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The photon energy region Eb<Eph<m is considered (Eb is the electron binding energy). Expressions for the 
pA terms in the cross section for Compton scattering in the K shell are presented in finite algebraic form. 
An analytic estimate is obtained for the contributions of the pA and AA terms to the cross section. 
According to this estimate, in the region considered the main contribution to the cross section is from the 
AA terms. It is shown that for validity of the plane-wave approximation, in addition to the condition 
Eel> Eb , it is necessary also that momentum be approximately conserved in the scattering process, which 
occurs only in the region of the Compton line peak. For light elements we obtain for the scattered photons 
angular distributions that are the nonrelativistic equivalents of the Klein-Nishina distribution for 
scattering by bound K electrons. It is shown that the ratio of the cross section for scattering in the K shell 
to the Klein-Nishina cross section is a universal function of the parameter 'Y = Pr,ec/ Ptx,und' where Pr<ee is the 
momentum of the ejected electron at the peak of the Compton line and Ptx,und is the average momentum of 
an electron in the K shell. In the plane-wave approximation an expression is obtained for the cross section 
for Compton scattering by a molecular electron cloud, and an analysis is made of the influence of nuclear 
vibrations on the cross section. Calculation of Compton scattering in the H2 molecule shows that the line 
shape depends substantially on the state in which the H2 + molecular ion is formed. 

PACS numbers: 32.IO.Qy 

1. INTRODUCTION. FEATURES OF SCATTERING BY 
A BOUND ELECTRON 

In scattering of a photon by a bound electron, in con­
trast to the case of scattering by a free electron, three 
processes are distinguished; 1) Rayleigh or coherent 
scattering, in which the state of the electron is not 
changed, 2) Raman scattering, as a result of which the 
scattering system goes over to another bound state, and 
3) Compton scattering, which is accompanied by ioniza­
tion. 

In the nonrelativistic apprOXimation in second -order 
perturbation theory in the interaction of the electron 
with the electromagnetic field, the scattering amplitude 
in relativistic units has the following form (see for ex­
ample ref. 1): 

M=MAA+MpA , 

MAA=e,e,(21 exp{i(k,-k,)r} 11>, 
(1) 

(2) 

(3) 

The subscripts 1 and 2 refer to the initial and final 
states, e is the polarization of a photon with wave vector 
k and energy w, E1 is the energy of the electron in the 
initial state, m is its mass, and En is the energy of the 
intermediate states. 

The term MAA is obtained by summation over the 
intermediate states with negative energies of the exact 
expression for the amplitude of the scattering matrix 
for the following two conditions: 

IE-ml<m, w<m, (4) 

where E is the total energy of the electron. Expression 
(3) for the terms MpA was obtained with inclusion of 
only the first of the conditions (4), and it is not possible 
to simplify it by means of the second inequality in the 
general case. This leads to the result that terms of 
order wlm appear in calculation of MnA' As pointed out 
in the papers of Gorshkov and co-wor'kers, [2-4J the rela­
tivistic correction is also of order wlm, and consequently 
expression (3) is written with excessive accuracy. 
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Summation over the intermediatest:il.tes in Eq. (3) is 
equivalent to finding the Green's function of the scatter­
ing system. Use of closed expressions for the Coulomb 
Green's function [5, 6J permits calculation of the ampli­
tude MpA for hydrogen-like systems. Expressions have 
been obtained for MpA for !'cattering by K electrons in 
the dipole approximation [7 uJ and with inclusion of re­
tardation. [12-16J In the case of Rayleigh and combination 
scattering, the exact expressions for the amplitude (3) 
contain hy~ergeometric functions of the two varia-
bles, [14,15 and in the case of Compton scattering they 
contain hypergeometric functions of four variables [16J 
(Lauricella functions [17J). 

Gorshkov et al. [2, 4J showed that the contribution to 
the cross section of the dispersion terms in the case of 
Rayleigh and Raman scattering is ~Eb/w, where Eb is 
the binding energy of the ejected electron, In the case of 
Compton scattering, the qualitative estimates of the 
contribution of the pA terms are ambiguous. For exam­
pIe, the estimates made by Eisenberger and Platzman [18J 
lead to an incorrect result: ~A/MAA ~ (Eb/m)lf2. In 
the present work for photon energies w ?> Eb the 
Compton scattering cross section obtained by Gavrila [16J 
is presented in finite algebraiC form. This has made it 
possible, in particular, to obtain an analytic estimate of 
the contribution of the pA terms; it is shown that 
MpA IMAA ~ (Eblw) (Eb/Eel), i.e., the cross section is 
determined with high accuracy by the AA terms of the 
scattering amplitude. Inclusion in the cross section of 
only the AA terms we will designate in what follows as 
the AA approximation. 

In Compton scattering by a bound electron, the energy 
of the scattered photon, which.for a free electron and for 
a given scattering angle is completely determined by the 
conservation of momentum, varies within the range from 
zero to a maximum value W1 - Eb. As a result the 
o -function Compton line of a free electron is broadened, 
and its peak is shifted somewhat to higher frequencies. 
For incident electron energies Eel »Eb its wave func­
tion is usually approximated by a plane wave. As shown 
in the present work, this approximation is valid only in 
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the region of the Compton line peak. A similar conclu­
sion follows from analysis of the contributions of the 
corresponding Feynman diagrams to the scattering 
amplitude. [3J 

In the nonrelativistic photon-energy region the half­
width of the Compton line for K electrons has been found 
in the AA approximation. [19, 20J It is of interest to ob­
tain an estimate of the half-width of the line over the 
entire region of photon energies. For this purpose it is 
sufficient to consider Compton scattering by a free elec­
tron but with a distribution of velocities as for a bound 
electron. In the case Eb « m in the generalized Compton 
formula we can limit ourselves to terms of first order 
in v: 

001 ( V cos 8, ) i-L'cOS 8, + , 
l+oo,(1-cos8)/m l+w,(1-cosO)!m 

(5 ) 

where v is the initial velocity of the electron, e is the 
scattering angle, e1 , 2 are the angles between the initial 
momentum of the electron and the photon wave vectors 
before and after scattering. The uncertainty in the veloc­
ity of the bound electron is of the order (2Eb/m)112 
= O!Zeff' and therefore it follows from Eq. (5) that for 
any photon energies the width of the Compton line is 
proportional to the square root of the binding energy. 

If the inequality w1(1 - cos e) « m is satisfied (this is 
always true in the nonrelativistic region), we obtain from 
(5) the estimate 

.1oo-oo,aZeff sin(8/2), (6) 

i.e., the Compton line width is proportional to the photon 
energy and the square root of the binding energy, which 
is in agreement with the results of calculations of the 
cross section for scattering by the K shell in the AA ap­
proximation. [19, 20J With increasing photon energy the 
dependence of the half-width on the photon energy ceases 
to be linear. In the ultrarelativistic case, if the inequal­
ity wl(l - cos e) »m is satisfied, the broadening is de­
termined by the expression 

t;oo-amZ eff (i-cos 8)-1 (7) 

and the line width ceases to depend on the energy of the 
incident photon. 

The well known formula for the angular distribution of 
scattered photons in the Compton effect was obtained for 
scattering by a free, stationary electron. [lJ Significant 
departures from the Klein-Nishina distribution should be 
expected in the small-angle region for scattering by a 
weakly bound electron. While the Klein-Nishina cross 
section is maximal for a scattering angle e = 0, the 
Compton effect cross section for a bound electron should 
drop with decrease of e, since the energy transferred to 
the atom for small scattering angles becomes insuffi­
cient for ionization. 

In the present work we have obtained in terms of the 
AA approximation the angular distribution of scattered 
photons for the Compton effect in the K shell of the 
lightest elements and have found the region of scattering 
parameters in which departures from the Klein-Nishina 
distribution are important. It is shown that the ratio of 
the cross section for scattering in the K shell to the 
Klein-Nishina cross section is determined by a univer­
sal function of the parameter y = Pfree/O!mZeff' where 

iirree~2oo, sin ~ [ 1 + :' (i-cos e) r':' 
is the average value of the momentum of the emitted 
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electrons in the Compton line peak and O!mZeff is the 
average value of the electron momentum in the K shell. 

We have also considered Compton scattering by a 
molecular electron cloud. The specific nature of the 
scattering in the case of molecules is the many-centered 
nature of the distribution of electron denSity and the 
necessity of taking into account the vibrational and rota­
tional motion of the nuclei. As a consequence of the 
many-centered distribution, an oscillating factor ap­
pears in the cross section. However, its influence falls 
off as the role of vibrations increases. Calculations of 
the cross sections for scattering in an H2 molecule have 
shown that the Compton line shape depends substantially 
on the state in which the H; molecular ion is formed. 

2. CROSS SECTION FOR SCATTERING BY K 
ELECTRONS 

Let the unit vectors "l, 112, and n be directed respect­
fully along k1, k 2, and p (p is the momentum of the 
emitted electron). As the unit of energy for the K-shell 
electrons it is natural to take Ry. The matrix element of 
the scattering cross section can conveniently be made 
dimensionless: M - (7)2Z2p/161T3)1/2M, 11 = O!m. In these 
units 

r,'oo, (00') d'cr=--IMI'd R- do,do" 
Z' 00, Y 

(8) 

where dOe is the element of solid angle in which the mo­
mentum of the ejected electron lies. 

The term corresponding to the AA term in the com­
plete matrix element of the cross section (8) has been 
calculated by Schnaidt [19J : 

M A ., ~4e,e, (2/n) '''tj'Z'[i-exp{-2ntjZ/p} ]-", 

. [t]'z,+ (k-p)']-H[k'+ (llZ-ip),l'-' [k'+ (6-i)kp 1. (9) 

where ~ = 7) Z/ip, k = kl - k2. Expressions for the terms 
MpA were found in the work of Gavrila [16] and are a 
superposition of the hypergeometric functions of 
Lauricella. The expressions for MpA are substantially 
simplified if we consider processes with a large momen­
tum transfer to the electron, Eb « E 1. Here the Lauri­
cella functions are expressed in terms of the Appell 
hypergeometric functions F 1, and Eq. (9) is transformed 
to 

4 ( p )"'[ (P-k)']-'[ k'+(s-1)Pk] 0 
JLA=e,e,-;- ~ 1+ --;jZ k'+(tjZ-ip)' . (1) 

The complete matrix element of the cross section 
will have the form 

The quantity Ml in Eq. (11) represents the following 
combination of F1 functions: 

1I1,=2'n-''t;'' p;" [ (1 +'t,)'+cS,']-'[ 1 + (p,+cS,)']-' {[ (1-'t,) '+6,'] 

. (4-'t,) -'F, (4-'t,; 3,3; 5-'t,; x" x,) - [ (1-j-1:,) '+6,'] 

. (2-'t,)-'F, (2-'t,; 3,3; 3-T,; x" x,)} (12) 

and can in princIple be calculated numerica!,!:y by the 
method of Gavrila. [11] The expression for M2 differs 
from (12) by the follOWing substitution: 

p, ..... p" (13) 

where 
't,. ,=TjZ[<+2m(oo" ,'FEb) ]-'t., 6" ,=-ik,. ,(2m(oo,-Eb ) ]-'t., 

~!, ,=k" ,[2m(oo,+E b ) ]-''', PI, ,=p['F2m(w" ,'FEb) ]-1., 

and the parameters Xl, 2 are found from Eqs. (44) and 
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(45) of ref. 16 by substituting in them the corresponding 
quantities from (13). 

In the energy region Eb « w « m the scattering 
cross section can be represented in finite algebraic form 
by expansion of the Appell function occurring in Eq. (12) 
in the small parameters (Eb/W) 112, (Eel/w)1/2, and 
(w/m)lh. By means of Eq. (49) we obtain to fifth order 
in the indicated parameters instead of Eq. (12) 

.M,"2'1C'1}'p;"[ (1 +f,)'+I1,']-'[ 1 + (p,+6,)']-'A,--'B,-'P" (14) 

where 
P,,=-41:, (1-A,') -'[5A,'-3+3C, (:I_A,') '] +B, (1-.11,') -'[3-A,' 
-3C,(1-A,')] {(H1:,) [(1-1:,)'+6,']-(3+1:,) [(H r,)'+6,']) 

+'/3B ,'(3C,-3-A,') (1:,(1+1:,) [(1-1:.)'+6.'] 
- (3+1:.) (2+1:.) [(1+1:.)'+6,'])-

-'/.B,'[3-2A.'-3C. (l-A.')] {1:, (1-1:.') [(1-1:,)'+6.'] 
+(3+1:,) (2+1:.) (1 +1:.) [(1+1:,)'+6,']) 

+'/"B,'[;:iA,'+3C.( 1-A,') -3] {1:, (1-1:,') (2-1:,) [( 1-1:,)'+6,'] 
-(3+1:,) (2+,,) (1+1:,)T,[ (1+1:,)'+6.']). (15) 

The quantities AI, B1, and Cl are found from the form­
ulas 

A ( ' b )"B -, B C 1 ( 1 +A,) t=- al- I 1 I, t=l-a" l=-In -- , 
2A, I-A, 

46, (p,+6,) +(1-1:,'-11,') [1-(p,+6,)'] 
a,= «1+1:,)'+11,'][1+ (p,+6,)'] 

b,=[ (1-1:,)'+6,'] [(1+1:,)'+6,']-', 

and for calculation of M2 in Eqs. (14) and (15) it is neces­
sary to make the substitution (13). 

The expressions obtained for the matrix element of 
the scattering cross section permit an estimate to be 
made of the contribution of the dispersion terms. For 
w - 1/Z the main contribution to the cross section is 
from electrons emitted with energy Eel -Ell' In this 
case from Eq. (14) it follows that MpA - Eb/w. In the 

energy region w ~ 1/ Z the greater part of the electrons 
are emitted with Eel »Eb and the relative contribution 
of the pA terms is determined by the value of the cross 
section at the peak of the Compton line. As a result we 
obtain 

Mp " Eb Eb Eb ( T)Z)' (16) 
M"" - -;-Eel - -;;;- 00 sin (8/2) . 

It is interesting to compare the results obtained here 
with those obtained by the traditional method for such 
estimates. We will assume that in Eq. (3) the main con­
tribution is from terms with lEI - Enl «w. Without 
conSidering polarization vectors, and introducing average 
values of the momenta in the initial and final states 
pll) - 1/ Zll), p12) - Pf12) , it is easy to obtain from (3) 

Mp"-"IZp,M""lmoo. (17) 

In the case of Rayleigh and Raman scattering (or 
Compton scattering with w .;;;;, 1/ Z) the main contribution 
is from Pf- 1/Z, and therefore Eq. (17) for these proces­
ses leads to MpA/MAA - Eb/W. In the case of the 
Compton effect for energies w »1/Z, the estimate (17) 
leads to an incorrect result. In this region Pf - wand 
from (17) we obtain immediately the result of Eisen­
berger and Platzman[18J: M A/MAA - aZ, i.e., the 
relative contribution of the ;Rspersion terms is independ-
ent of the incident photon energy. '-

3. COMPTON SCATTERING IN THE AA 
APPROXIMATION 

In the region of applicability of the AA approximation 
it follows from Eq. (8) that 
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ro2 002 ( 00,) 
d'OAA= 2Z,(1+cos'8)~IMAAI'd Ry do,do" (18) 

where we have extracted the polarization terms from 
the matrix element MAA. In the case of a hydrogen-like 
atom the matrix element MAA is calculated exactly (see 
Eq. (9)). The scattering cross section (18) integrated 
over the direction of the emitted electron is 

ro' ( 00, ) 
d'o"" = z;(1 +cos' 9)/""d Ry' do" (19) 

[ -{ 21t"lZ}]-" 
lAA=2' 1-exp --p-

{ 2T]Z ( 2p/T]Z )} [ k' 
x exp - p-Al'ctg 1 +k'/T]'Z'-p'/T]'Z' "I'Z' 

+-- 1+- +4-k' ( p' )] [( k'+'l'Z'-P')' p' ]-' 
3T]'Z' '1'Z' I)'Z' T]'Z' 

(20) 

where the principal value of the arc tangent is chosen to 
be tan-1 x if x ~ 0 and 7T + tan-1(x) if x < O. 

Let us investigate the influence of the choice of the 
wave function of the system in the final state on the 
scattering cross section. The ordinarily used plane­
wave approximation assumes replacement in the exact 
wave function 

(21) 

of the degenerate hypergeometric function ~, with the 
factor in front of it, by unity, which corresponds to the 
formal substitution ~ == 0 (we have used the deSignation 
~ = 1/Z/ip). This procedure, however, is not at all ob­
vious. In order to clarify it, we will consider the be­
havior of the -function ~ from Eq. (21): 

_ . s(s+1) " 
<D(s, 1, -z(pr+pr»=1-1s(pr+pr)----(pr+pr).+. -. (22) 

2-2! 

for small values of I ~ j. Going to the limit I ~ I « 1, it is 
important to take into account that the parameter 
~p = i1/Z is not small and the hypergeometric function 
(22) in this case goes over to 

{~~ (-i)'(pr+pr) , } 
l1>(s, 1, -i(pr+pr» "1-11Z(nr+r) , 

(1+1) (I+1)! 
(23) 

1-0 

from which it is evident that it can diffE~r substantially 
from unity. 

The possibility of replacing the function (23) by unity 
is due not to the small value of I ~ I, but to the oscillating 
nature of the sum in the right-hand side of Eq. (23). Let 
us determine the region of scattering parameters in 
which the contribution of this sum to the cross section 
is small. The behavior of the Compton effect cross sec­
tion is determined by the integral 

S d'rexp{-T]Zr+i(k,-k,-p)r}<IJ (~, 1, -i(pr+pr». (24) 

In order that the function ~ in Eq. (24) ean be approxi­
mated by unity, the exponential in the integrand must be 
a slowly varying function in distances of the order of 
several periods of oscillation of the sum in (23). This is 
equivalent to the following two conditions: 

(25) 

The vector 

g= (k,-k,-p)lp (26) 

occurring in Eqo (25) characterizes the degree of non­
conservation of momentum in the process of scattering 
by a bound electron. Thus, in addition to the condition 
Eb « Eel' for validity of the plane-wave approximation 
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it is necessary also that the condition g « 1 be satis­
fied. The latter is true only in the region of the maxi­
mum of the cross section. 

In the case of scattering by K electrons the necessity 
of the conditions (25) can be obtained if we start from 
the exact expression (9) for MAA' Introducing the 
parameters ~ and g in explicit form, we will write it 

( 2 ) ,/, [ ( k-p ) ']-. MAA=4e,e, -;- [1-exp{-2nlsl} ]-'h 1 + ~ 

. ( s+ng+g'+ngs ) ( 2s+2ng+g'-~' ) , 
2s+2ng+g'-s' g'+!;' . 

Hence to zero order in ~ we obtain 

4 [ ( k-p ) , ] -, ( s +ng+ g' ) MAA""e,e,-i!;i-'I, 1 + -- ----., . 
n TjZ ~s+2ng+g-

In the case of the calculation with a plane wave we 
have the expression 

pi _ 2 ( p )'" [ (k-P)']-' M A .. -- - 1+--
n TjZ TjZ 

(27) 

(28) 

(29) 

which is obtained from (28) only for the condition g « 1. 
The necessity of this condition for applicability of the 
plane-wave approximation follows also from considera­
tion of the cross sections integrated over the direction 
of the emitted electrons. Comparison of Eq. (20) with 
its analog in the plane-wave approximation 

pi _ 2' P ( kp 2 k'p' k'P+kP') [( k'-P'+Tj'Z')' P' ]-' 
1'A--- --+---+--- +4-

. n TjZ Tj'Z' 3 Tj'Z' Tj··Z' Tj'Z' Tj'Z' 
(30) 

shows that Eqs. (20) and (30) agree only if, in addition to 
the condition I ~ I « 1, we impose the requirement k ~ P 
(which is equivalent to g « 1). 

In Fig. 1 we have shown the Compton lines for scat­
tering by K electrons in hydrogen and lithium. For con­
venience the curves have been plotted in units ~ Z2 for 
the ordinate. The dependence of the half-width of the 
lines on photon energy and nuclear charge agrees with 
the estimate (6) obtained in the Introduction. 1) We can 
also see from Fig. 1 that the relative error produced 
by the plane-wave approximation increases on the wings 
of the line, which corresponds to deviation from the 
momentum conservation law (thus, for Z = 1 on the long­
wavelength wing of the line we have apl/aexact ", 1.8 for 
Eel'" 4 key, while near the maximum of.the peak where 
Eel'" 2.4 key we have apl/aexact ", 0.99). 

Integration of the cross section (19) and (20) over the 
energy of the emitted photon gives the nonrelativistic 
equivalent of the Klein-Nishina formula for scattering 
by K electrons. The early experimental results on the 
angular distribution of hard x rays in light elements 
have been analyzed in Heitler's book. [22J He concluded 
that the Klein-Nishina formula was in complete agree­
ment with the experimental data. However, in the small­
angle region there were no reliable measurements at 
that time, as a result of difficulties in separation of the 
elastic component. As noted in ref. 4, according to 
Wentzel's rule [23J the sum of the cross sections for the 
elastic process and all inelastic processes must be equal 
to the cross section for scattering by a free electron. 
If the cross sections of only inelastic processes are 
measured, we should expect Significant deviations from 
the Klein-Nishina distribution in the small-angle region. 
Measurements of the inelastic scattering of 'Y rays 
(w 1 = 662 keY) on the K shell have shown [24-26J that for 
small scattering angles the experimental values of the 
cross section are significantly lower than those given by 
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FIG. 1. Compton line in the case of scattering of a 3D-keV photon at 
1200 by a K electron in Hand Li atoms. The calculation was carried out 
in the AA approximation: I-with the exact expression (27) for the ma­
trix element MAA, 2-with expression (28), 3-in the plane-wave approx­
imation. As the ordinate we have plotted the quantity 

10 d2 0 AA 

TO' Ii (ro,IZ' Ry) do, 
(wc is the Compton frequency). 

FIG. 2. Angular distribution of scattered photons in the Compton 
effect on K electrons. The solid line corresponds to scattering by a free 
electron (the Klein-Nishina cross section). 

the Klein-Nishina formula, and for large angles for 
heavy elements they are even higher. 

In Fig. 2 we have shown the results of calculations of 
the angular distribution of the cross section on K elec­
trons of light elements. For comparison we have every­
where shown also the Klein-Nishina cross section. It is 
evident that the departure from the angular distribution 
given by the Klein-Nishina formula is greater, the higher 
Z and the smaller Wi or e. In the formulas for the cross 
section (19) and (20), k and p enter only in the form of 
the ratios k /1) Z and p/1) Z. Since the greatest contribu­
tion to the cross section is from the region g « 1, 
where k ", p, the behavior of the cross section can be 
characterized by the value of the parameter 'Y 
= Pfree/1) Z in the peak of the Compton line, where 

2w,sin(8/2) 
(31) 

1 amZ[1+w,(1-cos8)lmj'h' 

Calculation shows that for all values of e, Wi> and Z in 
the AA approximation the ratio of the cross section for 
scattering by K electrons to the Klein-Nishina cross 
section can be represented as a universal function of the 
parameter 'Y. This function is shown in Fig. 3. 

4. COMPTON SCATTERING BY MOLECULES 

In the photon energy region discussed by us (w »Eb) 
the matrix element of the Compton scattering cross 
section can be taken with sufficient accuracy in the AA 
approximation. The specific feature of scattering by 
molecules (in comparison with atoms) lies in the many­
centered nature of the electron cloud and in the need of 
taking into account nuclear motion. The wave function of 
a molecule is described with good accuracy in the adia­
batic approximation2 ): 

'I'=¢(r, R)A(Q)8({}), (32) 

where i/>(r, R), A(Q), and ®(J.) are respectively the elec­
tronic, vibrational, and rotational wave functions; rand 
R are the sets of electron and nuclear coordinates, Q 
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!JJt / d~free 

tL, 
o 1 2 J 

FIG. 3. Ratio of the cross section for Compton scattering on K elec­
trons to the Klein-Nishina cross section, as a function of the parameter 
'Y = Pfree/Pbound; see Eq. (31). 

are the coordinates of the normal vibrations, and J are 
the Euler angles characterizing the orientation of the 
molecule. 

The scattering cross section, summed over all final 
vibrational-rotational states of the ion, is given by the 
following expression (cf. ref. 28): 

d30 AA ro2 CUz 
-2 (Hcos' 0)-<A.(Q) 8. (it) IIIDl'I.AI'IA. (Q)9. (it) >, (33) 

doo, do, do. 00. 

where 

IDlAA(R) = ( <P.(r,R) l.Eeibtl <p.(r,R». (34) 
j 

The main features of scattering in molecules appear 
distinctly already in the case of diatomic molecules. 
Let us consider the simplest of them -the molecule H2. 

As the electron coordinate function of the ground 
state of H2 we will take the Weinbaum function, which 
satisfactorily describes the electron density distribu­
tion [29J. 

¢ .=N. (cp.(r.) cp.(r,) +cp.(r.) cp.(r,) 

+f.I[ cp.(r.) cp.(r,) +1j'J.(r.) cp. (r,) ]}. (35) 

The functions 'Pa and 'Pb are Slater Is orbitals centered 
on the corresponding nuclei, and N 1 is a normalization 
factor. The optimum value of J.L is 0.2644 for an equili­
brium distance Ro = 1.431 atomic units and an effective 
Slater charge Z* = KIT] = 1.1937 (ref. 29). For J.L = 0 the 
function (35) goes over to the Heitler-London function, 
and for J.L = 1, to the function of the molecular orbital 
method. 

For the lowest vibrational levels it is sufficient to 
limit ourselves to the harmonic approximation. Then 
the vibrational-rotational function of the H2 molecule 
takes the form 

( a)'" {a'(R-Ro)'} 
A.(Q)8,(it)= 1'I"'1)!2"+I exp - 2 H.[a(R-R.)lY,M(O',cp'), 

(36) 

where Hvare Hermite polynomials, YJM are spherical 
functions, a = "'Mpwo/2, Mp is the proton mass, Wo is 
the frequency of zero-point oscillations, and e I and cp I 
are the angles between k and R in the spherical coordin­
ate system with z axis along k. 

We will construct the electron coordinate function of 
the final state of the system, which corresponds to a 
singlet state, in the form 

9l,=N, {91 H; (r.) V.(r,) + V.(r,) 9l H;(r,)}. (37) 

We will take the coordinate function of the H2 ion in the 
ground state and in the first excited electronic state in 
the form of a linear combination of the atomic orbitals 

(38) 

. where g refers to the ground state of the ion ~g) and u 
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to the excited state (~~); the functions rfJa and rfJb are 
centered on the corresponding nuclei and in the simplest 
case are atomic Is orbitals. [30] Inclusion of the polar­
ization of the electron cloud by the neighboring proton 
can be carried out most simply by replacing exp {-Kra } 
by exp{-Kara - Kbrb} (ref. 31) (for more detail see 
ref. 32). 

We will approximate the wave function of the ejected 
electron by a plane wave normalized to unit volume: 

(39) 

As was shown in the preceding section, for validity of 
the plane-wave approximation, in addition to the condi­
tion Eel »Eb, it is necessary that the condition of mo­
mentum conservation g « 1 (25) be satisfied. This 
means that our results will be invalid on the wings of 
the Compton line. 

Calculation of the matrix element (34) with the func­
tions (35), (37) and (38) leads to the following expression: 

IDlAA (R.b) =2N,N,N, .• (< 9l.=IDb I eib I fjJ,>< vp I <Pb +f.lfjJ.> 
+< ¢.±91.1 e'bl fjJ,><V. I CP.+J.t<i''') 

+ (1±J.t) (S .. ±S.b) <V.leik'I<i"±(p,>}, (40) 

where saa and sab are overlap intervals between the 
one-electron wave functions in the ion and in the mole­
cule: saa = (rfJal'Pa), sab = (rfJal'Pb). It is not difficult to 
show that 

<V.lcp.> { X'+(k-P)'}' _ {~+ gz}'. 
<Vplei"lcp.> x'+p' Eel 

(41) 

From the conditions (25) it follows that ratios of the type 
of (41) are small, and therefore in (40) it is sufficient to 
limit ourselves to the last terms: 

(42) 

This not only considerably simplifies the form of the 
matrix element of the cross section, but in addition it 
permits avoiding calculations of complIcated two-cen­
tered integrals of the type (rfJbleikrl'Pa>' 

We finally obtain the following expressiOn for the 
cross section for scattering by an H2 molecule in its v-th 
vibrational level: 

2'r z 00 pm [ (k-P) ']-' d'o,.:=--,-!-(Hcos'O)-'-, W, .• 1+ -- (43) 
1'1 OOM • 

X (1±e-'L.(26) cos[ (k-p) R,]} doo, do, do" 

6=[ (k-p) Ro/2aRol " W, .• =[N,N,N, . • (1±J.t) (S,.±8.0) p, 
where Lv is a Laguerre polynomial. The cross section 
(43) contains an oscillating factor (in the curly bracket). 
The presence of this factor is specific for the molecule, 
and it does not appear in the case of atoms. The factor 
e-<'> Lv(2o) appears as a consequence of taking into ac­
count nuclear vibrations and is determined by the value 
of the parameter <'>. In the vicinity of the maximum in 
the cross section this parameter is small, and hence it 
follows that inclusion of vibrations need not change the 
scattering picture substantially. As can be seen from 
Eq. (43), the entire dependence of the cross section On 
the parameters of the wave fUnction of the ion produced 
(38) occurs in the factor Wg,u' As these parameters are 
varied, the angular and energy characteristics of the 
cross section remain as before. 

Equation (43) represents the cross section for scat­
tering by an oriented molecule. In view of the weak 
influence of nuclear vibrations on the cross section, we 
will carry out averaging over the orientations of.the 
molecule in space, taking expression (43) without inclu-
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sion of vibrations (6 « 1). This gives 
, 25ro2 2. w'l.pm 

dit,.u=-,-(1+cos 6)--, 
Jt WtY. 

[ k)'-' XW,u 1+( :p ] 
{ sin(lk-pIR,) } 

X l± Ik-plR, dw,do,do,. (44) 

On the basis of Eq. (44) we have calculated the 
Compton line for scattering by an H2 molecule with 
formation of the Hz ion in its ground and excited elec­
tronic states. As the wave function for m we took the 
function from the work of Finkelstein and Horowitz [30J 

with the optimal effective charge at Ro = 1.431 atomic 
units. In this case the factors depending on the elec­
tronic states of the ion and the molecule are respectively 
W "'" 0.146 and Wu "'" 8.88 X 10-3• The results of the 
ca1culation are shown in Fig. 4. As follows from the 
figure, the line shape depends substantially on the final 
state of the system. This permits information to be ob­
tained on the distribution of electron density not only in 
the molecule but in the ion formed. 3 ) 

We are grateful to Y. G. Gorshkov for helpful dis­
cussion and for sending a preprint, and also to A. Y. 
Kireeva, who carried out the numerical calculations by 
computer. 

APPENDIX 

CALCULATION OF APPELL FUNCTIONS 

For the Appell hypergeometric function 

. F(a; ~, ~'; 1; x, y) = f(a;:~~-a) I'dt ta -' (l-t) T-a-' (1-tx) -~(1-ty) -,. 
o 

the following expansion [17J is valid: 

( . '.. _ ~ (a)m(~').. m '.. 
F, a,~,~ ,1,x,y)- "-' () 1 (y-x) F(a+m,~+~ +m,l+m,x), 

1 mm. 
m_O (45) 

where (a)m = r(a + m)/r(a), r(a) is the Euler gamma 
function. In the particular case x = y the function Fl 
reduces to the ordinary hypergeometric function by 
means of the relation 

F, (a; ~, ~'; 1; x, x) =F(a, ~+~'; 1; x). (46) 

We will be interested in the expression for the func­
tion Fl when the values of Ixl and Iyl are close to unity, 
in the so-called logarithmic case-for the condition that 
{3 + (3' - Y + Q' = P > 0 is an integer. Using the analytic 
representations for the hypergeometric functions oc­
curring in the right-hand side of Eq. (45), we obtain with 
accuracy to order p - 1 in 11 - xj and 11 - yl the follow­
ing expansion: 

f: f(l)f(p-n) 
F,(a;~,p';1;x,y)"" f:: (-1)"(1-x)-P-" f(a)n! (47) 

. (Hl-V), (l-a) ,F ( ~+~' +a-l-n, p'; ~+~'; ~~:) . 
If the parameter Izl = Iy -xl/Ii-xl here is small or 
large, the functions in the right-hand side are calculated 
by direct expansion in z or, with use of analytic continua­
tions, in Z-I. 

In the special case {3 = (3' we use for the function F in 
the right-hand side of (47) the relation 

( X) -a (a a+1 '1 ( x ) ') 
F(a,~;2p;x)= 1-Z F Z'-2-;~+2; 2-x . 

From Eq. (47) we then obtain 
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FIG. 4. Compton lines in the case 
of scattering of a photon with energy 
w = 30 ke V at an angle 8 = 1200 by 
an H2 molecule. The ratio of the ordi· 
nate scales for the cross section with 
formation of ~ in the ground state to 
the cross section with formation of 
~ in the excited state is ""82.2. 

f(l) (2-X-Y ) -. f: (2-X-Y)' 
F,(a;~,~;1;x,y)"" f(a)f(2~) -2- ~ (_I)' -2-

f(p-n) (1-2~) "(l-a)" 
n! 

( 2~+a-1-n 2~+a-1-n+1. J..-. ( Y-X ) ') 
. F ~ . 2 ' ~ + '2' 2-x-y . (48) 

If the parameter (3 is an integer, then after a number of 
transformations with use of recurrence relations for 
the ordinary hypergeometric functions, all F in the 
right-hand side of (48) can be reduced to elementary 
functions. 

For example, with accuracy to fourth order in 11 - xl 
and 11- yj we have 

F,(a; 3,3; a+l; x, y) ""f.aA -'C-'{ (i-A') -'[5A'-3+3B(1-A')'] 

-C(a-5) (I-A')-'[3-2A'-3B(1-A') ]+'/,(a-5) (a-4)C'[3B-3-A'] 

-'/.(a-5) (a-4) (a-3)C'[3-2A'-3B(1-A')] 

+'/,,(a-5) (a-4) (a-3) (a-2)C'[5A'-3+3B(1-A')']), (49) 

where 
y-x 

A=--2-x-y , 
1 1+A 

B=2Tln i-A' 
2-x-y 

C=-2-' 

I)The same agreement exists also in the relativistic energy region. Thus, 
the dependence of the half·width of the Compton line on the scatter­
ing parameters, as obtained from Eq. (5), is in good agreement with 
the Compton lines calculated by Gorshkov, MikhaTIov, and Sherman 
[21] for Z = I, 13,26 and w = 412 keY. 

2)For the H2 molecule, as has been shown by the precision calculations 
of Kolos and Vol'nevich [27], the accuracy of the adiabatic approxima­
tion is ~ 1O-~. 

3)In this connection we note that the method of constructing Compton 
promes [18,3:>-3S] which has been widely used in recent years permits 
analysis of the distribution of electron density only in the initial 
state of the system. 
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