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The energy absorbed by an ordinary wave through its linear transformation by small concentration 
perturbations (, N is determined in the plasma-resonance region. It is demonstrated that if an initial 
threshold value (, Nth, is exceeded the concentration perturbations (, N are unstable and grow very rapidly. 
This instability leads to disintegration of a smooth plasma layer near resonance. The threshold (, Nth, 
decreases with increasing wave power and with decreasing concentration gradient. 

PACS numbers: 52.35.En, 52.35.Gq 

1. INTRODUCTION 

Resonant absorption connected with linear transfor­
mation of electro-magnetic waves is determined to a 
considerable degree by the structure of the plasma in 
the resonance region (Ginzburg[ll, Zheleznyakov[21, 
Golant and Piliya[31, Erokhin and Moiseev[41). In fact, 
very strong energy absorption is possible in the pres­
ence of strong plasma concentration gradients N in the 
vicinity of the resonance AiJ. ~ 1 (A is the wavelength, 
iJ. = N-11 \IN\). To the contrary, in a smooth layer 

(1 ) 

the absorption is usually weak. The reason is that the 
extraordinary wave, which is effectively absorbed at 
plasma resonance, does not reach the resonance region 
in a smooth layer. 1) On the other hand the ordinary 
wave, which reaches the resonance region, is not ab­
sorbed in the latter, since it has a special polarization 
at which no resonance is excited.2) The transformation 
of the ordinary wave into an extraordinary one is small 
in the case of normal incidence on the smooth layer. 

It is seen that the cause of the absence of resonant 
effects and of the small absorption of the ordinary wave 
in the smooth layer is rather specific in character. The 
situation can be easily changed, for example, if the 
plasma contains inhomogeneities with a characteristic 
dimension smaller than or of the order of the wavelength. 
These inhomogeneities serve, as it were; as resonators 
excited by the ordinary wave. 

It is important that the inhomogeneities can become 
intensified through absorption of the energy of the ordi­
nary wave. This in turn leads to an increase of the dis­
sipation, which again causes a growth of the inhomo­
geneities, etc. The resultant instability should lead to 
a sharp intensification of the inhomogeneous structure 
of the plasma, i.e., to a disintegration of the smooth 
plasma layer in the vicinity of the resonance. We shall 
call this instability "resonant." It develops only in the 
field of the ordinary wave. It is important also that the 
resonant instability is nonlinear: effective growth of the 
concentration perturbations begins only with a certain 
threshold value 6Nthr. The value of the threshold de­
creases with increaSing wave intensity and with de­
creasing plasma concentration gradient. 

The phenomenon wherein a smooth plasma layer is 
destroyed by the action of an ordinary wave was ob­
served in experiments on the perturbation of the upper 
ionosphere by strong radio waves[~121. We therefore 
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consider here the resonant instability for typical condi­
tions of the upper ionosphere. In Sec. 2 we determine 
the absorption of the ordinary wave in the inhomogenei­
ties, and in Sec. 3 we find the excitation threshold and 
the characteristic instability growth time. The results 
of the calculation will be compared with ionosphere ex­
periments. 

2. ABSORPTION OF ORDINARY WAVE BY 
PLASMA CONCENTRATION INHOMOGENEITIES 

Let an ordinary electromagnetic wave 

8=1/2 [Ee'w'+C .C.J (2 ) 

with frequency w exceeding the electron gyro frequency 
wH = eH/ mc, be normally incident on a layer of a 
weakly-inhomogeneous plasma (1) situated in a constant 
magnetic field H. We assume that the plasma contains 
concentration inhomogeneities liN whose transverse 
dimension a is small in comparison with the wavelength. 

al",<1. (3 ) 

The longitudinal dimension of the inhomogeneities, to 
the contrary, will be assumed farge enough. These in­
homogeneities appear in a strong demagnetized plasma, 
particularly in the upper ionosphere, where the diffu­
sion along the magnetic-field force lines is much 
larger than across the lines. 

Let us determine the energy flux, due to linear 
transformation of an ordinary into a longitudinal (extra­
ordinary) wave, into the electron component of the 
plasma on the concentration perturbation (3). Within the 
framework of perturbation theory, the potential cp of the 
excited longitudinal oscillations is determined from the 
wave equation 

a fj 
--e;;(cu)--,cp=-411p, i,j=1, 2, 3, ax, ax; 

where Eij is the dielectric tensor of the plasma[ll, and 
the charge denSity p is connected with the polarization 
of the concentrati on perturbation liN in the electric 
field of the incident wave: 

1 {E,L+i(u)'j,[E,LXh]}V1)v, 
811(1-,,) 

p 

(4) 

ov=he'bNlmcu', E,L-LH, h=HIH. 

Here and below we use the standard notation[ll: 

u=4:r.e'Nlmcu', 11= (cuH/cu)', 
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and omit small perturbation gradients Ov along the mag­
netic field. 

We introduce next an orthogonal coordinate system 
with axis z = X3 directed against the concentration 
gradient in the layer, i.e., parallel to the propagation of 
the incident wave. (Under the conditions of the iono­
sphere, the z axis is directed downward.) The axis 
y = X2 lies in the (zH) plane perpendicular to VN, and 
the axis x = Xl is orthogonal to the wave propagation 
plane (zH) (see Fig. 1). We measure the coordinate z 
from the plane of reflection of the ordinary wave v 
(z = 0) = 1. In this system, the tensor Eij = Eij(z) does 
not depend on x or y. Therefore the Fourier transform 
<p (kx, ky, z) of the potential <p with respect to the co­
ordinates x and y satisfies the equation 

d' d d 
{ -e" ~ + (2ik,e,,- ;;') dz +k/ell +k.'e" 

. de" . de .. } 
+!k'Tz-1kxTz <p=4np(k.,k"z), 

(5 ) 

where we have used the following symmetry properties 
of the dielectric constant E23 = E32, E13 = -E3l, and El2 

We consider the physical picture of the excitation of 
longitudinal oscillations by the incident wave. The dis­
persion equation Eijkikj = 0, which describes the propa­
gation of longitudinal waves with the thermal motion of 
the electrons neglected, has a well-known solution cor­
responding to the high-frequency branch of the longitud­
inal oscillations: 

wo'=4ne'Nlm. 
(6 ) 

Here 8 is the angle between the wave vector k of the 
longitudinal oscillations and the magnetic field H. Ac­
cording to Fig. 1 we have 

cos' 8=(k, sin a+k, cos a) '/ (kx'+k,'+k.') , 

where O! is the angle between the z axis and H. 

It follows from (6) and (7) that the group-velocity 
vector component Vz = aw/akz, parallel to the z axis 
is given by 

w uv a cos' e v.=------
2 2-u-v ak, 

a cos' e =2 cos' a (k. tg a+k.) (k.'+k,'-k,ky tg a) 
ak, (kx'+k,'+k/), 

The dependence of cos2e on kz is shown in Fig. 2 
for ky> O. At the pOints (kzh = -kytanO! and (kz )2 
= (ki + ky)/kytanO! at which the group velocity V z of 
(8) vanishes, the quantity cos2 e reaches respectively 
its minimum and maximum values: 

cos' 8,=0, cos' 8,= (kx' cos' a+k,')/ (k.'+k;) ;;.cos' a. 

The resonance point I kz I - GO corresponds to 

y' 

3:.::::...:.tJ----y coSZfj 

(7 ) 

(8) 

. Incident 
wave H,z' ------~~--~---7-------~ 

z 

FIG. I FIG. 2 
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cos2 er = cos20!. The arrows in Fig. 2 show the direc­
tion of the group velocity Vz (downward along the z axis). 

Thus, at fixed values of kx and ky the longitudinal 
wave moves between the lower and upper reflection 
points Vl and V2, as shown in Fig. 3. The values of 
Vl,2 are given by 

v,=1-u, ",=(1-u) (kx' 

+k,')/[kx'+k,'-u(kx' cos' a+k,') I. 
(9 ) 

On its downward path the wave passes through reso­
nance in the region where the dimensionless concentra­
tion v = 41Te2N/ mw 2 is equal to 

1-u 
Z;,= ""'1---u-co-s"-, a-

usinza 
1- -l---u-co-s"", -a . (10) 

As is well known(l-4J, when passing through a reso­
nance point (a pole of the refractive index) the longitud­
inal wave is almost completely damped and transfers 
its energy to the plasma electrons. This energy dissi­
pation occurs at an arbitrarily low frequency ve of col­
lisions between the electrons and heavy particles. 

To calculate the energy flux absorbed in the plasma 
in the limit of small ve ' we find the solution of Eq. (5) 
in the resonance region. We assume that in the vicinity 
of the resonance the electron concentration in the layer 
varies linearly 

(11) 

Introducing the dimensionless variables 
2K, 

s= l-ucos'a (v-v,). 
(12 ) 

K,=[k,'+k,'-u(k,' cos' a+k,')]'\ 

we can reduce, using the substitution <p = F exp{T) l~}, 
Eq. (5) to an equation for the confluent hypergeometric 
function 

{ L.~~+( -s)~-'}F= ~ 4np(k"k"s) 1-u cxp{-1],sL 
• ds' Y ds ~ q ~12 2K, (13) 

F=<p(k" k" s)exp{-1],s}. 

We have introduced here the notation 
;=il,-i~" y=1-2i[l" 

u(1-u) 1 ( k,(u)"'sina) 
~.= [K,'cos'a-k,'sin'al+- 1+ K 
. 2K, (1-u cos' a)' 2, 

. u(1-u) 1 ik,u sin a cos a (14) 
~,=k,smacosa (t-ucos'a)" 1]'=-2+ 2K, 

In deriving these equations we have neglected the small 
collision damping of the high-frequency longitudinal 
oscillations. 

The homogeneous equation (13) has two independent 
solutions 

(15) 
F,(s) =e' (e-"s) '-';G(1-p, 2-y; e-i·s), arg s=o for s>o, 

which have the following asymptotic forms: F d ~ - "") 

r v.:.! 
FIG. 3. Excitation of longitudinal plasma J 

oscillations in the region of reflection of the IT l ___ l_~ ___ :::t 
ordinary wave: I-region of excitation of longi· f77// 7 / )////- "' Vq 

tudinal plasma wave, II-region of quasi· /r/: / / 
transverse propagation of ordinary wave, III- 1lI /1 ;( 
region of quasi-longitudinal propagation of I . UI~!'U 

wave. l Longitudinal wave 

kg tan do, h>O 

V. V. Vas'kav and A. V. Gurevich 92 



= ~ -(3, F 2 (~ - - 00) = e~ ( -~) (3- 'Y. Here G( (3, 'Y; ;) is a 
confluent hyper geometric function of the second kind(13]. 
With the aid of the functions F 1,2 we can easily obtain 
for the inhomogeneous equation (13) a solution that de­
creases at infinity (as ~ - ±oo 

F(t)=-F (t) Sl q(~')F,(s') d"+F.(t) S' q(~')F,(s') dt' ~ , ~ _" s'~(s') !; - ~ ~ £'~(n ~, (16) 

where t:. = FldF2/d~ - F2dFl/d~ is the Wronskian of the 
solutions (15): 

(17) 

Here r(x) is the Euler gamma function. In the deriva­
tion of (17) we took into account the rule for going 
around the singularities of the functions F1,2( ~) at the 
point ~ = 0, namely ~ = I; + iE, E - O. 

In the case lie - 0, energy absorption takes place at 
the resonance point (10). 

The energy flux incident on the pole ~ = 0 of the 
longitudinal wave is equal to P(kx, ky) = WV2, where 

I.' iJi! 
w= 4" Wa;I'Pinc l', 

is the energy density of the incident wave, and 

v,=-~/~ 
uk, i}w 

is the projection of the group velocity on the z axis and 
is defined in (8). 

Using (15), (16), and the expressions for the quanti­
ties 

iJE 2p, 
~=- vpk:!! 

in the resonance region I kz I - 00, 11; I - 0, we obtain 

( WI! 1~21 < • 

P k"k')=-2 -1<Pinc(!;-+O)I-; 
" Up 

r ( -1) ~ 
'Pinc(;-O)=-+,C,-, (e-'"s)'-' {S q(-nG(l-~. 2-1: ~')d£' 

, 0 

(18) 

arg S =", ~,<o, 

The constant Co from (17), which enters in this expres­
sion, can be reduced with the aid of the definition (14) 
and the known relations for the gamma functions to the 
form 

Co=-exp[,,(~,-i~,} J, (19) 

The general expression (18) greatly simplifies in the 
case 

the lower limit of the quasi-transverse propagation 
v = Vq lies between the resonance point vr from (10) 
and the lower limit of the region of excitation of the 
longitudinal oscillations VI = 1 - u as shown in Fig. 3. 

In the region of the quasi-longitudinal propagation 
I; < I;q < 0, the general expression (4) for the density p 
of the induced charges takes the form 

p(k" k"z) =exp {ik.tg az} [exp{i : (e)"'(Z-Zr}} 

+exp{ i1jJ-i : (e) 'j, (z-zr) }] p, (k" k,), (22) 

(k . __ ' k, +iky fiv (I.." k,) E, . 
p, "k,)- '1+(u}'" 4" 2'I.e'" 

Here Eo is the amplitude of the plane wave incident on 
the plasma layer, with components Ex = Eo/2J/2€1/4 and 
Ey = iExj the first and second terms in the square brac­
kets correspond to the waves incident and reflected from 
the plane v = 1, and 1/! is the phase shift of the reflected 
wave at the resonance point zr = (1 - vr )/ Jl. Further, 
ov(kx, ky) is the Fourier transform of the dimensionless 
concentration perturbation ov(x, y') from (4) in'the 
primed coordinate system connected with the perturba­
tion (see Fig. 1), and the dielectric constant E in the 
region of excitation of the longitudinal waves VI = 1 - u 
< v < Vq is approximately equal to E ~ (U)J/2. (We have 
taken into account here the fact that cosa = 1 and 
u « 1 according to (20).) In the derivation of (22) it was 
also recognized that perturbation ov(x, y') is strongly 
elongated along the magnetic field and at the character­
istic dimension of the problem does not depend on the 
coordinate z' II H. 

According to (22), the expression for the source q in 
(13) and (18) can be represented in the form 

q=q, {exp[ T](+'sJ +cxp[i1j;-hj'-'; l} (3 (Sq-s), 

'±'=~_ lk,tga ±i~!t" ucos'a-1 (23) 
T] 2 2K, el! 2K, 

e (x) =1, x>O, 
8(x}=O, x<o, 

where ql does not depend on the coordinate 

= 4:rrp, 1-u =-i 1-(u)," k +ik fiv(k k) ~ 
q, '~K ~K ' (" ,) ", 9'/, 'I, ' J.L .... I .... IJ.-l .... ll-

(24) 

and the (±) signs correspond to terms generated by the 
incident and reflected pump waves. 

When substituting (23) in the definition (18) of lPinc, 
we recognize that under the condition (20) the quantity 
I;q is much smaller in absolute value than the lower 
limit of the region of excitation of the longitudinal 
waves I; ,(v = 1 - u). Putting in this case I;q = 0 in (23), 
we obtain[ 14] 

(I!a)'~ '/2 sin' a< (u) "'=WlI/w< 'I., (20) where F (a, (3, 'Y, z) is a hypergeometric function. 

which is just the case which will be considered from 
now on. First, we recognize that in the region of the 
quasi-transverse propagation of the ordinary pump 
wave I; > I;q = I; (Vq), where 

vq=1- (u)," sin' a!2 cos a, (21) 

the value of the source q ~ p, which enters in the right­
hand side of (13) and (18), is close to zero, inasmuch as 
in this region the ordinary wave is polarized along the 
magnetic field H (E II H). In the considered case (20), 
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Let us simplify the derived expression. USing the 
properties of hypergeometric functions, we obtain 

F(1,I,I-~+1.1-T]<±')= ~;'Y F(1.1,~+1.T]'~') 

+( 1-T](±) ) ~ (1-'1(±»-1 r('Y-~H)r(~) , 
T]'o' r(l) 

We now recognize that the imposed conditions (1), 
(3), and (20) ensure satisfaction of the inequalities 

Re T](±) =1/2» I 1m T](±) I, Re ~=~, -l/!w»l, h'1(±'/~! ~1, 
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from which it follows primarily that in the right-hand 
side of (26) we have F(I,y,/3 +1;q<±»"'" 1. Further, 
uSing the properties y = 1 + 2i 1m f3 = 1 - 2i/32, 1 - 1)(±) 
= (1)(±»)* and the known relations for the gamma func­
tions, we can easily verify that the first term in the 
right-hand side of (26) is small (of the order of (f.L3.)1/2 
of the second), and reduce (25) to the form 

'l'inc(6 .... 0) =q,f( -2ip,) exp{."l O,+i;l,)} s"" 
x[ exp{iarg('1(+»-"} + exp{iarg(11'-»-"+i1p} ]. 

1-'1(+) 1-1']'-) (27) 
al'g S =0, ~,>o, 

arg 6=n, ~,<O. 

In the derivation of (27) we have used expression (19) 
for the constant Co. 

lt follows from (27) that the amplitude of the longi­
tudinal wave incident on the hole decreases by a factor 
exp(-7T\ /32\), Le., if \ /32\ ~ (f.L3.t i sina» 1 then the 
wave is practically completely absorbed in the resonance 
region.£l-4) With the aid of (27) and (24) it is easy to 
find the intensity of the wave incident on the pole 

nv IE I' '(u) 
l'I'inc(s .... O) 1'= 41~,I:' lliv(k" k,) I'T[ 11'](+)1-'+11']'-'1-']' 

(28) 
f(u) =U-'I. (1- (U),/.)/ (1+ (U),/,). 

We. have left out from (28) the crOSSing term 
~elqJ/1)(+)( 1)(-»)* , since it vanishes after averaging over 
the difference of the phases 1/1 between the incident and 
reflected pump waves. The parameter Vz is defined in 
(9 ). 

Substituting (28) in the definition of the energy flux 
(18) and recognize that under condition (20) we have 
v2/vr\21)(±) \2 "'" 1, we obtain 

P(k" k,)='/,IEol'(w/Jl) lliv(k" k y ) I'j(u). (29) 

It follows from (29) that the total energy flux dissipated 
in the electron component of the plasma as a result of 
linear transformation of the ordinary wave by the con­
centration perturbation /Iv is given by3) 

P=4:-!' S P(k,,, k,)dk, dk,=IEol' : f(~) S (liv(x, y') ]'dx dy'. (30) 

(We recall that the perturbation v is defined in a coordi­
nate system with axes x and y' 1 H, see Fig. 1.) 

Specifying by way of example /Iv in the form of a 
GaUSSian function with a characteristic dimension a, 

liv=liv, exp{-(x'+y")/a'}, 

we obtain 

• IEol' W n 
P=na----(liv,)'-j(u). (31) 

8n Jl 2 

Thus, the disSipated energy turns out to be propor­
tional to the square of the relative perturbation of the 
concentration 47Te 215N/mw 2 , to the intensity \ Eo\2 of the 
wave incident on the plasma, and to the characteristic 
dimenSion 1/ Jl over which the change of the concentra­
tion in the layer takes place. 

It follows from (27) that as lie - 0 the energy of the 
longitudinal waves is dissipated in a collisionless 
plasma in the resonance region (10) over distances 
~u/ Jl from the axis of the inhomogeneity in which the 
excitation of the longitudinal oscillations takes place. 

The picture of the absorption of longitudinal waves 
in the presence of noticeable damping at lie" 0 is sig­
nificantly different. Indeed, it can be shown that the 
transformation of the transverse pump wave into a 
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'/,(1-11)'(Wu'a'/c'Jl)'/1I cos' a¢: I 

longitudinal wave on an inhomogeneity with a small 
characteristic dimension takes place in the region of 
the upper hybrid resonance v = Vi = 1 - u. In this 
region the group velocity of the excited longitudinal 
oscillations V = aw/ak vanishes (see (16) and (7». 
Therefore at not too small values of lie, the linear ab­
sorption of the longitudinal waves turns out to be de­
cisive in the immediate viCinity of their excitation. 

Using the expression for the Joule heating of the 
plasma electrons,(15) 

S v 
p= -' I V'I'I'v'l'pdxdy' dz' 

2n 

(qJp is the polarization factor) we can find the energy 
flux dissipated in the volume of the inhomogeneity. In 
first-order approximation in the small quantity lie, we 
obtain 

P=P~(1+U) [(Jla)'u (l-u)cos' a]-'I·C,. 
W 

The total energy flux P transformed into longitudinal 
plasma oscillations, which enters in this expression, is 
defined in (31), while the numerical factor is C 1 ~ 1. 
Under the conditions of the upper atmosphere at 
a ~ 1 m, Jl ~ 10- 5 m-\ and lIe/w ~ 10- 5, an appreciable 
fraction of the longitudinal-wave energy is absorbed as 
a result of Joule heating directly in the inhomogeneity. 

We emphasize that the large energy dissipation in 
the inhomogeneity is due to the fact that in the region 
of the upper hybrid resonance the group velocity of the 
excited longitudinal waves is not only small in magni­
tude but is also directed along the inhomogeneity axis. 

3. INSTABILITY OF SMALL INITIAL PLASMA 
PERTURBATIONS 

It was shown above that the presence of inhomogenei­
ties in a smooth plasma layer leads to an effecti ve dis­
sipation in them of the energy of the ordinary wave. If 
the disSipated energy contributes to an incident of the 
initial homogeneities, then this proc ess can generate an 
instability that leads to disintegration of the smooth 
plasma layer. 

We consider a strongly magnetized plasma in which 
the transport processes are determined by diffusion 
and by the electronic thermal conductivity along the 

. magnetic -field force lines. The perturbations of the 
electron temperature 15T e and of the concentration 15N 
in such a plasma are described by the equation[15]: 

---D,,--IiN-k,,---IlT.=-T,·-' IiN-y,6T. 7r-
{jIiN 0' N ij' ( N ) 
fit oz" T.oz" '. (32) 

Here Da is the coefficient of longitudinal ambipolar 
diffusion, kT ~ 1 is the thermodiffusion ratio, Ke is the 
coefficient of longitudinal thermal conductivity of the 
electrons, TN is the electron lifetime, Yi is the coef­
ficient of displacement of the ionization equilibrium 
TT = 1/611eqJT is the time of relaxation of the electron 
temperature Te as a result of the collisions with the 
ions and the neutral molecules (lie is the collision fre­
quency, 15 is the relative fraction of the energy lost by 
the electron in one collision, and qJT ~ 1 is the non­
isothermy factor). 

The z' axis is directed as before along the magnetic 
field H. Furthermore, Wi is the power diSSipated in a 
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unit volume and serves as the source of the perturba­
tions. In our case, according to (30), 

W,=,.r.,b(z'-z,')= f(u) ~IE,i'IiL'b(z'-z,'), 
S 8 Il 

6v'=S-' I [liu(x, y') ]'dxdy', s= I dxdy'. 
(33) 

It is assumed here that the entire energy of the longi­
tudinal waves is absorbed in the inhomogeneity in the 
region of the upper hybrid resonance z~ = U/Il cos O! 

(see Fig. 1); S is the area of the inhomogeneity cross 
section perpendicular to the magnetic field. 

It is convenient to write down the solution of (33) in 
the form (16) 

oN = I' dt"I dz" G(z'-z",t-t") w,~z",t")-rT, (34) 
N L, f,NT, 

where the Green's function G(z, t) is given by 

L ' dt' t-t' t' -t" z' } 
G(- t_I")= __ T -I-exp{--------

1oJ, ;-r"TrTs t" b/') Ts Tr b i 

[ + 4LN'kT (_~+~)] 
X "I. b, 2 b, ' 

(35) 

b,=4D, (t-I') +4D" (t' -t"), 

L.,=(D'-CN)"', LT= (DT'T) ''', DT=x/N. 

Here LN and LT are the characteristic diffusion and 
electron thermal conductivity lengths.[ 15] 

Let /iNo (x, y') be the initial concentration perturba­
tion, i.e., independent of the source WI (33). Then the 
total perturbation is IlN(x, y') = /iNo(x, y') + /iNE(X, y'), 
where IlN E is the additional perturbation generated by 
the interaction with the ordinary pump wave. For the 
relative concentration perturbation /iv = IlN/N 
= ON47Te2/mw 2 we have the analogous expression 

bu=liu.+6uE. (36) 

Substituting (33), (36) in (34) and taking into account 
the slow character of the considered processes (see 
expression (42) below for the instability increment). We 
arri ve at the integral equation 

O"r= nj(u) ~ IE:12 f G(O,t-t") (6u,+bvE)'dt", (37) 
~tLr Ve Ep~C:PT 0 

which describes the time variation of the initial pertur­
bation /iVo following the application of the pump wave 
electric field at the instant t = O. Here Ep = 3mTe/iw7' e 2 

is the intensity of the characteristic plasma field.[lS) 

Continuing the analysis, we consider for simplicity 
an individual inhomogeneity and assume the perturba­
tion distribution in it to be Gaussian (see (31); S = 7Ta2 ). 

In this case Eq. (37) reduces to the following equation 
for the concentration perturbation at the maximum of 
the inhomogeneity: 

, 
6u.=K I G (0. t-t") [6v.+livE (t") ] 'dt", . (38) 

where the function f(u) and the parameter LT are de­
fined in (28) and (35). 

We conSider next the stationary solution of this equa­
tion. Recognizing that the stationary perturbation /ivs 
= livo + livE does not depend on the time, we obtain 
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(Iivs-liv.)=KG.(liu,)'. (39) 

The stationary value of the Green's function (35) is[16] 

(40) 

Introducing further the concept of threshold perturba­
tion 

1 IlLT V. LN+LT E.''f!T 
6utllf= 4GoK =- nf(u) Ctl kTLN-"I.LT IE.I'· 

(41) 

we write down the solution (39) in the form 

lius=2[6uthr,± (lluthr'- liv tlu liu,) 'I,]. 

Under the conditions of the upper ionosphere, the 
parameter Y1 - 0 and Ovthr < O. The dependence of 
the stationary perturbation /ivs on the initial perturba­
tion /ivo is shown in this case in Fig. 4. We see that in 
the region /ivo > /iVthr each value of /ivo corresponds 
to stationary values of Ovs, viz., Ovs > 2vthr (solid 
curve) and /ivs < 21lVthr (dashed). 

If the initial perturbation is negative and exceeds in 
absolute magnitude the threshold \IlVthr \, OVo <' IlVthr 
< 0, then there are no stationary solutions and the per­
turbation increases continuously in time. It is this phe­
nomenon which we call resonant instability. We empha­
size that the threshold value of the initial perturbation 
(41) decreases with increasing power of incident pump 
wave and with decreasing concentration gradient 11. in 
the layer. 

It is also easy to verify that only the upper stationary 
branch on Fig. 4 (solid curve) is stable. The lower 
branch, shown dashed, is unstable. Indeed, linearizing 
Eq. (38) near the stationary value /iVs and changing 
over to Laplace transforms of the small perturbations 
\Ilv\ « \ Ovs \, as defined by 

6V(p)= S e- P'6iJ(t)dt, , 
we arrive at a dispersion equation that determines the 
increment p: 

i-2KG(O, p)livs=O, 

where G(O, p) is the Laplace transform of the Green's 
function G(O, t). It follows from (32) that (as y 1 - 0) 

kT L., 
G(O,p)= - 2 Lr(t+pTx) ''+L.,· (t+P'T) 'I, . 

Here G(O, p) = Go from (40). From these expressions 
and from the definition (31) we see that in the region 
/ivs < 2/iVthr < 0 the increment is p> 0, i.e., the sta­
tionary values of /ivs shown by the dashed curve in 
Fig. 4 are indeed unstable. To the contrary, at /ivs 
> 21lVthr the increment p < 0, Le., the upper (solid) 
branch in Fig. 4 is stable. 

The characteristic values of the increment p at 

FIG. 4 
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OVs < 20Vthr in the case of fast electronic thermal con­
ductivity DT = Ke/N » Da and Yl - 0 are given by the 
expression 

p= D.N (~-1 )'-Ts-'.Ilvthrl = 6vthrLN • (42) 
><"1', 26vthr I Ls+ L, 

We see that the increment increases energetically with 
increasing ratio OVs IOVthr. 

Let us determine the character of the development of 
the resonant instability at large deviations from the 
initial perturbation Ovo < OVthr. Under the conditions 
DT» Da and Yl - 0, in the interval t - til < TTDT/Da 
« TN the Green's function G(O, t - til) becomes much 
simpler(l6] and Eq. (38) takes the form 

1 f' W'(T") " W(T)=- ---dT ",. ( ")' Ll:I· T-T . 

'. 
T,=max {O. T-I}, 

(43) 

(The lower limit in (43) is bounded because of the con­
dition T - T" < 1.) The asymptotic solution of (43) 

W(T) =4,-C'I'(b-T)-'''. b=const, 

shows that the resonant instability has an explosive 
character. Therefore the characteristic time of the 
nonstationary processes decreases sharply if the per­
turbation greatly exceeds (in absolute value) the thresh­
old perturbation. 

We have conSidered above the conditions in the upper 
ionosphere, h> 200 km (the F-Iayer region) where Yl 
- O. In the region of the ionospheric E layer (h "" 100 
-150 km), we have Yl::::; 0.5 and, in addition, in day-
time LN« LT[50]. Here therefore, in contrast to the 
F layer, under daytime conditions positive concentra­
tion perturbations can become enhanced (OVthr > 0, 
see (41». 

In ionosphere experiments[6-12], the F-Iayer region 
was perturbed at heights h::::; 200-300 km. Stratifica­
tion of the plasma was observed, with formation of in­
homogeneities that are strongly elongated along the 
earth's magnetic field and have a broad spectrum of 
transverse dimensions (from 1 km to 1 m), with a char­
acteristic stationary perturbation ONs IN ~ 10-2. Under 
the conditions of these experiments we have Eo/Ep 
~ 1, and the frequencies are Ve::::; 102 Hz and w::::; 3 
X 107 Hz (night time) or ve ~ 103 Hz and w"" 6 X 107 
Hz (daytime). 

Consequently, the threshold value of the initial con­
centration perturbations ONo for the excitation of reso­
nant instability amounts, according to (41), to ONthr/N 
~ 10-4_10-5 • 

These are relatively small quantities. Initial pertur­
bations of this order frequently exist in the ionosphere 
under natural conditions. In addition, they can be gener­
ated by self-focusing instability in the region reflection 
considered by US[17] and by Yaleo and Perkins[18] while 
small-scale perturbations can result from parametric 
(Perkins[lB] Grach and Trakhtengerts[20]) or else drift 
instability. 

Another characteristic feature of experimentally ob­
served stratification of the ionosphere plasma is the 
effect of the prior conditioning of the ionosphere 
(Fialer[Ul). In the case of an unperturbed ionosphere, 
the small-scale inhomogeneities developed over a con­
siderable time t ~ 2-8 min after the field is turned on. 
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This time is of the order of the reciprocal increment 
lip = KeTT/NDa from (42). On the other hand, if the 
inhomogeneities have already developed, then the char­
acteristic time of their variation, following variation of 
the power of the perturbing station, is much shorter, on 
the order of 1-5 sec. This decrease of the character­
istic time agrees fully with the growth of the instability 
increment, I Ovol »1 OVthrl, at large initial perturba­
tions of the concentration (see (42». 

It can thus be assumed that the experimentally ob­
served diSintegration of the ionosphere layer is due to 
excitation of resonant instability. 

The authors thank Y. L. Ginzburg, F. Perkins, and 
L. P. Pitaevskii for a useful discussion of the problems 
in question. 

1)1t is assumed that the wave frequency w exceeds the electron cyclo­
tron frequency wHo Under special conditions, particularly in the 
presence of an appreciable external magnetic field gradien t, the ex­
traordinary wave can reach the resonance region and be completely 
absorbed there. [4,51 

2)We do not consider here nonlinear absorption connected with excita­
tion of parametric instability. 

3)We note that expression (30) obtained in the case (20) remains valid, 
accurate to a factor on the order of unity, also if the weaker condi­
tion Vq < v I = I - u is satisfied. 
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