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It is shown that the excitation spectrum of the electron shell of a heavy atom contains not only the single­
particle levels but also two dipole-type collective levels of relatively small width. In the first approximation, 
the latter levels correspond to the oscillations of the atomic core relative to the nucleus. The collective . 
levels are optically active, and the lower of the two has a substantial oscillator strength. The corresponding 
excitation energies are of the order Z Ry (Z is the atomic number) and correspond to the far-ultraviolet 
(soft x ray) region. 

PACS numbers: 31.50. 

1. It is usually considered that the atomic excitation 
spectrum is Single-particle in character: excitations 
correspond to the transition of one or more electrons to 
higher energy states with the formation of the corre­
sponding number of holes. It has been established in 
recent years (see, for example, [1J) that other electrons 
filling the same subshells are, in fact, involved in these 
transitions as well. However, this type of collective 
effect does not affect the standard single-particle class­
ification of excitation levels, which is determined by the 
quantum numbers of electrons and holes in the corre­
sponding self-consistent field. 

The existence of special (truly collective) excitations 
in the electron shell of a heavy atom, which could be 
described by specifiC quantum numbers, remained an 
open question for a considerable time. In classical 
language, such collective states correspond to the os­
cillations of a charged liquid drop which could be used 
as a model of the atomic shell of a heavy atom. On the 
other hand, collective states might be the analogs of 
plasma oscillations of an electron gas in macroscopic 
systems. Questions of this kind are discussed in [2J 

where, in addition to the history of the problem, there is 
a review of many physical aspects of collective states. 

The question as to whether the collective states exist 
at all is not a simple one by far, and the difficulties as­
sociated with answering it have been overcome only re­
cently. The theory of the dielectric response of the 
electric shell of the atom, which provides an adequate 
description of the attenuation of collective states, was 
proposed more than ten years ago [3, 4J (see also [2J), but 
the answer to the above question (which reduces to the 
determination of the ratio of the width of the collective 
state to its energy) could not be obtained without per­
forming very complicated numerical calculations. Such 
calculations have now been performed and their results 
show (see the brief account given in [5J) that the excita­
tion spectrum of a heavy atom does, in fact, contain two 
dipole-type collective states of relative small width. 
These states are optically active and are capable of pro­
viding an appreciable contribution to processes connec­
ted with the excitation of the atomic shell. 

2. The description of collective states is most simply 
formulated in the language of response functions. These 
include the longitudinal permittivity1) E and the polariza­
tion operator n whIch are defined by 

f dx'e(x, x', oo)6U(x', oo)=6U,(x, (0), (1) 

6n(x,oo)=6n,(x,oo)+J dx'II(x, x'. oo)6U(x'. (0). (2) 
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In these expressions, oUe , oU, oDe, and on are the 
Fourier components of the variations of, respectively, 
the external and total potential and the external and total 
charge density. The expressions given by (1) and (2) are 
written for the general case of a spatially inhomogeneous 
system such as an atom. 

Combining (2) with the Poisson equation, we obtain 

MU(x, (0) +4n f dx'II(x, x', oo)6U(x', (0) =-4n<'in,(x, (0). 

Collective states correspond to the natural oscillations 
of the system, and are described by the last equation 
[or Eq. (1)] without the right-hand side: 

MU(x,oo)+4n J dx'II(x,x',w)6U(x',oo)=o. (3) 

Its eigenvalues w = n + ir give the frequency n and the 
attenuation r of the collective states. All this must, of 
course, be augmented by two boundary conditions. One is 

(4) 

However, the question of the second condition is not at 
all trivial, and has given rise to difficulties for many of 
the researches concerned with collective states. At first 
sight, this second condition might be chosen in the form 

<'in I ,~~=MUI __ ~~O. (5) 

It turns out, however, that (3), (4), and (5) together pre­
dict that, depending on the chosen expression for n, the 
lower level in the spectrum corresponds either to very 
small or zero energy. The lOW-lying levels correspond 
to disturbances on on the distant periphery of the atom 
(see, for example, [6J ). It is clear that such levels are 
not collective but Single-particle states, i.e., simply the 
excitations of the outer electrons of the atom. We note 
in this connection that the energy of the collective states, 
which can be estimated from the formula for the plasma 
frequency 

Q=(4:m)"-Z (6) 

(according to the Thomas-Fermi model, n ~ Z2; here 
and henceforth, we are using atomic units), substantially 
exceeds the ionization energies for the outer electrons. 
It follows that the collective state lies in the continuous 
spectrum of Single-particle excitations. 

The correct boundary condition which would free us 
from the background of low-lying single-particle excita­
tions can be obtained from the following physical consid­
erations' the validity of which is confirmed by subsequent 
calculations. The collective excitation is localized in the 
atomic core of radius R ~ Z-1/3 in which there is a suffi­
ciently dense electron gas and where coordinated mo-
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tions of a large number of particles are, in fact, possi­
ble. Such an excitation has a finite lifetime. Among the 
more important channels for its decay, we have a) decay 
into a particle-hole pair in the region of localization of 
the collective state (analog of the Landau damping), 
b) radiative decay corresponding to the emission of 
quanta of electromagnetic radiation, and c) excitation 
(ionization) of outer electrons by the field due to the os­
cillating atomic core. In the foregoing discussion, we 
are essentially concerned with the decay products of the 
collective state corresponding to this last channel. 

Collective-state calculations should, therefore, be 
focused on excitations localized in the atomic core, and 
outer electrons should be regarded only as a source of 
one of the partial widths of its decay. Correspondingly, 
the condition given by (5) should be replaced by the 
boundary condition 

where R should be varied within certain limits. The 
validity of the foregoing scheme will be confirmed by 

(7) 

the appearance of a plateau on the functions n(R) and 
r(R). The values of nand r corresponding to this 
plateau can be looked upon as the energy and attenuation 
of the collective state. More precisely, the quantity r 
obtained in this way is the partial width corresponding to 
decay channel (a). The other partial widths should be 
added to it. 

3. The other difficulty encountered in connection with 
the collective problem is that, in contrast to the homo­
geneous medium, the ratio r/n for the atom does not 
contain small literal parameters. It is therefore only a 
numerical calculation, performed within the framework 
of a theoretical scheme capable of describing collective­
state decay, that could lead to a small value for this 
ratio, and thus to the conclusion that the collective state 
does indeed exist. 

All this ensues from the following considerations. It 
is well known (see, for example, [7J) that, in a homo­
geneous compressed electron gas [force parameter 
{3 = e2/nv = p-l « 1, where PF = (31T2n)113 is the Fermi 
momentum], ~he decay of a collective state into one 
particle-hole pair is strictly forbidden by the energy­
momentum conservation laws if the collective state mo­
mentum lies below a critical value, whereas decay into 
two or more pairs is suppressed because {3 is small. 
Hence, for long-wave collective states in homogeneous 
media, r/n ~ {3 « 1. In the case of an atom, on the other 
hand, the situation is quite different. Although here too, 
the force parameter for a heavy atom is small 
({3 ~ Z-2i2 « 1) and, therefore, the decay of the collective 
state into two or more pairs can be neglected, the chan­
nel corresponding to the decay into one pair is always 
open, This is so because the distribution of electrons in 
the atom is essentially inhomogeneous. A measure of 
this inhomogeneity is the length 1 ~ Z-lh within which 
there is an appreciable change in the density, Because 
of the inhomogeneity, the momentum is a poor quantum 
number and is no longer conserved during the decay of 
the collective state. This corresponds to the loss or 
gain of momentum ~ r 1 during scattering by inhomo­
geneities in the system. 

Since momentum is not conserved, the channel repre­
senting the decay of the collective state into one pair in 
the atomic core [channel (a)] is open. The corresponding 
ratio rain for the atom is of the order of unity, i.e., not 
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zero. This follows from the fact that the collective state 
problem contains two characteristic leng~sJ namely, the 
distance between the particles d ~ P~ ~ Z 2 3 and the 
Debye screening length rD ~ ({3li2PF) ~ Z-ll3. On the 
other hand, this ratio can be expressed in terms of 
dimensionless parameters containing 1 in the denomina­
tor. These parameters are dJi and rDJi. The latter is of 
the order of unity, and this leads to the above result for 
rain. 

From this and from (6), we find that 

r.-Q-Z, (8) 

We emphasize that it is precisely the width r a that plays 
the most important role and is the only one that can be 
comparable with the energy n of the collective' state. 2) 
To establish the existence of the collective state, it is 
sufficient to confine our attention to the width given by 
(8). We shall do this, and henceforth omit the subscript 
a on r. It is also important to note that the numerical 
coefficient in (8) is anomalously low (see below). Hence, 
one cannot exclude the possibility that the true collec­
tive-state width will be determined by some other decay 
channel. However, in any case, the total width of the 
collective state will be relatively small in comparison 
with its energy. 

4. We must now determine the polarization operator 
in (3). According to (7), our analysis is confined to the 
atomic core, where, except for the unimportant region 
of small distances r < z-l, we have the ~uasiclassical 
condition for the electrons (lpFr 2 ~ Z-2 3 « 1. 

Therefore, in the expressions discussed below, we 
can pass to the quasiclassicallimit. In particular, the 
ground state of the atom can be described by the 
Thomas-Fermi model. Another source of Simplification 
is the fact that the parameter {3 ~ Z-213 is small (see 
Sec. 3). This enables us to work in lower perturbation­
theory order in the interaction between the electrons 
(for the polarization operator), and this corresponds to 
the usual random -phase approximation for the descrip­
tion of homogeneous systems. 'The accuracy of the ap­
proximations used below is, therefore, determined by 
the parameter Z-213 

The final result of the analysis is relatively simple: 

II(x,x',w)=- PF~~) {8(X-X')T;U)j dt e-iw'<Il(x(t)-x')> }' (9) 

where PF(x) = [2(fJ. - U(X))]1/2, fJ. is the Fermi energy, 
x(t) is the solution of Newton's equation of motion for a 
particle in the Thomas-Fermi field 

:;'=-vu (10) 

subject to the initial conditions 

x(O) =x, x(O) ~PF(x)n, (11) 

n is a unit vector in the direction of initial velocity, and 
( ... > represent averaging over n, 

The expression given by (9) was obtained in (3J (see 
also [2,4J) by the Green function method. We shall not 
repeat this derivation here, and will merely outline its 
principle, The polarization operator corresponds to a 
closed particle-hole loop, and is given by 

II(x,x', w) =-2iJ~ ~G(x, x', e+w)G(x', x, e), 
_~ 2:t 

where the Green function is given by 
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G(x, x', e)=i J dl exp(iI(H-IL) [8(1) -8(e-ll) }6(x-x'). 

Substituting this expression into the preceding one, and 
passing to the quasiclassical limit, we obtain (9), where 
the classical particle trajectory x(t) arises from the 
Heisenberg position operator exp(iHt)x exp(-iHt) and H 
is the Hamiltonian for the particle in the Thomas-Fermi 
field. 

A simpler derivation, which we shall reproduce in 
full, is based on the utilization of the classical collision­
less-transport equation (see, for example, [8J ) 

a 
(at+PV-VUVp) 6j(x,p,I)=v pjo VW. (12) 

In this expression, fo = 8[PF(x) - p2] is the electron dis­
tribution function in the ground state and Of is its varia­
tion, where 

6n(x, 00) -6n,(x, 00) =2 J d'p 6j(x, p, 00). (13) 

In the Lagrange picture, the equation given by (12) 
can be written in the form 

d 
-, 6j(x(t' -I), p(t' -I), t') =A (x(!' -I), p(t' -t), n, 
dt 

where p(t) = x(t), x(O) = x, p(O) = p, and A represents the 
right-hand side of (12). Hence, using the causality prin­
ciple, we have 

o 

6j(x,p,t)= J dt'A(x(t'),p(t'),t+t'). 

The right-hand side of this equation can be written in 
the form 

• d -211(pp'(x)-p') J dxJ dt' d?[II(x(t') -x') }W(x', t+n, 

where we have used t!J.e fact that PF(x(t)) - p2(t) = PF(x) 
_p2, (p(t)V)F(X(t)) = F. Substitution of these expressions 
in (13) and comparison with (2) does, in fact, result in 
(9). 

The characteristic feature of (9) is that it contains the 
classical trajectory of the electron in the self-consistent 
field. This can also be seen in the well-known expres­
sion for the polarization operator (or permittivity) in 
Simpler problems, for example, in the case of an infinite 
or semi-infinite homogeneous medium, a plasma in a 
uniform magnetic field, and so on (see [8J ). However, in 
the case of a nonuniform distribution of electrons inside 
the atom, the form of the classical trajectories turns out 
to be very much more complicated. We note that, in the 
case of the Thomas-Fermi field, the application of the 
scale transformation x - Z-li3X, t - z-lt frees x(t) from 
explicit dependence on Z. It follows, in particular, that 
the frequency is present in (3) in the form of the self­
similar combination w/ Z. This is in accordance with 
(8). [9J 

5. The expression given by (9) is the kernel of the 
integral equation (3) and takes the form of a triple in­
tegral with respect to t, cos 8, and cp, where the last two 
arguments define the position of the unit vector n. This 
difficulty can be avoided by substituting for the 6 function 
in (9) in accordance with the follOWing expression: 

ted, respectively, as the time of transit between x and x' 
and the angles defining the direction of the initial veloc­
ity of the particle on the trajectory connecting these 
pOints. There may be many such trajectories; we shall 
label them by the index n. In particular, in the case of 
periodic motion, summation was carried out over the 
number of cycles completed in both directions. 

Next, the quantity Dn is the Jacobian 

D.= I a (x,(t),.x,(t),x,(t» \ 
a (t, cos 8, <p) 

at the pOint tn' cos 8n, and CPn' The derivatives ax/at in 
this expression are the velocity components at the point 
x'. 

Substitution of (14) in (9) yields the following final 
expression for the kernel in (3): 

II(x,X"oo)=-PF~~) [II(X-x')+ ~:1: eXP~:Roo)], t.>O. (15) 
R 

We note that, in explicit language, this expression corre­
sponds to the geometric-optics approximation for elec­
trons. This approximation is unsuitable if the points x 
and x' are joined by a continuum of trajectories, i.e., if 
they lie on caustics or, in a particular case, coincide 
with the foci of a beam of trajectories. However, the 
corresponding singularities are localized in a region of 
volume A3 , where A ~ PF is the wavelength of the parti­
cle. It is readily shown that their contribution to (3) is 
determined by the quantity (A/i)3 ~ Z-l, and can be 
neglected. 

In conclusion of this section, let us consider the 
imaginary part of the polarization operator (which de­
termines the width r of the collective state) in the case 
of periodic motion. This case is important because the 
motion of an electron in an external field which can be 
adequately represented by the Thomas-Fermi field is, 
in fact, periodic (see next section). The Jacobian is then 
independent of n, and tn is equal to to + nT for motion 
from x to x' in one direction, and to (n + l)T - to for mo­
tion in the opposite direction in the closed cycle, where 
T is the period of the motion, n = 0- 00. Taking the im­
aginary part of (15), and using the causal circuit rule 
w - w + io, we obtain 

, ooT ~ ( 2nn) 1m II (x, x ,00)00 1m ctgT '" LJ6 oo-- r . (16) 

The physical Significance of this result is that the 
attenuation of the collective state is connected with a 
resonance between the frequency wand the quasiclassical 
particle excitation frequency 21Tn/T. Clearly, this is the 
analog of Landau damping in the case of inhomogeneous 
but quasiclassical systems. 

6. To analyze the collective state in a neutral heavy 
atom, we shall use the approximate Tietz formula [10J 

U=Z/[r(1+s)'], s=r/a., «=(9/2Z)'I,. (17) 

The trajectories for I-J. = 0 and M f- 0 in this field are 
found to be closed self-intersecting curves (Fig. 1). In 
terms of the polar coordinates in the plane of motion, the 
equation describing this curve is 

(18) 

lI(x(t)-x')= 1: D .. -'II(t-t.)6(cos8-cos8.)II(<p-<pR)' (14) where ~ = za/M2 - 1 and the law of motion is 

Here, tn' cos 8n, CPn are the solutions of the equations 
x(t) = x', x(O) = x, Jf(O) = PF(x)n, which can be interpre-
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S=£i-(Ll'-1)':'cos 1], (19) 

tM=(LlH) (3LlH) 1]/2-(2.Hl) (Ll'-1) 'I, sin 1]+ (Ll'-1)sin(21])/4. 
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FIG. 1. Trajectory in the Tietz 
field for JJ = 0 and m '* O. 

The period of the motion is given by3) 

T=nCH1) (3~-1)a'IM. (20) 

Returning now to (15), we note, to begin with, that the 
sum in this expression, evaluated in accordance with the 
remarks at the end of Sec. 5, has the form 

~ . . )_ icos[w(t.-TI2)] 
. ~exp(zwt" - sin(wTI2) 

[the expression given by (16) follows from this formula] . 
The quantity to is equal to the smallest value of the dif­
ference t(1'//) -t(1'/), where ~ = ~(1'/), e = ~(1'//) [see (19)]0 
It will be convenient to introduce the angle 4> between 
the radius vectors directed toward the points x and x' • 
It is clear that 4> = q/ - cp, where cp and cp' are found 
from (18) by substituting ~ and ~ I into the left-hand side. 
Evaluation of the Jacobian in (15) yields 

D=~ (s')'" [2Q (6)Q (~') 1'" a cos <]) 

.1£(6+1)'(;'+1)' aM 

where Q(O = 2~ _M2(~ + 1)2. 

We shall not reproduce the final equation obtained by 
substituting the expressions obtained in this section in 
(15) and then in (3)0 This final expression is rather un­
wieldy but, nevertheless, manageable. It is amenable to 
the separation of the angular variables through the con­
sideration of multipole collective states 0 U ~ YZm (8, cp). 
We shall confine our attention to dipole collective states 
(Z = 1) which are particularly interesting from the point 
of view of photoatomic reactionso We note, in particular, 
that these collective states have the lowest excitation 
energy because radial oscillations (l = 0) are connected 
with a change in the density of the electron gas which 
has a high elastic it yo 

The procedure is to search for the collective state 
with relatively small width. Accordingly, we neglect the 
imaginary part of n in (3) and, by solving the resulting 
equation, we obtain the excitation energy n and the per­
turbation OU of the potential. The corresponding pertur­
bation in the density, on, is found from the Poisson equa­
tion. The width of the collective state is calculated from 
the expression 

f= <a~:n~~m' c .. > ... J dxdx'l\U(x)l\U(x') ( ... ). 

Only those solutions are retained for which r, found in 
this way, is small in comparison with n. 

7. The numerical solution of the eigenvalue equation 
(3) subject to the bound~y conditions given by (4) and (7) 
was performed on the BESM-6 computer (at the Compu­
tational Center Siberian Branch, USSR Academy of 
Sciences) by the supplemented vector method described 
in [llJ. The n(R) and r(R) curves were, in fact, found to 
have well-defined plateaus. Figure 2 shows the n(R) 
curve for one of the collective stateso These calculations 
have demonstrated the existence of two dipole -type 
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FIG. 2. Plot of!J as a function of Ria, where !J = 3 X 2"3/2 nZ-1 Ry. 

collective states with relatively small widths. Their 
energies and widths (electron-volts) are: 

Q,=13.74Z, f,=3·1O-'Z, 

Q,=36.04Z, r,""1O-'Z. 
(21) 

Figure 3 shows the behavior of the radial part of the 
density perturbation on(r) for both collective states. It 
is clear that, for the lower collective state (curve 1), 
this perturbation reduces in the first approximation to a 
shift of the shell as a whole relative to the nucleus. In 
pOint of fact, there is an attendant deformation of the 
shell which, however, remains fixed near the nucleus 
and on the periphery of the atomo For the upper collec­
tive state (curve 2), there is an additional node in the 
density perturbation. 

We shall not consider possible experimental manifes­
tations of the collective states and refer the reader to 
the review given in [2J. We merely note that, in addition 
to the peaks in the photoabsorption cross section, the 
collective states may lead to certain features in reac­
tions involving the participation of heavy atoms, which 
are typical of the Bohr pictureo 

We are indebted to S. L. Mandel'shtam and E. L. 
FeInberg for their interest in this work and for useful 
discussions. 

I)We note that, in the case of an inhomogeneous system, the permit­
tivity which related 5n to line is not the same as the quantity in (I). 

2)Detailed analysis of the partial widths corresponding to decay chan­
nels (b) and (c) will be given in a separate publication; here, we con­
fine our attention to semiclassical estimates. The radiation width 
turns out to be of the order of (Z/137)3, and is indeed small in com­
parison with n. The width connected with the excitation of the 
outer electrons, on the other hand, is given by an expression whose 
value decreases with increasing Z, and turns out to be smaller still. 
The point is that the characteristics of the outer electrons and the 
field 5U which excites them are both independent of Z. Only the 
excitation energy depends on Z [see (6)), and the cross section for 
the corresponding process decreases with increasing Z. 

3)The period is of the same order of magnitude as the characteristic 
time of the problem, namely, the period n-I of the collective oscil­
lation. This means that the real trajectory has nothing in common 
with the trajectory of rectilinear and uniform motion [for the same 
initial conditions (r I) 1 which corresponds to the approximation fre­
quently used in the theory of col\ective states. This approximation 
is based on the utilization of expressions valid for homogeneous 
media in which the density n is replaced by n(x). 
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