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INTRODUCTION 

The field distribution due to a source in plasma is of 
interest for the understanding of the mechanism respon­
sible for the emission of radiation by antennas, the 
operation of probes in plasma diagnostics, and the 
microwave heating of plasma in large systems. In the 
last case, the full characterization of plasma heating 
efficiency requires the localization of microwave ab­
sorption regions and the elucidation of the effect of 
source size, plasma inhomogeneity, and thermal motion 
of the plasma particles. So far, the field distribution has 
been considered mainly in connection with the excitation, 
propagation, and diffraction of electromagnetic waves in 
anisotropic media, and the results of these studies have 
been reviewed by, for example, Felsen [IJ and Andronov 
and Chugunov [2J , The field distribution was found to ex­
hibit certain remarkable properties. In particular, a 
resonance cone appears in certain definite frequency 
bands, and most of the radiated energy is concentrated 
near this cone. Shadow regions appear in the angular 
distribution, and an interference structure is found to be 
present. 

Let us consider the appearance of the resonance cone 
in cold magnetoactive plasma. According to Fisher and 
Gould (3J, the potential associated with oscillations ex­
cited by a point source eo (r)exp(iwt), is of the form 

<p(r, t) =(e/r) [e.L (e" sin' e+e.L cos' e) I-'I'e i .', 

where () is the angle between the external magnetic field 
and the radius vector r of the point of observation. 
Hence it is clear that, in the absence of dissipation, the 
potential has a singularity on the surface of the cone, 
which is defined by the condition tan2() = -E.L/EII' if the 
components E l' E II of the permittivity tensor along and at 
right angles to the external magnetic field have different 
signs. In addition, we note that the group velOCity vectors 
of plane monochromatic waves for which the hybrid 
resonance conditions are satisfied lie on the surface of 
this cone. 

To determine the field due to a distributed source, 
we must first determine the Green function for the field 
due to a point source. In the case of homogeneous cold 
magnetoactive plasma, the tensor Green function and its 
asymptotic behavior in the wave zone were established 
by Bunkin[4J. In later work, [3,5-11J the efforts of re-
searchers were concentrated on the interference struc­
ture of source fields, due to the thermal motion of plasma 
particles, with the aim of using it in plasma diagnostics. 
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Thus, Fisher and Gould [3J have demonstrated theoretic­
ally and experimentally the existence of interference 
structure in the field radiated by a source of small 
linear dimensions for electron (w S wpe) oscillations of 
magnetized (wHe »wpe) plasmas. Kuehl [7J has dis­
cussed the conditions under which interference structure 
can be produced both inside and outside the resonance 
cone. The corresponding experiment has been described 
by Gonfalone and Beghin [10J. At low frequencies, i.e., 
when wHi < W ~ wpi < (WHeWHi)112, the field structure 
produced by a source in plasma with smooth density in­
homogeneity was investigated experimentally by Briggs 
and Parker [6J. 

In the present paper, the field distribution in magneto­
active plasma is investigated largely from the point of 
view of effective microwave heating of inhomogeneous 
plasmas both at high (w ~ wpe ) and low (w ~ wpi) fre­
quencies. Specifically, we investigate the localization of 
regions of absorption of high-frequency energy in cold 
and hot plasmas, and the effect of plasma inhomogenei­
ties and source dimensions on absorption efficiency. 
Linear transformation of waves in inhomogeneous hot 
plasmas is taken into account. The difference in the 
localization of regions of colliSional and collisionless 
absorption is noted. It is shown that the dissipation of 
high-frequency energy on plasma-particle collisions is 
localized in the region of the fine jets leaving the source, 
in which the radiation field has a sharp maximum. At the 
same time, collisionless dissipation of high-frequency 
energy is smeared over the plasma volume as a result of 
Cerenkov and cyclotron damping. It is shown that reson­
ances due to the excitation of standing waves in the in­
homogeneous plamsa shell adjacent to the source prOvide 
an important contribution to the source field. 

It is important to note that, in contrast to the mech­
anism responsible for high-frequency absorption in 
inhomogeneous plasma, which is connected with the 
imposition of regular boundary conditions and is des­
cribed, for example, by Golant and Piliya [12J and 
Erokhin and Moiseev [13J , in this paper we use a source 
to define a particular boundary condition, and this 
radically alters the absorption picture discussed in 
these reviews. The properties of the field distribution 
investigated below are due to the properties of the broad 
wave packet as a whole. 

The present paper is divided into two parts which 
correspond, respectively, to sharply differentiated and 
smoothly varying plasma inhomogeneity. The effect of 
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two-dimensional inhomogeneity is discussed at the end 
of the second part. 

1. SOURCE-FIELD DISTRIBUTION AND 
HIGH-FREQUENCY ENERGY ABSORPTION IN 
PLASMA WITH HIGHLY DIFFERENTIATED 
INHOMOGENEITY 

1. Consider the field structure due to a source with 
charge distribution p(r)exp(iwt) in cold magnetoactive 
plasma. Since we are interested in the properties of the 
field, we can use the quasi static approximation E = -vI/! 
where I/i is the potential of the oscillations. In that case, 
plane geometry with z axis parallel to the external mag­
netic field leads to a Poisson equation of the form 

f) fJ a f) 
---a;£.c a;.p+a;811~.p=-4"p(x,z), (1.1) 

where El(w) and EII(w) are the components of the per­
mittivity tensor. 

Equation (1.1) is elliptic and hyperbolic for E 1 Ell > 0 
and E1Eil < 0, respectively. Consequently, the degeneracy 
lines for (1.1) are defined by the conditions E 1 = 0 and 
Ell = O. For the sake of clarity, we begin with the point 
source p = a<'l(x)<'l(z), where a is the running charge den­
sity and the source is located in the hyperbolic region 
occupying the half-space x < Xo. In the elliptic region 
x > Xo > O. To be specific, we suppose that Ell = const 
< 0, and also E 1 = - El for x > Xo and E 1 = E2 for x < Xo. 
This is a model of the transition layer which appears, 
for example, as a result of the rapid change in plasma 
density due to the discontinuity in the transverse permit­
tivity component. 

Solving (1.1) subject to the radiation boundary condi­
tions for, say, the electric field component Ex' we obtain 
the following expressions: in the elliptic region (x > xo) 

E 40 (z-zo-ixo tg a) e'· tg e, cos a .= E, [t'tg'e,+(z-zo-izotga)'ctg'a)tga 
(1.2) 

and in the hyperbolic region (xo > x > 0) 

2io [Z 2(Zo-Z)e".] 
E.-=>- + tge 

8, z'-z' tg' e, (2zo-x)'-z' tg' e, ,. (1.3) 

In these expressions O! = arctan(Elie:2)1/2 and (}c 
= arctan(E2/IEIII)I/2. It is clear from (1.2) that the source 
field decreases monotonically in all inward directions in 
the elliptic region x > Xo. At the same time, in the ab­
sence of losses (1m E = 0) in the hyperbolic region, the 
source field is singular on the characteristics 
x = ± z tan (}c passing through the source, and also on 
the characteristics 2xo -x = ±z tan (}c' i.e., the mirror 
reflections of the former in the degeneracy line x = Xo. 
These special characteristics are the analogs of the 
resonance cones in cylindric geometry. We note also 
that, in the hyperbolic region, equation (1.1) can be looked 
upon as a one-dimensional wave equation with x as the 
variable, and the dispersion is linear. Hence it follows 
that, as x increases, an initial disturbance consisting of 
a packet of waves propagating in a given direction will do 
so without change of profile. 

Let us now consider another case where the source 
lies in the elliptic region. Assuming that E 1 = const > 0, 
and also Ell = -EW for x > Xo > 0 and Ell = E\12) for 
x < xo, we find from (1.1) that for the hyperbolic region 
x >xo 

2a [ 1 + 1 ],.. E.=-tge, . e sma, 
E.c x-xo+ib+z tg e, z-xo+ib-z tg e, (1.4) 
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where 

It follows from (1.4) that the source field is finite every­
where in the hyperbOlic region, in this case. The layer 
of plasma of thickness Xo, which corresponds to the 
elliptic region for (1.1), defines the effective source 
d · . . - b - « 2)/ )1/2 ImenslOns . .o.x- ,.o.Z-XoEIl El • 

We now use the same formulation of the problem but 
take into account the finite size Z of the source in the 
z direction. This can be done, for example, by taking 
p(x, z) = ao (x)eXp(-Z2/Z2)/Z7T1/2• In the hyperbolic region 
x > Xo, instead of (1.4) we have 

E.=2a,,"'[W(W+W(iW lei. sin a/iE.c1. (1.5) 

In this expression ~1,2 = (x -Xo + ib ± z tan (}c)cotan (}c/l 
and W( ~) is the error function defined, for example, 
in (3J • We note that both (1.5) and (1.4) consist of two 
terms which correspond to two wave packets propagating 
in opposite directions along the z axis. In each of these 
packets the source field is constant on the characteristics 
x ± z tan (}c = const. It follows from (1.5) that, in the 
hyperbolic region, the field is very dependent on the 
source size 1 if 1 is greater than the effective thickness 
xo(EjI2)/El)I/2 of the elliptic region. In this case (well 
away from the point x = xo), the maximum field amplitude 
is reached on the characteristic s x - Xo = ± z tan () c' and 
is given by 

2. Suppose that the field is nonpotential, and consider 
the effect of this on the field structure near the reson­
ance cone. In plane geometry, and assuming that the 
thickness of the inhomogeneous plasma layer near the 
source is negligible, we obtain the following expression 
for the amplitude of the magnetic field due to the source 
in cold plasma: 

+~ 

H.(x,z)= : Ldk,i,(k,)exp(ik,z-ik.cx ), (1.6) 

which is valid for high-frequency oscillations (w ~ wpe) 

in magnetized (w »wpe) plasma excited by a dipole with 
current density Re is(z)<'l(x)exp(iwt), where k 1 
= Ef/2(W2/C 2 - k~)II2. The contour of integration runs 
around the branch points kz = w/c, kz = -w/c above and 
below, respectively. For frequencies w > wpe ' when 
Ell = 1- (Wpe/W)2 > 0, propagating waves correspond to 
Ikzl < w/c. In this case, the integral (1.6) for a point 
source js(z) = J<'l (z) can be expressed in terms of the 
Hankel function 

,,001 ( Cil ) ( z' )-". H.(z,z)=-. -, Hi" -(Z'+X'811)'" 1 +-,-' 
lC C x en 

(1. 7) 

For frequencies w > wpe' the Hankel function Hy(X, z) 
satisfies an elliptic equation and, therefore, the reson­
ance cone is absent from the source-field distribution. 
This is clear directly from (1.7). For frequencies 
w < wpe ' when Ell < 0, waves with Jkzl > w/c can propa­
gate. The source field is then described by (1.7), as be­
fore, in which whenever necessary one can take into ac­
count a small negative imaginary part of Ell' 

It follows from (1.7) that, when E < 0, the field struc­
ture is characterized by the presence of the resonance 
cone Z2 = x 2 1E Ilion the surface of which the field has a 
singularity of the form Hy ~ (Z2 -x2lElllfl (when dissipa­
tion is ignored). The source emits waves into the inter-
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ior of the resonance cone. In the exterior of the cone, on 
the other hand, we have the shadow region where the 
radiation field decreases exponentially with distance 
from the surface of the resonance cone. The size of the 
transition layer between these two regions is of the order 
of IEII1 112c2/rw2. When dissipation is taken into account, 
the source field on the surface of the resonance cone is 
limited to Hy ~ -(2Jw/rvc)cos8c ' where II is the collision 
frequency and cotan2 ltc = IEIlI. 

We also reproduce the expression for the x component 
of the electric field due to a point source: 

E '!tooJ 'I (') ( 00 ") ( ') 'I '=---£II'H, -(Z'+X'£II)· xz z'+x ell - '. 
c' c 

Let us now take into account the effect of the finite 
size of the source on the amplitude of the radiated field 
near the resonance cone. We substitute js(kz) 
= (J/7T)exp(-k~l2/ 4) in (1.6) where, by analogy with the 
foregoing, the quantity 1 is the size of the source. We 
assume that this size is small in comparison with the 
vacuum wavelength AO = 27TC/W. When this is not so, the 
sharp field maximum near the resonance cone is found 
to smear out completely. Near the maximum, 
11-x2z-2cotan2lt c l::s (l/AO)2, where the main contribution 
to the field amplitude is provided by kz »w/c, the in­
tegral given by (1.6) can be transformed to read 

2J S~ (" 2i'Y' ) H'=d d8exp -8 -2'1,8--8 - . 

o 
(1.8) 

In this expression, Y1 = (z - x cotan lt C)r1 defines the 
distance from the surface of the cone and Y2 = 7T2Zl/AO is 
a parameter representing the departure from the poten­
tial character of the oscillations. The expression given 
by (1.8) is analogous to the integrals encountered in the 
theory of plasma echo (see, for example, (14J), which 
describe the spreading of an initial perturbation as a 
result of the thermal spread of the plasma-particle 
velocity. 

The nonpotential character of the oscillations [i.e., 
nonlinear dispersion of k 1 (kz )] thus ensures that the 
fieW on the surface of the resonance cone is 

n,"" (n/3) 'I, (2J/cl) exp (-3Y,'!'e'"") , i'Y,J >1, 

i.e., it falls exponentially with distance from the source. 
The attenuation length is of the order of r ~ A~/rr2l cos ltc • 
Here we must note that allowance for the thermal motion 
of the plasma particles will also lead to a restriction on 
the field near the resonance cone. This can be charac­
terized by an effective source size leff ~ (z Ab/sin2 2ltc )113 
where AD is the Debye length of electrons. Hence we 
find that the effect of the thermal motion on the structure 
of the source field near the resonance cone is unimpor­
tantwhenl 2 » AOAn!sin2ltc ' 

3. To investigate the plasma heating efficiency, we 
write down the formula for the volume absorption, which 
we can then use to investigate the distribution of absorp­
tion throughout the volume of the plasma. This is very 
important for large systems. In the case of quasimono­
chromatic wave fields, the power absorbed per unit vol­
ume is given by (see, for example, [1SJ) 

Q= (oo/8n)E.·E, 1m E.,. (1.9) 

We also reproduce the formula for the imaginary part of 
the permittivity tensor. In the case of coW plasma, we 
have 
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, 
1 1: 'VlI,a.Wpa 
mEu= , 

00 (oo'+v' ) 
IX II ,a. 

2 Z 2 

1 - 1: V.L,.OOP.(oo'+OOn.+V.L,.) 
m~- . 

00 [ 4oo'v' +(00' +V' -00' )'] 
Q; .1."- .L,1l: lin 

(1.10) 

In these expressions, 1111 and III are the collision fre­
quencies along and across the external magnetic field, 
and the sums are evaluated over the particle species. 

In hot plasma, the imaginary part of the permittivity 
is connected with the collisional wave damping through 
Cerenkov and cyclotron interactions with plasma parti­
cles. For example, at low frequencies, Le., for wHi < W 

~ ~i < (wHe wHi)1/2, and for isothermal plasmas with 
transverse wavelength greater than the Larmor radius 
of ions, the imaginary part of the permittivity is 

1m e.,=2n'" (wp.lw) ' (wlk,vT.) 3 exp (-w'lk,'vT.') ' 
(1.11) 

Consider the absorption of oscillations excited by a 
source in homogeneous cold magnetized plasma. In this 
case, it is clear from (1.9) and (1.10) that collisional ab­
sorption is determined by the z component of the electric 
field: Q = 11 11 , ewpeIEzI2/87TW2. Hence, using (1.7) and the 

fact that Ez = (c/iwlI)aHy/ax, we find that the main con­
tribution to absorption is provided by the plasma region 
near the resonance cone where the expression for the 
absorbed power has the form [x < c/Wpe(W/II I1 , e)112] 

J' sin' e 
Q - ' 

• - 4nw cos e, r'[e.'+(Ll8)']' . 
e. (1.12) 

In this formula, It* = %(II I1 ,/w)tan8c is the angular size 
of the absorption region {l.B = It - Bc' Using (1.12), we 
obtain the maximum and the running absorbed power: 

Q _ 2/'00' cos' e, S· d Q _ 001' sin 2e, 
max - nr\13 ' e r - 4r3v2 . 

II... 0 1!,e 

Therefore, in contrast to the absorption mechanism 
considered in [12, 13J , the type cif absorption considered 
here, which is due to the presence of the resonance cone, 
is very dependent on the amount of dissipation and, 
moreover, the absorption increases rapidly with de­
creasing collision frequency. When 1 > Ao(1I 11 /w)1/2/cos 
x ltc' the radiation-field distribution near the 'resonance 
cone is determined by the linear size 1 of the source. 
The angular size of the absorption region is then of the 
order of (l/2r)sinltc' and the maximum and running ab­
sorbed power is given by the following order-of-magni­
tude expression: 

Q _ VII,.!' S· d'e Q vII,.I' sin e, 
ma,,- 2 ' r -.-...:::..,---

2nw l' cos e,., nw'l' cos' e,' 

Hence it follows that, as the size of the source increases, 
the heating efficiency must fall .. 

2. SOURCE-FI ELD STRUCTURE AND ENERGY 
ABSORPTION FOR SMOOTHLY VARYING 
PLASMA INHOMOGENEITY 

1. Consider the source -field structure in plasma 
with smoothly-varying density inhomogeneity -across the 
magnetic field at low frequencies win « w2 ~ Wpi 
«wHewHi' To begin with, take the case of cold plasma. 
We shall use (1.1) for the oscillation potential 
<I>(r)exp(- iwt) in which we shall substitute p = 0 and will 
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take <l1(r~ by analogy with the work of Briggs and 
Parker, 6J so that the boundary condition <l1(xo, z) = f(z) 
will be dictated by the presence of the source. In the 
chosen frequency band, the components of the permittiv­
ity tensor have the form [see (1.10)] 

(2.1) 

Near the hybrid resonance line Re E 1 = 0, and we sup­
pose that the plasma density can be represented by the 
linear formula n(x) = no(l + x/L) where no = miw2/4rrei. 
If the coordinates along and across the external mag­
netic field are written in the dimensionless form 
1: = (z/L)(me /mi)1/2 and ~ = x/L, respectively, we can 
rewrite (1.1) in the form 

8 8 8' 
-s-0+(1+s)-0=0. as 8s as' 

(2.2) 

We note, to begin with, that the equation given by (2.2) 
is hyperbolic in the layer 0 > ~ > - 1. Next, in the 
hyperbolic region, the trajectories of group-velocity 
rays for a short wave packet are described by the char­
acteristics of (2.2): 

± (~-~,) =arc sin (1-'1) 'f'_1!'" (1-'1) 't.""'g( 11), (2.3) 

where TJ = / ~ / and 1: 0 is the parameter of the family of 
characteristics. It is clear from (2.3) that the charac­
teristics touch the line E 1 = Q and are perpendicular to 
the line Ell = O. The analogs of the resonance cones con­
sidered in Sec. 1 are the characteristics leaving the 
point source located in the hyperbolic region. In the ab­
sence of losses, the oscillation potential has a Singular­
ity on these characteristics (this will be demonstrated 
below). The characteristics leaving the point source are 
also singular after reflection from the E 1 = 0 line (in the 
case of transverse plasma inhomogeneity). At the same 
time, in contrast to the case of sharp inhomogeneity, the 
potential singularity is absent after the singular charac­
teristic touches the line E 1 = 0 on its continuation and, 
consequently, the energy of the wave packet is completely 
absorbed near the point at which the two touch. 

Let us now consider Eq. (2.2). For the symmetric 
boundary condition f(z) = f(-z), the solution of (2.2) 
which decreases for ~ > 0 has the form 

wJ llJ(q, s) 
fll(s,s)=, dqcoSqs/(q)fll(q,s,) ' 

0(q, s)='¥«1+q)/2, 1; 2qs)e-'\ 
(2.4) 

where >It is the d~generate hypergeometric function, 
q = k L(m· Ane )1 2 the boundary condition is specified on z l' I. 1/2 
the line ~ = ~ < 0, and f(q) = f(kz)(me tmi) L. We note 
that the solution given by (2.4) has a branch point at 
~ = O. In view of (2.1), we shall suppose henceforth that 
-rr::s arg ~ ::s O. 

Consider the excitation of oscillations by the pOint 
source f(z) = foo(z) located at the point (~o, 0) where. 
o > ~o > -1. Under these conditions, f(kz ) = fo/rr. Smce 
we are interested in the plasma region near the singular 
characteristics, where the main contribution to the radia­
tion field is provided by harmonics with large values of 
q, we shall use the asymptotic form of <l1(q, ~) for q » 1 
in the hyperbolic region 0 > ~ > -1: 

0(q'6)""1l'f,q-'''[~(1-'1)1-'I'r-\e:q)exp[i; (q+ ~ )+iqg('1)], 

(2.5) 
where g(TJ) is given by (2.3). We note that g(1]) is a 

76 SOY. Phys.·JETP, Vol. 42, No.1 

monotonically decreasing function with maximum value 
g(O) = rr/2. Substituting (2.5) into (2.4), we obtain the fol­
lowing expression for the potential near the Singular 
characteristics /1: / = g(1]) - g(TJo): 

/, (m.) ". ( '1' ) 'I, ( 1-'1, ) 'f, 1 0(s,s)""- - - - . 
211iL mi '1" 1-'1 ~+g('1,)-g(n) 

(2.6) 

In view of the symmetry of the problem in r;, we assume 
in (2.6) that r; 2: O. It follows from (2.6) that, in the ab­
sence of losses, the potential diverges on the singular 
characteristics /1: / = 1: s' where 1: s == g(1]) - g(1]o). A 
more convenient form of this can be obtained by rewrit­
ing the resonance factor in the form 

1 1 
~_~. = p (~_~.) - in6(s-s.), 

where P represents the principal value. When diSSipa­
tion is taken into account, the potential is restricted to a 
level determined by the condition /1: - r; sl 
~ 1m E /(Re E 1)112 for 1) < 1) 0 « 1. The thin layer of 
plasma near the singular characteristic, the thickness of 
which is of the order Ax ~ L 1m E /(Re E 1)112, is a kind 
of flute over which most of the radiation energy emitted 
by the source is propagated. Using (1.11), we obtain the 
following order-of-magnitude expression for the ab­
sorbed power: 

C!l (fllm_) , 
Q--8n ~ ImB,L' 

In this expression <l1max represents the order of magni­
tude of the potential in the region of the flute: 

fll_-(/,/2nL 1m B,L) (m./mi),I,('1'1,)"'. 

Thus, the absorbed power in the region of the flute 
increases with decreaSing dissipation in inverse propor­
tion to the cube of the collision frequency. 

For a source of finite dimension l, we substitute the 
function 

I(q) = (f,/2nL) (m/mil'f' exp( -q'/q,') , 

into the integral in (2.4) where qo = (2L/l)(m/me)112. 
When the condition q(lm E1/Et2) < 1 is satisfied, the 
source field in the region of the flute is determined by 
the size of the source. In this case, the amplitude of the 
potential and the absorbed power in the region of the flute 
are given by the following order-of-magnitude expres-
sions: 

I (T)) 'I. (i)<D~1U mi 
fll --'- -"- Qmax----Ime,L. 

- 2nl T)' 2nl''1 m, 

Hence it is clear that, Similarly to the results obtained 
in Section 1, an increase in the size of the source re­
duces the heating efficiency for inhomogeneous plasma. 

2. It was established above that collisional absorption 
of oscillations excited by a source in cold plasma is 
localized in a thin layer of plasma (the flute). Moreover, 
because of collisional energy dissipation, the region of 
efficient heating occupies a small fraction of the plasma 
volume (it takes the form of jets diverging from the 
source) in which the radiation field strength is a maxi­
mum. In hot plasma, on the other hand, the situation is 
quite different. Here the distribution of collisionless ab­
sorption is determined both by the inhomog!lneity of the 
excited fields and the inhomogeneity of 1m E which, in 
turn, depends on the source-field distribution. It then 
turns out that the maximum-field and maximum-absorp­
tion regions are spatially separated. As a result, colli­
sionless heating occurs in a large volume of plasma, 
mainly outside the flute. 
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Let us now consider the source-field structure in hot 
inhomogeneous plasmas. For frequencies wHi < W 

~ wpi < (WHewHd/2, and when the wavelength of the 
oscillations across the magnetic field is greater than 
the Larmor radius rHi of the ions, whilst the phase 
velocity along the external magnetic field is greater than 
the thermal velocity of the electrons (w/kz ) > 2vTe , the 
problem can be solved by solving the fourth-order equa­
tion 

1 , a'lll a a III a 'Ill 
-rHi --+-8.L(X)-a +811(X)-,-=O, (2.7) 
2 ax' ax x az 

where ~ is the oscillation potential, and Eland E II are 
given by (2.1). It is assumed that the electron and ion 
temperatures are comparable. The contribution of colli­
sions to 1m E is neglected. Equation (2.7) describes two 
oscillation branches, namely, the electromagnetic and 
the plasma modes. The corresponding dispersion rela­
tion can be written in the form 

k.(k,) =2-'hk.[ (1+kJko)'''± (1-kJko)'''1 ""k" ,. (2.8) 

In this expression the wave vector kl corresponds to the 
plasma mode (Bernstein mode) whilst k2 corresponds to 
the electromagnetic mode. Finally, the characteristic 
values of the wave-vector components are given by 

k.=B~ IrHi, ko= (e.L1rHi) 12elll-',". 

It is clear from (2.8) that the oscillations can propa­
gate for jkz J < ko. The value Jkz J = ko corresponds to 
the merging of the oscillation branches. It can readily 
be shown that the dispersion of the electromagnetic mode 
is anomalous, i.e., the components of the phase and 
group velocities across the magnetic field have different 
signs. Next, the group-velocity vector of the electro­
magnetic mode may depart from the direction of the 
external magneti~ field by an angle not exceeding ec 
= arctan JE1/EIi/l 2, and the Bernstein group-velocity 
vector can have any direction. In inhomogeneous plasma, 
the point of intersection of the oscillation branches lies 
in the region corresponding to E 1 « 1 provided kzrHi 
« (me /mi)ll2. 

Consider the field structure and the absorption of 
source radiation in hot inhomogeneous plasma. By 
analogy with the foregoing, we shall substitute El = -x/L 
in the region in which we are interested, Without losing 
sight of the fundamentals, we may suppose that Ell 
= const = -mi /meo As before, we shall use the dimen­
sionless coordinates 

'6=xIL, ~=(zIL) (m.lm;) " 

Equation (2.7) can then be written in the form 

a 'Ill a dQJ &'QJ 
-P'~+-.r:-~~+-;n:z=O, (209) 

" ; - -
In this expression, (3 = 2-1iz(rHi/L) is a small parameter. 
The solution of (2.9) must satisfy the boundary condition 
~(xo. z) = ~o (z). We shall also suppose that the elec­
tromagnetic mode predominates near the source. The 
solution of (2.9) which satisfies these conditions is given 
by the Fourier integral 

(2.10) 

where 

<D(q, s)=} d; exp [ i( +~zs'+ss- ~:)] , 

and the integration contour runs along the ray arg s 
= 1T/6. As before, the main contribution in the region of 
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maximum potential (on the flute) is provided by harmon­
ics with large q, for which we shall use asymptotic 
formulas. For ~ < 0 we have 

Ill(q,s)"" - (u±v)-'I'exp ±i---~- . ~( 2n~)'" (n iu' iV') 
uv 4 3~ 3~ (2,11) 

In this expression u, v = (El ± E*)1/2, E* = 2q{3, 

The expression given by (2.11) has the following in­
terpretation. In the case of sufficiently weak wave 
attenuation, 1m El « (rHi /L)2/3, which we are discuss­
ing, the electromagnetic mode excited by the source 
propagates from the plasma boundary toward the hybrid 
resonance layer El = E* where it is completely trans­
formed into the Bernstein mode. The latter then trans­
ports energy back to the plasma boundary. In contrast to 
the case of cold plasma, allowance for linear wave 
transformation in hot plasma leads to the reflection of 
energy from the hybrid resonance layer, followed by 
scattering and absorption of this energy within the vol­
ume between the plasma boundary and the hybrid reson­
ance layer. For sufficiently strong absorption, the frac­
tion of reflected energy will, of course, be exponentially 
small, in accordance with the reduction in the electro­
magnetic-mode field with distance from the source. 

It also follows from (2.11) that, well away from the 
transformation layer, i.e., in the region El »E*, the 
amplitude of the electromagnetic wave is greater than 
the amplitude of the Bernstein mode in the ratio 
(2E l/E*)ll2. Consequently, the field structure well away 
from the transformation layer is determined by the 
electromagnetic mode. The rapid rise in the fields 
oC2CU~~2 neaiA:)he c~rac( te)riStiC ?; = ?; s where 1; s 
= (Eo -El ' Eo- E1X O ' 

Substituting (2.11) into (2.10), we obtain the expres­
sion for the oscillation potential in the form of a super­
position of the long-wave and short-wave parts of the 
electromagnetic -mode spectrum. Suppose that 1; = ?; s 
determines the Singular characteristic in the case of 
cold plasma. In hot plasma, in the region where ?; < ?; s' 
the main contribution is due to the long-wave part of 
the spectrum, which coincides with the expression given 
by (2.6) for the source potential in cold plasma. How­
ever, for s > 1;s' the potential is determined by the 
short-wave part of the spectrum, Le., 

Ill. (m, )'" 8;" et [ . n 2i 'I. " ] 
Il>(s,~)"" 2L mi (n~)'''(~-~,)''' exp t4-~8.L (~-~.) • 

(2.12) 
and corresponds to the field of the wave packet in which 
the direction of the group velocity is parallel to the 
radius vector of the point of observation. In the region 
of the flute, / s - 's 1 <;; (32/3 / E~2, the two contributions 
are of the same order. The maximum value is reached 
for 1; = 1; s and is given by 

lllmo;"" (1ll./2nL) (m.lm,) 'I, (eoe.L) "'~-'''. 

We shall show that absorption of the short-wave part 
of the spectrum occurs mainly outside the flute, in the 
region s > ?; s. Substituting (2.12) in (1.11), we obtain 
the Cerenkov absorption of the short-wave part of the 
oscillation spectrum on plasma electrons: 

(2,13) 

where y = w/k~S)vTe and k~S) is the local wave number 
of the wave packet (2.12). The parameter y and the coor-
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dinates of the point of observation are related through 
the formula 

1/y=2'''(olnJw)e~' (~_~.)'h. 

Hence it is clear that, as the distance from the flute 
b = bS increases, the effective wave number k~S) in­
creases and, consequently, there is a reduction in the 
phase velocity of the wave packet (2.12) along the ex­
ternal magnetic field. This in turn leads to an exponen­
tial increase in the absorbed power (2.13) with increas­
ing distance from the flute, and to the heating of the 
large plasma volume in the region b > b s outside the 
flute. In hot plasma, therefore, thermal motion limits 
the source-field amplitude on the singular characteris­
tics (diverging from the source) whilst, on the other 
hand, collisionless dissipation leads to plasma heating 
distributed over a large volume of the plasma. 

Similarly, it can be shown that the absorption of the 
long-wave part of the spectrum, kzrHi 
< (me /mi)1/2E}!\rHi /L)1/3, occurs mainly in the region 
of the flute. 

It is important to note that we have investigated the 
source-field structure in a class of functions represent­
ing the continuous spectrum of longitudinal wave num­
bers kz• In some cases, however, this spectrum may be 
discrete because of, say, the excitation of standing-wave 
resonances in the inhomogeneous plasma shell near the 
source. For example, for a probe in magnetized plasma 
(wHe »wpe ~ w) and when the plasma shell has a sym­
metric density profile relative to the probe (x = 0) so 
that w~e(x) = w2lxl/L (L is the length of the density in­
homogeneity), the magnetic field of the radiation is given 
by 

2n S-, . v'(R) 
H.(z,x)=- dk,/.(k.)exp(tk.z)-,(-), 

c _~ v R, (2.14) 

instead of (1.6), where v(R) is the Airy function, the 
prime represents differentiation with respect to the 
argument, Ro = R(O), and 

R(x) = (wL!c) 'I. (1-c'k;!w') 'f. (xIL-1) . 

Let Y n be the zeros of the derivative of the Airy func­
tion, arranged in an increasing sequence. It is then 
readily seen from (2.14) that the radiation field in the 
transparency region x < L, Ikzl < wic is determined by 
the discrete part of the spectrum 

(ft) W ( c'Yft' ) 'I, 
k. =±~ 1- ro'L' ' 

corresponding to the contribution of the residues at the 
zeros of the function Vi (Ro). The number m of levels in 
the plasma resonator depends on the quasiclassical 
parameter p = wL/c and is found from the condition 
Ym < p2/3 < Ym + 1. We note, moreover, that the thick­
ness L of the plasma shell in the present case deter­
mines the maximum field amplitude in the hyperbolic 
region x > L on the characteristics 

zIL=±'I,(1-xIL)". 

CONCLUSION 

We conclude by noting a number of points. Firstly, 
we have discussed sources of variable size. However, 
roughly speaking, we fixed the source power. For exam­
pIe, the total, Le., integrated over the entire volume, 
source charge was fixed, so that as the source size was 
reduced, the charge density increased. Under real con-
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ditions this may not be the case, and as the source size 
1 is reduced, its strength may fall. This may be taken 
into account by supposing that the source parameters J 
and ~ are functions of l. Since the problem is linear, 
this leads to a variation in the source fields which is 
uniform in all space, but the field structure investigated 
above will not change. In particular, there will be no 
change in the localization of the absorption region. From 
this point of view, it would be desirable to have a source 
for which the density (for example, the electric field in 
the gap of the exciting waveguide) is independent of the 
source size. Under these conditions, an increase in the 
source size will not be accompanied by a reduction in the 
absorbed power and, consequently, there will be no de­
terioration in plasma heating efficiency. 

Secondly, it is essential to note the importance of the 
two-dimensional plasma inhomogeneity. The field singu­
larities in this case were first investigated by Piliya and 
Fedorov [16J for regular boundary conditions. As noted 
above, the trajectories of group-velocity rays of a wave 
packet COincide with the characteristics of the wave 
equation. Hence it follows that it is very important to 
know the behavior of characteristics if we are to under­
stand the spatial evolution of the oscillations excited by 
the source. Thus, the characteristics of (1.1) have the 
form (dz/dx)2=-E II (X, Z)/E1(X, z). For a plasma bunch 
with finite linear dimensions, the typical distribution of 
characteristics is as shown in the Figure. The hyper­
bolic region lies between the inner (E 1 = 0) and outer 
(Ell = 0) curves. It is important to note that any charac­
teristic will pass through a point such as C or D after an 
infinite number of reflections from the E 1 = 0, Ell = 0 
lines. Therefore, perturbations are eventually reduced 
to these points, and this leads to the formation of field 
Singularities at them. According to [16], a field singular­
ity will also appear at the saddle points A and B. For a 
point source located in the hyperbolic region, the points 
at which characteristics leaving the source meet the 
E 1 = 0, Ell = 0 lines are singular pOints. The distribution 
of absorption throughout the volume of the plasma will 
then be highly inhomogeneous and will take the form of 
jets (in the region of plasma near the singular charac­
teristics and their continuations). 

Finally, we must note the importance of nonlinear 
effects. In the nonlinear case, the behavior of the char­
acteristics will also depend on the field amplitude and 
this will lead, in particular, to the possible intersection 
of characteristics outside the singular points considered 
in the linear case. For a source of size l, exciting os­
cillations with energy denSity W, a very rough qualitative 
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estimate of the convergence length ls of characteristics 
due to nonlinearity yields ls ~ 1 (nTe IW). Of course, this 
is not a very quantitative result. 
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