastic 
slow collisions makes it pOSSible, naturally, to write 
down immediately an expression for the transition proba
bility by using the Landau-Zener result [12, 15, 16J. This 
r.esult, however, contains the quantities IV(tk)1 2 and 
II< (tk)1 taken at the intersection point tk' Therefore, to 
obtain the total transition probability it is necessary to 
sum over all the points tk with allowance for the stoch
astic time variation of F(t). Whereas in the case of pair 
collisions this summation reduces Simply to a determin
ation of the corresponding transition cross sec-
tions, [13, 16J in the general case this summation cannot 
be carried out because of the very complicated depend
ence of tk on the coordinates of all the ions, see (3.3). 

To avoid the difficulties that arise in the Landau
Zener method, it is necessary to start by obtaining for 
(3.1) a general solution that is not connected beforehand 
with the singular pOints of the potential U(t). Unfortun
ately, there is no exact solution of the system (3.1). 
There exist, however, approximate general solutions of 
(3.1), which in certain limiting cases coincide with the 
exact solutions. For our purposes, the most convenient 
is the formula proposed by Valnshteln, Presnyakov, and 
Sobel'man.[3,17] According to this formula, the proba
bility w of a transition from the lower to the upper level 
by the instant of time T is equal to 

w(T)=laJ(T) 1'= If dt V(t)cos j {[~w-x(-r) ]'+4V'(T) r' dT!" 
-T' (3.4) 

In the case of a sufficiently slow (adiabatic) variation 
of F(t), formula (3.4) yields the Landau-Zener re-
sult, [13J and the fact that the intersection points tk are 
real follows from (3.4) automatically, We indicate that 
at large V (the case of an exponential fall-off) the proba
bility w(oo) differs from the exact Zener result by a pre
exponential factor. This leads, however, only to an 
additional numerical coefficient on the order of unity in 
the final result. Since we are interested not in the abso
lute value of w (T) but only in the line prOfile, this differ
ence is immaterial and the corresponding numerical 
factors will henceforth be omitted. 

It is important to note that in a constant field 
(F = const) expression (3.4) yields the exact result[13J 
for the transition probability in a two-level system 
under the influence of monochromatic radiation. From 
this point of view, formula (3.4) can be regarded as 
generalization of the well known model of a variable
frequency oscillator to include the case of strong elec
tromagnetic fields. 

This last remark allows us to go over from the time
dependent picture to an ensemble picture in the spirit of 
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ordinary broadening theory. Namely, we assume that the 
change of the field F(t) (i.e., of V(t) and of I< (t» in (3.4) 
has a random character due to the random locations and 
velocities of the ions; then, transforming (3.4) in ac
cordance with the general correlation-theory formulas 
([3], Sec. 36), we obtain 

w=QT, (3.5) 

Q= {dt < V(O) V(t)cos { f ([~W-X(T) ]'+4V'(-t} }", dT }). (3.6) 
-~ . 

Here the symbol ( ... ) denotes averaging over the ensem
ble (under the usual assumption that the random process 
is stationary). 

Formula (3.6) determines the stationary velocity of 
the transitions (per unit time) between levels under the 
influence of an electromagnetic field, i.e., it determines 
the power (after multiplying by the energy). Naturally, 
formulas (3.5) and (3.6) are meaningful if the integral 
with respect to t in (3.6) converges. At F = const, ex
pressions (3.5) and (3.6) are meaningful only as V - 0, 
when Q 0: 6 (~W - 1<), and we arrive at the result of [18J, 
which is valid for weak fields. It will be shown below 
that when account is taken of the time variation of F due 
to the thermal motion of the ions,· Q turns out to be finite 
also at sufficiently large V. We note, finally, that for a 
two-level system the results (3.5) and (3.6) are not con
nected, generally speaking, with the assumption that the 
perturbation is slow. 

Let us investigate expression (3.6) for the case of 
slow variation of F(t). In this case we can expand in 
powers of t in (3.6), and this yields 

Q"" S:t<V'(O)cos{jY[~w-X(O)-~(O)T]'+4V'(O)dT}). (3.7) . 
We have discarded here terms of higher order in t and 
the derivatives V(O) on the basis of conditions (2.3) and 
(3.2). The arguments of the functions 1«0), K(O), and V(O) 
will henceforth be omitted for brevity. 

Since (3.7) depends only on the field F and its first 
derivative F, the bivariate distribution3) W(F, F) alone 
suffices to carry out the averaging in (3.7). It must also 
be recognized that the angle f1FEo between the vectors F 
and Eo can have an arbitrary value in a plasma, We 
carry out the averaging in two stages: we first average 
at a fixed value of the modulus of the field F (designated 
( ... )F)' and then average over all F with the Holtsmark 
distribution function W (F). Thus, 

1 ~ Fl· 
<. -)= -- SdF~(-)- S d8FE,cos8 FE,< ... ).. (3.8) 

F. F. 2 . " 
We first transform the integral (3.7). IntrodUCing the 

dimensionless variables z = I K IT!2V and p = IK It!2V, we 
obtain with the aid of simple transformations 

Q=(1/2 \V\J(4V'/lx\; l~w-x\/2V», (3.9) 

where 

J (y; x) =y co~ [ y J dz{Hz' ) JdP cos [y J dzY 1 +z']. (3.10) 
o _~ 0 

Writing down further the averaging in (3.9), we obtain 
according to (3.8) 

Q= ~J~F~( ~,)~ J:dC~S8"'.< I~I J(~~; I ~~;x l)iI~3.11) 
or, putting (~w - 1<)!2V = x, 

i - (~W-2VX)- i +\ "( (4V' )(3.12) 
Q =- S dxd6 -J dcos8FE,V- J -IPI ; Ixl _ . 

aF" aFo 2 a 
-..\w/2V -1 
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Expressions (3.11) and (3.12) are essentially convolu
tions of the Holtsmark function with the function 
J(4y2/IKI; x), defined at a given value of the field F (or 
at a given x). This function, if the conditions (2.3) and 
(3.2) are satisfied, oscillates rapidly everywhere with 
the exception of the region near the point x ::::; 0 (K == aF 
::::; ~w is the point where the oscillations are damped out). 
The width xeff of this region depends, as seen from 
(3.11) and (3.12), on the parameter 4y2/1K!. Under the 
condition 

100> I VXeff I (3.13) 

we can introduce in (3.12) a slowly-varying Holtsmark 
distribution at the pOint x = 0, and extend the integration 
with respect to x to -«>. Simultaneously, we can replace 
the mean value at a given F (or x) to the mean value at 
F = ~wla (x = 0). The integration with respect to x in 
(3.12) can then be carried out explicitly. We thus have 

1 /l 1 +t - 4V' 
Q=-,76(~)- J dcOS9'E'VZ( J dXJ(-. ; x) . (3.14) 

af, aF. 2 _I _~ j" j '~"I. 

We consider the integral with respect to x in (3.14): 

J(y)= {dXJ(y;X)=y[ {dxcos(ySY1+Z'dZ)r. (3.15) 
_00 _00-0 

At y « 1, the effective values are xeff ~ 1/,;y » 1, so 
that 

[ - (YX' )]' J(y),.,y ldxcos 2 =Jt. (3.16) 

At y » 1, the main contribution to (3.15) is made by the 
branch pOint of the root: xeff = i. Estimating the integral 
(3.15), we get 

(3.17) 

where we have omitted an inessential pre-exponential 
factor. 

Substituting (3.16) in (3.14), we verify that in weak 
fields the absorption is proportional, as it should be to 
Q cc E~, and its contour is described by a HoItsmark dis
tribution. 

In strong fields, substituting (3.17) in (3.13) and aver
aging over the angle 8Feo with allowance for y2 
= y~Cos28Feo (Vo == IdifIEo), we obtain 

(3.18) 

As seen from (3.18), in strong fields the character of 
the absorption changes qualitatively: first, the absorption 
decreases with increasing field (Q cc liE 0), and second, 
its spectrum is determined not by the static Holtsm~rk 
distribution, but by the rate of the field fluctuation IFI3 / 2• 

We note that after substitution of xeff the criterion 
for the applicability of (3.12) reduces in cases (3.16) 
and (3.17) to the conditions (2.3) and (3.2), respectively. 

It is clear from the derivation that the transition to 
the case of strong fields occurs at y~ ~ IKI. 

4. AVERAGING AND TOTAL LINE PROFILE 

We consider the absorption contour in a strong elec
tromagnetic field, which is expressed, according to 
(3.18), in terms of the fluctuation rate (/:FI3 / 2)F =~wla 
of the total field. Although there is a standard mark of 
procedure [2J for the calculation of this last quantity, it 
can be carried through to conclusion only in the limiting 
cases of large and small values of F (this being due to 
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the fractional exponent of rF 13 / 2). On the other hand, it is 
clear from phYSical considerations that if the operations 
of averaging the modulus I F I and of raising it to a power 
are interchanged, then the two results should differ only 
by a numerical factor on the order of unity. Therefore, 
to find the approximate shape of the contour (3.18), it is 
expedient to use the Chandrasekhar-von Neumann re
sult [2] for the quantity < IFI 2 >F' introducing the apprOXi
mation 

(I PI 'I,),"" {< I PI'),},/ • ." (Nu) "[f'i (M/JIg(~) ]'/. 

t ~<1 (4.1) 
"" (NU)'/. {cons , ~ 

~.". ~>1, 

where {3 == FIFo and I({:!) is the Chandrasekhar-von 
Neumann integral. [2J 

Substituting (4.1) in (3.18), we get 

( aNv ) ¥, [~"'IW ]., /loo 
Q""Qst(M VT ~(~) ~ ... aF, ' (4.2) 

where Qst({3) is the static contour. 

It is convenient to rewrite the results by introducing 
the time Tph of loss of the phase coherence by a wave 
train emitted at a given value of the field F = ~w/a: 

(4.3) 

Using (4.3) and (4.2), we get 

Q""Qst(P} [V,TpJi~) )-'. (4.4) 

On the other hand, for the condition of the transition from 
the strong field to the weak field we obtain 

1 V,Tpt£~) 1-1. (4.5) 

Thus, in accordance with the qualitative analysis of Sec. 
2, in strong fields IY oT ph I » 1 a decrease takes place 
in the absorption, by a factor (V oT Ph)3 in comparison 
with the case of weak fields. 

At {3 » 1 (~w »aFo), Eq. (4.2) leads to the boundary 
result 

(4.6) 

This result can, of course, be obtained also directly by 
the Landau-Zener method. Indeed, applying the results 
of [is] obtained in this manner to hydrogen broadening 
and averagillg them in addition over the angle 8FEo' we 
arrive at (4.6). This demonstrates, in particular, the 
equivalence of the time-dependent and ensemble ap
proaches for the binary region. 

At {3 « 1 (~w « aFo) we obtain from (4.2) 

(4.7) 

where we have introduced the characteristic parameter 
h == N(alv)3, which determines (in order of magnitude) 
the number of particles in a sphere of radius alv 
(Weisskopf sphere). 

The result (4.7), just like formula (4.2) as a whole, 
is essentially nonbinary (Q cc llYN). 

For the determination of the contour (4.4) (and also 
of the criterion (4.5)) in the intermediate region {3 ~ 1, 
Fig. 1 shows the dependence of the phase-coherence-loss 
time Tph on the dimensionless field {3 = FIFo. 

A general delineation of the region of applicability of 
the theory at h » 1 is shown in Fig. 2. The quasistatic 
theory is applicable in the region ~w »v'aNv and ~w 
»Yo. Above the curve Yo = Tph(~w) there appear non-
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FIG. I. Change of the phase-coherence-Ioss time as a function of the 
ion field!3 = FIFo. The ordinates are the values of 21[3/4. 5114y'CiNVTph(.6). 

FIG. 2. Regions of applicability of the approximations on the CAW, 
Vol plane. The shaded region corresponds to the nonlinear effects. 

linear effects corresponding to the formula (4.4). Below 
this curve, the ordinary Holtsmark theory is valid. At 
h « 1, the nonlinear effects are realized only in the 
binary region. 

It is of interest to obtain an analytic expression for 
the total line profile (3.14) for arbitrary V 0. This can be 
done by using, as in (4.1) an approximate averaging 
procedure. Indeed, approximating J(y) by expression 
(3.17) and averaging directly in the argument of the ex
ponential, we obtain from (3.14) 

V' V' 11 5,m(~) 
Q(L'.w) ~ [£;'0 dCO)J ([£~V V 4J1~1 (~) ), 

where (3 == .6.w/aFo and 

J (x) ~ Y;<D (Yx) /4x/'-e-'/2x 

(4)(z) is the error integral). 

(4.8) 

(4.9) 

It is easy to verify that formulas (4.8) and (4.9) give 
the investigated limiting case (4.6) and'(4.7). As to the 
accuracy of the employed averaging procedure, it ap
pears that numerical factors close to unity are lost here, 
for in the case of small V 0, according to (3.6), the result 
is generally independent of the parameter V~/aNv, while 
at large Vo the averaging results, according to (4.1), in 
an interchange of exponents that differ by a factor 3/4. 
We note that (4.8) takes into account all the numerical 
coefficients that enter both in the exponent of (3.17) and 
in <IFI 2)F' Although the retention of the numerical fac
tor in (4.8) is superfluous within the framework of the 
employed accuracy, nonetheless we see that it likewise 
does not differ strongly from unity. 

Thus, expression (4.8) describes the distortion of the 
Holtsmark absorption spectrum by an external electro
magnetic field. We see that this distortion is homogen
eous in the spectrum, i.e., it depends not only on Vo but 
also on AW. In addition, it is in the general case non
linear in the density. The character of the deformation 
of the Holtsmark spectrum as a function of the parameter 
Jl == V~/amV is shown in Fig. 3. 

5. DISCUSSION 

Let us estimate the order of magnitude of the laser 
field Eo in which a noticeable distortion occurs in the 
Holtsmark spectrum (see (4.8». Assuming, in atomic 
units, a ~ 10, N ~ 10-10 ~ 1015 cm -3 and v ~ 10-3, we get 
for AW ~ aFo (13 ~ 1) the value Vo ~ Eo ~ 10-6 ~ 104 v/cm. 
Obtaining such values of Eo is no problem at present. It 
appears that the main difficulty lies in finding a high
power laser whose emission wavelength A is close to the 
wavelength of the hydrogen line (they should agree within 
10 A). Nonetheless, there is a sufficiently large choice 
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FIG. 3. Deformationof Holtsmark spectrum of Q(!3) in a strong elec
tromagnetic field at various values of the parameter Il == v3 jaNv. The 
curve Il = 0 corresponds to the Holtsmark spectrum. 

of possibilities of observing the effect, both on hydrogen
like lines of atoms, and on linesthat experience the 
quadratic Stark effect (see, e.g., [4J ). The latter is 
reached by direct generalization of the results to include 
the case K = CF2. 

The line contour in strong fields depends, according 
to (4.8), on the ion density as well as ion temperature. 
Therefore, we can determine iIi principle these two 
parameters by measuring the absorption of the strong 
electromagnetic radiation. To this end, howevez: it is 
necessary that the plasma contain a sufficient concentra
tion NH of neutral hydrogen. Let us estimate the re
quired value of N H for an absorption line L ~ 10 cm and 
a wavelength of light A ~ 10-4 cm. For the Hoitsmark 
width aFo ~ aN2/3 ~ 1011 sec- 1 (N ~ 1015 cm-3, a ~ 10) 
and for the radiation width y ~ 108 sec-1 we obtain from 
the formula L- 1 ~ NHA 2 y / aFo the value NH ~ 1010 cm-3 • 

Formula (4.8) determines the rate of the transitions 
Q between the lower and upper levels under the influence 
of the electromagnetic radiation. If we are interested in 
the stationary absorbed power, then Q must be substitu
ted in the kinetic equation, which includes also other re
laxation mechanisms (for example, radiative decay), 
see [16 J, and also [19J. One can observe the absorption 
described by expression (4.8), and the absorption in 
"pure" form. This is made possible by laser pulses 
which, on the one hand, ensure a sufficient field intensity 
Eo, and on the other hand have a duration T short in 
comparison with the times required to establish the 
stationary picture via radiative relaxation. It is clear 
that the time T must simultaneously be large in com
parison with the time of the fluctuation of the ion field 
(N1!3Vf1. 

We indicate in conclusion that the considered effect 
affords an interesting possibility of directly investigating 
the dynamics itself of an ion microfield in a plasma. 

The author is grateful to V. 1. Kogan, S. Yu. 
Luk'yanov, O. B. Firsov and S. 1. Yakovlenko for valua
ble discussions, and to A. V. Demura and G. V. Sholin 
for help with the numerical calculations. 

I)We put e = h= I. 
2)The numerical errors of [7] were corrected in [8]. 
3)The final answer will then contain the coments of WCF, F) for which, 

in contrast to the distribution itself, analytic expressions are available. 
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