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It is shown that a quadrupole-type static electric field appears in the space surrounding a three-dimensional 
localized Langmuir perturbation at distances greatly exceeding the dimension of the perturbation. The 
quadrupole moment corresponding to this "long-range" field is found. 

PACS numbers: 52.35.Ck 

This paper is devoted to the structure of the electric 
field of a localized Langmuir perturbation in an elec­
tron1) plasma. This question was elucidated earlier[1] in 
the one-dimensional case, and it was shown that at large 
distances from the perturbation-localization region there 
is a static electric field that falls off with increasing 
distance from the perturbation region only in power-
law fashion (0:: 1/x2). The corresponding electric field 
was called long-range in [1]. In this study it was pos­
sible to obtain a long-range electric field in the three­
dimensional case. What was principally new here was 
that high-frequency force acting on the electron was no 
longer cancelled out by the space-charge field (this 
cancellation greatly decreased the effect in the one­
dimensional case). At the same time, the power-law 
decrease of the electric field was preserved: the long­
range field turned out to be quadrupole and static. 

Just as in [1], we consider perturbations that decrease 
exponentially at infinity; these can be characterized by a 
single spatial scale L which is much larger than the 
Debye radius (L » vT/ wp)' The characteristic time of 
spreading away of such a perturbation, T, is large be­
cause the group velocity of the Langmuir oscillations is 
small in comparison with the time of flight of the elec­
tron through the perturbation: 

The long-range field is brought about by the high­
frequency pressure force (which is proportional to the 
square of the electric field amplitude), which distorts 
the distribution function of the electrons that pass 
through the perturbation region. These distortions are 
transported at the electron thermal velocity over large 
distances, and this leads to the appearance of an elec­
tric field in the region I rl »L. Our problem is to find 
this field at distances that are large in comparison with 
L. At the same time, we assume that these distances 
are ;S VTT. Since the electrons negotiate these distances 
within a time much shorter than the time of restructur­
ing of the Langmuir perturbation, the distortions of the 
distribution function over such distances are quasistatic. 
It is precisely this circumstance that makes it possible 
to solve the problem completely. The sought effect 
arises in second-order approximation in the amplitude 
of the Langmuir perturbation. 

The initial equations are the equation for the elec­
tron distribution function f and the Poisson equation 

!!l+v'!.i_ eE !!.=o, E=-Vcp, (1) 
at ar m av 

Here no is the density of the neutralizing background, 
and e and m are the charge and mass of the electron. 

We use the method of successive approximations and 
put 

E=E,+E,+ .. " 1=lo+I,+j,+ .... 

Here fa = no(m/21TT)3/2 exp (- mv2/2T), and 

E,=eexp (-iwpt)+E'exp (iwpt)=-Vcpexp (-iwpt) 
-Vcp'exp (iOlpt); (3) 

cp is a slowly varying function of time, satisfying the 
equation 

acp/at=i(3T/2mwp) dcp. 

In the linear approximation we obtain for the dis­
tribution function the expression 

(4) 

e ifj. [ i 1 de 1 d'e 1 dE ] 
f,(l', \.t)=--e-'·,' -e+----:,------:,-, ----;---r ,., +c,c,' 

m I)\, (up W p - dt (t)pY dt- wp~ dt J 

(5) 

where d/ dt = a/at + (v· v). Expression (5) was obtained 
by iteration with respect to 1/ wp' retaining the number 
of terms required to find the long-range electric field. 

In the second order in the field amplitude, the sys­
tem (1) and (2) takes the form 

-~- € '-~ -E _P -- Er'--P +E _, • ; (d'e d'e . ) 1 (d"e d'e . )]} 
(:)p '1. dt- Ct dt~ (')p2 C£. dt' (.( dt) 

div E,=-4ne J f, dav. 

(6) 

(7) 

In the right-hand side of (6) we retained only the terms 
that vary slowly with time; the terms containing the 
factors exp (± 2iwpt), in view of their exponentially 
small contribution to the function f2 in the region I r I 
» L (r is the distance from the perturbation-localiza­
tion region) have been omitted. 

We represent E2 in the form E2 = - V<P2 and separate 
in the right-hand side of (6) the terms in the form of 
the total derivative with respect to time. As a result 
we obtain 

df. e i) fo " e' { a'io d [. i ( . de, de"' ) 
-+---\(1)2=--. ---- EaEp.-- ECL --e,--
dt m d,' ""W p ' Du"dU, dt Wp dt dt 

1 (d'e, d'e." ) 1 de. de,] a /0 d [2; . --" f"·--. +e,-,,- +---:-- -a-- -(er vre,-ervrE,) 
Olp- dt, dt- OJ p ' dt!lt v, dt Olp 

+~ (er", r.'!!!.-r err r!!:.::£)] - mlo(vV) [leI2-~ldiveI2 
Olp- dt dt T mOl p-

(8) 

3 dE' 3T al. . " " 
+-, I-I ]+--,--".[Vrer ".e,+vrer".e,]}, Olp- dt mOl p av, 

dcp=4ne [ J fd'v-no ]. (2) In the derivation of (8) we have used Eq. (4). 
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In u 1 we have noted a general property of the sys­
tem (7) and (8), that if the right-hand side of (8) contains 
a certain function in the form of a total derivative 
with respect to time, dF(r, v, t)1 dt, with 

J F(r, v, t)d'v=O. (9) 

then this system has a solution fz '" f, E2 = O. By virtue 
of this property, the terms that are total derivatives 
with respect to time and satisfy the condition (9) make 
no contribution to the perturbation of the distribution 
function at large 1 r 1 and can be omitted in our prob­
lem. Thus, Eq. (8) can be reduced to the form 

dj, e OJ, e' { 1 a'/, .., , . 
·--+--V\ll,=-,-.. --,--. -,(vv)[e~ (vV)'e'+e'(vV)-e. 
dt In U\, m-(J}p~ Wp· dva,ovp 

_ :"~ iJjo _ , ,.., • 
- (vVh.-(vV) E,]- --:;-0 (vV) [ET'V T(VV) e,+ET 'I T(VX;) E, ] 

ClIp· Vt\ 

(10) 

After simple transformations this equation can be 
written in the form 

!.h.+(vV)j,+.!... a/o VIIJ,=~~VU+~~V.Q." (11) 
fit m dv m av m () v, 

where 

U = -+--, [Iel'+ 3T, Idiv 81'- _l_(vV)'I£I'+~1 (vV)el'] , 
m OlJl moo,,· Olpz wp 2 

3e'T 
Q., = -,-, [ V TET'V .e,+V TeTV .e,-26.,ldiy el']. 

m-(J)p 

Thus, the three-dimensional problem considered 
now differs fundamentally from the one-dimensional 
problem in that the high-frequency force acquires a 
nonpotential part (the last term in the right-hand side 
of (11», whereas in the one-dimensional case it is ob­
vious that the force is potential and the right-hand side 
of (11) reduces simply to the form 

1 afo DU(x) 
-mav----a;-

Therefore the right-hand side of (11) and the last term 
in the left-hand side of this equation were cancelled out 
in the one-dimensional case, so that the effective high­
frequency force was much smaller than simply2) - au! ax. 
The presence of a nonpotential term in the right-hand 
side of (11) in the three-dimensional case excludes the 
possibility of such a cancellation, and the effect appears 
in lower order in l'J)/L. 

To determine the long-range part of the high-fre­
quency potential with the required accuracy it suffices 
to solve Eq. (11) relative to f2, leaving out the deriva­
tive with respect to time in its left-hand side. The lat­
ter is possible because we seek the electric field at 
distances :SVTT, where the distribution function, as al­
ready noted above, is quasistatic. As a result of inte­
gration of this equation over the trajectories, we obtain 
for f2 

ell 0 

j, =-yio\ll'-rf,u+--;;-J Q(r+ll;)d-;. (12) 

where n = v/v, and Q(r, v) denotes the last term in (11). 

An expression for <P2 can be obtained from the plasma 
quasineutrality condition 

J j,d'v=O. 

As a result we obtain 
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(13) 

where 

(14) 

and 

We note that in the expression for <P2 all the terms 
except the last decrease exponentially rapidly with 
increasing distance from the perturbation region. We 
carry out all the possible integrations in this term. We 
change over in the integral with respect to the velocities 
to spherical coordinates: 

V,:r.={) sin t)o cos <p, 0ll=v sin tt sin <p, Vz=V cos-D. 

As a result we have 

i = - ~ j to v' dv f sin tt dtt Sd", f n, V .q., (r+ns) ds. 
o 0 0 

In the calculation of the last three integrals it i!> advan­
tageous to make the following change of variables: 

x' =x+s sin tt cos "', y' =y+s sin ~ sin "', z' =z+s cos tt. 

Recognizing that in this notation we have n{3 = (xh - x(3)1 
1 r' - rl , we obtain 

m S- SS-S'" x,' -x, D , l= --1' fov'dv dx dy dz -I ,_ I' -q.,(r) 
U _00 r r aXa 

or else, after integrating with respect to v, we get 

/_ nm Sd ,[ 6., 3 (x.' -x.) (x,' -x,)] (') 
- - 4nT r Ir' -rl' - Ir' -rl' q., r . (15) 

At large distances (I rl »L) we can expand in (15) in 
the parameter 1 r' 1 II r 1 • Confining ourselves here to 
the first term of the expanSion, we get 

nm (6., ,x.x,) s' , i=--- ---3--, dr q.,(r). 
4nT Irl' Irl' 

We can ultimately write for <P2 
e { 2T. $,=-, lel'---.. V.[e.V,E,·-e,V,e.·] 

mffip mwp• 
(16) 

;JT (6., XaX, ) s' . . . I"} +---, -I -3-1-1- dr (VT£T V.E,+VTe,V.e, -26., divel] 
4nmw p ' Ir' r ' . 

Thus, the long-range part of the electric potential 
has a quadrupole character.3 ) The corresponding quad­
rupole moment is 

geT [. ii'", D'",' ,] D.~=--,-,S dr J.<p ---+~"'--D--26.,I~",1 . 
2nm-w p dx. iix, ax. x~ 

(17) 

It is easy to show that the quantity Da(3 is conserved. 
Indeed, let us take the time derivative of Da{3 and use 
Eq. (4) in the integrand. As a result we get 

JD., 2i eT' S {O' . ii'", ii'",' 
-:---=i-,--. -, dr d.<p·-_--~<p-:'i~(P ---+~~<p---

vt :i711fl 'WpJ Ox? aXr> dxa. 8xp, 8Xa axp 

--:'iq; ~~- :'iq;·-26.,[~q),d.:'iq;-d.<P~~"'·]}. ax. ax, 
Integrating now twice by parts, say in the second, third, 
and fifth terms of the integrand, we find that aDa !3iat=o. 

Thus, the tensor Dap can be expressed in terms of 
the characteristics of the perturbation at the initial in­
stant of time: 

geT S [ D'",o D'",; I I'] D., = --, -, dr ~<po' -8-0- + ~"'o -a-a- - 26., ~"'o , 
2:rtm (Op Xa. UX~ Xa. XIJ 

",o=",(r, 0). 
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In order of magnitude, the quadrupole moment is ob­
viously equal to eL2ND(W/noT){ro!L), where ND is the 
Debye number and W - f!-/S7r is the energy density of the 
Langmuir perturbation. 

The presence of a quadrupole electric field means 
that the region of the influence of the localized Lang­
muir perturbation greatly exceeds the dimension L of 
the perturbation. 

In conclusion, the author thanks D. D. Ryutov for a 
discussion of the results. 

l)It is assumed that the infinitely heavy ions form a homogeneous 
neutralizing background. 
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2)Actually the effective HF force was equal to -ilUeff/ilx, where Ueff 
= U - e4>2 differs from zero only in second order in the parameter 
rn/L. 
~We note that the presence of a nonpotential term in the high-frequency 

force produces also in the perturbation region eddy currents and a 
corresponding magnetic field. This effect can in principle be of inde­
pendent interest, but it is immaterial in our problem, since it con-
tains the small quantity -vTe/c. 

1M. P. Ryutova, Zh. Eksp. Teor. Fiz. 67, 2161 (1974) 
[SOy. Phys.-JETP 40, 1072 (1975)]. 

Translated by J. G. Adashko 
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