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The character of the motion in solid helium of two point defects located at a distance considerably smaller 
than the range of the interaction but greater than the interatomic spacing is investigated. The defects are 
found to be bound by the interaction potential. Depending on the magnitude of the mutual spacing and the 
arrangement of the defects with respect to the crystallographic axes, four cases are possible: 1) The defects 
perform three-dimensional diffusional motion, 2) they are practically stationary, 3) they perform two
dimensional diffusional motion in the basal plane of the crystal, 4) the pair of defects behaves as one two
dimensional quasiparticle, moving as a free particle but only in the basal plane. It is shown that kinks in 
dislocations in the quantum crystal are transformed into free one-dimensional quasiparticles. Their 
quantum-mechanical delocalization leads to the delocalization of dislocations with kinks in the slip plane. 
An estimate of the diffusion coefficients of the kinks at low temperatures is given. 

PACS numbers: 67.80.M 

The quantum nature of crystals of the solid-helium 
type, with large amplitude of the zero-point vibrations, 
has a substantial effect on the character of the energy 
spectrum. In such crystals, associated with any type of 
point defect or impurity there is a spectral branch of 
elementary excitations (defectons, impuritons) that move 
practically freely across the crystal [1,2 J. Convincing 
experimental confirmation of this fact was obtained in 
the experiments[3-Sl.on the measurement of the diffusion 
of He3 impurities in crystalline He' (cf. also the re
view[6l). 

In the present paper it will be shown that distinctive 
secondary quasi-particles, arising when several defects 
of one type or another are simultaneously present in the 
crystal, should exist in quantum crystals. The disting
uishing feature of these quaSi-particles is the fact that 
they move practically freely, but only over certain 
definite planes or along certain axes of the crystal 
lattice, i.e., they are, in essence, two- or one-dimen
sional quasi-particles. 

1. In the majority of cases the width of the energy 
band of the defectons, or, which is the same thing, the 
magnitude of the corresponding exchange integral J, is 
small compared with the characteristic interaction en
ergy of the atoms in the crystal. This Circumstance, as 
was noted earlierPl, is extremely important when we 
are concerned with the motion of the quaSi-particles 
under the action of external forces (cf.[7,8l ) or under 
the influence of their interaction with each other 
(cf.[9-1~l). In the latter case the smallness of J gives 
rise to a larger magnitude of the defecton interaction 
range R, inasmuch as R is defined by the condition 
U(R) ~ J, where U(r)~ Uo(a/r)3 is the interaction 
energy of the point defects, r is the distance between 
them, Uo is a certain constant and a is the interatomic 
spacing. The interaction range R ~ a( Uol J)1/3 for 
J « Uo is large compared with the interatomic spacing. 
Therefore, even for a very small concentration of de
fects, we have an appreciable probability that some two 
of them are separated by a distance r that is small 
compared with R. 

It is interesting to trace the change in the character 
of the motion of such a pair of defects with decrease of 
r in the region R» r» a. If r» a(Uo/J)l/\then 
a aU/ar «J, i.e., on transfer of one of the defects to a 
neighboring lattice site the energy of the system 
changes by an amount much smaller than J. Therefore, 
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quantum tunneling processes occur in practically the 
same way as in a uniform crystal. In addition, in the 
given case the interaction energy U varies little over 
distances of the order of the wavelength of the quasi
particles (which, in order of magnitude, coincides with 
the interatomic spacing). It is clear that in the condi
tions conSidered the system can be described semi
classically by means of a Hamiltonian function E(Pl) 
+ E(P2) + U(rl - r2), where €(p) is the energy spec
trum of an isolated defecton of the type under considera
tion. Since we assume that r « R, i.e., that U» J, the 
defects cannot, while moving semi-classically, subse
quently disperse over an infinite distance, since the 
total energy should be conserved while the sum of the 
kinetic energies E(Pl) + E(P2) cannot vary by an amount 
much greater than J. Thus, the defects behave as if 
bound by the potential U. We emphasize that this con
clusion is valid irrespective of the sign of the interac
tion (attraction or repulsion). 

For a more detailed elucidation of the character of 
the motion of the defects it is convenient to consider 
first the simplified problem of the motion of a quasi
particle with the dispersion law €(p) under the action 
of a constant 'force F directed along a certain irrational 
axis in the crystal. It follows from the equations of 
motion p = F that the component of the quasi-momentum 
along F increases linearly with time, while the perpen
dicular components do not change. Since the direction of 
F is a random direction in the crystal, all three com
ponents of the velocity v = adap vary in a random 
manner and in such a way that the characteristic 
velocity value v ~ aJ/n while the characteristic time 
T of its variation is of the order of the time taken for 
the quaSi-momentum to change by an amount of the 
order of the reciprocal-lattice period n/a, i.e., T 

~ n/aF. The trajectory of the particle in this case is a 
random curve (with the condition, of course, that its 
extent along F does not exceed J/F) with a characteris
tic radius of curvature of the order of JI F. It is now 
clear how the motion of the pair of defects occurs. The 
trajectory of each of them will be a random curve with 
a characteristic radius of curvature of the order of 
J/(aU/ar)~ a(r/a)'(J/Uo). These two curves are 
mutually correlated only by the condition that U( rl - r2) 
change by an amount not greater than a quantity of the 
order of J. 

Thus, we can say that a pair of defects placed at a 
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distance R» r» a( Uol J )1/4 undergoes diffusional 
motion with a diffusion coefficient characterizing, in 
particular, the motion of the pair as a whole and equal 
to 

( r)' I Pal (r )' D-va - ---- - • 
a U, hU. a (1 ) 

For r 4: a(Uo/J)1/4 tunneling of one of the defects 
over an interatomic distance is accompanied by a 
change in energy by an amount considerably greater 
than J. In these conditions the probability of tunneling 
is proportional to J2, i.e., is negligibly small. Equally 
small is the probability of simultaneous tunneling of 
both defects with conservation of energy. Thus, the 
possibility of motion of the defects practically disap
pears. There eXists, however, an important exception 
to this result. Namely, we shall assume that the 
straight line joining the defects is almost parallel to a 
crystallographic axis of sufficiently high order. In the 
hcp crystal He\ e.g., the hexagonal axis is such an a 
axis. 

The quantity Uo = Uo(n) characteriZing the interac
tion is a function of the orientation of the defect pair, 
determined by the unit vector n = (r1 - r2 )/\ r 1 - r2 \. 
The function Uo(n) has, obviously, an extremum for n 
parallel to the hexagonal axis. Therefore, a displace
ment of one of the defects by a small distance x in a 
direction perpendicular to n changes the interaction 
energy by an amount of the order of 

W(x)-u,( 7)' ( :)'. (2) 

If r» a(Uo/J)l/s, then /iU(a)« J. Thus, in the'condi
tions under conSideration, motion of the defects along 
n is practically impOSSible, but for motion in the plane 
perpendicular to n there arises a situation analogous 
to that considered above. 

The trajectories of the defects are random curves, 
lying in planes perpendicular to the hexagonal axis. The 
radius of curvature x of the trajectories is determined 
from the condition OU(x) ~ J, i.e., is equal to x 
- a(J/uo)1/2(r/a)s/2. Consequently, two defects 
positioned at a distance r such that a( U 01 J)1/ 5 « r 
« a( Uol J)l/\ in an orientation close to the hexagonal 
axis, undergo a distinctive two-dimensional diffusional 
motion in the basal plane of the crystal. The diffusion 
coefficient is equal in order of magnitude to 

D-vx- (/'r'/h'U,a) 'k. 

We emphasize that an extremum of the function Uo(n) 
is not sufficient to make such motion possible. It is 
also necessary that the crystal be periodic in the per
pendicular plane. 

Finally, let r« a(Uo/J)1/s. In this case, a displace
ment of one of the defects to a neighboring lattice site, 
even in a direction perpendicular to the hexagonal axiS, 
leads, generally speaking, to an energy change greater 
than J. Here, however, there is also one important ex
ception. Suppose that one of the defects is positioned at 
a certain point 0 (see Fig. 1) in a plane perpendicular 

FIG. 1 
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to the hexagonal axis. We shall assume that the projec
tion of the second defect on this plane coincides with 
one of the lattice sites nearest to the point O. If we 
take the point 0 as the coordinate origin in the plane 
and denote the lattice constants of the triangular lattice 
by a1 and a2 (see Fig. 1), the possible coordinate pro
jections of the second defect are equal to a 1 - a2, a1, a2, 
- a1 + a2, -a1 and -a2. 

A transfer of the second defect in its basal plane 
from one of the pOSitions enumerated to another, neigh
boring position is not accompanied by any change in 
energy. The same holds for the displacement of the 
first defect in the plane of the Figure from the point 0 
to the pOints a2 and a1 - a2, if the projection of the 
second defect COincides, e.g., with the point a1. As a 
result of displacements of this type, the system can 
move as a whole in the basal plane. Since the displace
ments under consideration do not change the energy at 
all, in the given case the motion is not diffusional. The 
pair of defects behave as one distinctive two-dimen
sionalquasi-particle, moving as a free particle but 
only in the plane perpendicular to the hexagonal axis. 
In fact, we shall find the possible values of the energy 
of the system, conSidering the quantum tunneling pro
cesses as a small perturbation. 

All configurations of the pair of defects, correspond
ing to the same energy, can be classified as follows. 
We shall specify the two-dimensional coordinate r of 
the first defect in the plane of Fig. 1. The second defect 
can then occupy six possible positions in its basal plane. 
The possible coordinates of its projection on the plane 
of Fig. 1 are equal to r + a1 - a2, r + a1, r + a2, r - a 1 
+ a2, r - a1 and r - a2. We shall label them by the in
dex a = 1, 2, ... ,6. The wavefunctions 1/ia(r) describe 
the complete set of states of the pair of defects in the 
absence of tunneling. 

Let V be the operator of the perturbation corre
sponding to quantum tunneling of one of the defects to a 
neighboring lattice site. Its action on the functions 
I/!a ( r) is determined by the formulas 

V1jJ, (r) =1 {IjJ.(r) +IjJ,(r) +IjJ.(r+a,) +IjJ,(r-a,)}, 

VIjJ,(r) =/{1j],(r) +IjJ,(r) +IjJ,(r+a,) +IjJ,(r-a,+a,)}, 

V1jJ,(r) =1 {IjJ,(r) +1jJ,(r) +,p,(r-a,+a,)+1jJ.(r+a,)}, 

VIjJ.(r) =/{IjJ,(r) +1jJ,(r) +IjJ,(r-a,) +IjJ,(r+a,) }, 

VIjJ,(r) =1 {IjJ,(r) +1jJ.(r) +1jJ. (r-a,) +IjJ.(r-a,+a,)}, 

V1jJ.(r) =1 {(1jJ, (r) +IjJ, (r) +IjJ, (r-a,) +1jJ,(r+a,-a,)}, (3 ) 

where J is the exchange integral. The structure of the 
expressions in the right-hand sides of the formulas (3) 
is extremely Simple. For example, the first two terms 
in the first of formulas (3) correspond to tunneling of 
the second defect, with the first defect stationary, from 
the position with projection r + a1 - a2 to the poSitions 
r - a2 and r + a1 respectively. The second two terms de-' 
scribe the possibility of tunneling of the first defect 
from r to r + a1 and r - a2 respectively. 

The solution of the Schr'odinger equation 

(e-e.)1jJ(r) =VIjJ(r) , (4) 

where Eo is the energy of the system in the absence of 
tunneling, is a linear combination of the functions 
I/!a( r); 

• 
1jJ(r) = .EA~1jJ~(r), (5) 
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and, by virtue of the periodicity of the crystal in the 
basal plane, the coordinate dependence of the functions 
l/ia ( r ) is determined by specifying the two-dimensional 
quasi-momentum p: 

1jl,(r+na,+ma,) =exp[ip(na,+ma,) ]1jla(r). 

Substituting (5) into (4), taking (3) into account we obtain 
the following system of equations for the coefficients 
Aa: 

(e-eo)A,/I== (1 +e"")A,+ (1 +e-'.') A" 

(e-80) A,/l= (1 +e-'''')A,+ (1 +e'·'-'·')A" 

(e-eo) A ,/1= (1 +e"'-"') A,+ (1 +e-i.,) A" 

(e-eo)A./l= (1 +e'·')A,+ (1 +e-i.,) A" 

(e-eo)A,/I= (1 +e'''') A.+ (1 +e",,-i.,) A., 

(e-80)A,/I= (1 +ei·')A,+ (1+e''''-'·') A" 

where cP 1 = p. a l and CP2 = P ·a2. 

The possible values of the energy E = E(p) are de
termined as the roots of the corresponding secular equa
tion. Mter straightforward calculations we find 

8(p)=80+2n(p). (6) 

The quantity A(p) appearing here satisfies the following 
cubic equation in A 2: 

"(" , <p, , <po , <P'-<P')' <p, <P, <p,-<p. '" '" -cos --cos --cos -- . =4cos'-cos'-cos'--
22 2 222' 

Thus, the energy spectrum of the two-dimensional 
quasi-particles corresponding to the motion of a pair 

(7 ) 

of defects in the conditions under consideration consists 
of six bands. For small p, from (6) and (7) we can 
easily obtain explicit expressions for the six roots: 

iI",(P) =80±41 {1-'/ .. (<p,'+<p,'-<p,<p,)}, 
~~~~-~-.~ 

8"." .• (p) =80±21 {1-'/.[<p,'+<p,'-<p,<p,±¥ (<p,'+<p,') (<p,-<p,) '+<p,'<p,']}. 

We emphasize that the exchange integral J occurring 
here corresponds to quantum tunneling of one of the de
fects. The width of the energy bands (6) coincides, 
therefore, in order of magnitude, with the bandwidth of 
an isolated defecton. 

To complete the picture, we must mention also the 
interesting situation which, as noted by Richards, Smith 
and Tafts ' ), arises when two point defects are positioned 
at neighboring sites of the hcp lattice of solid He 4 • It 
is easy to see that in the given case there exist several 
configurations of defects that can be obtained from the 
original one by transferring one of the defects to a 
nearest-neighbor site, these configurations being equiv
alent to the original one, Le., the defects are nearest 
neighbors as before and the energy of the system does 
not change. By successive application of such transfers 
it is possible to effect motion of the defects over the 
entire crystal, i.e., to transfer them to any two lattice 
sites that lie next to each other. It is clear that, in this 
case, owing to quantum tunneling, the two defects be
have as one quasi-particle with an energy bandwidth of 
the order of the bandwidth of an ordinary defecton, and 
this quaSi-particle is three-dimensional, Le., can move 
in all directions. For a small concentration of defects, 
however, the probability of formation of such a three
dimensional quasi-particle is small compared with the 
probability of formation of the two-dimensional quasi
particles that were discussed above. 

2. We shall consider a linear dislocation in a quan
tum crystal, positioned in the Slip plane at a certain 
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angle to the crystallographic directions. As is well
known, in this case the dislocation line is not a straight 
line. It consists of separate straight lengths, positioned 
along the direction in which the energy of the disloca
tion is a minimum (this direction coincides with one of 
the crystallographic axes), and a certain number of 
kinks, in the vicinity of which the dislocation goes over 
from one valley to another (see Fig. 2). Each such kink 
can be regarded as a point defect on the dislocation. 
Since the crystal is periodic along a crystallographic 
axiS, in a quantum crystal such a point defect is trans
formed into a quasi-particle whose states are classified 
by the values of the one-dimensional quasi-momentum. 
Let there be one kink on the dislocation, with a certain 
value of the quasi-momentum. In this case, a kink is 
found with equal probability at all points of the disloca
tion, and this means that the dislocation is evenly dis
tributed between two neighboring valleys. In the pres
ence of a large number of kinkS, the dislocation is dis
tributed over a large number of valleys. Thus, quan-: 
tum-mechanical delocalization of the kinks leads to de
localization of the dislocation in the Slip plane. 

If the width of the energy band of the kinks is small, 
Le., if the probability, per lattice constant a in the 
direction of the dislocation, of quantum hopping of the 
kink under the barrier is small, we can apply the well
known tight-binding approximation to calculate the en
ergy spectrum. As a result we obtain the following de
pendence of the kink energy E on the quasi-momentum 
p: 

e(p) =80+21 cos (pa/ft) , 

where Eo is the energy of a localized kink in the classi
cal limit and J is the exchange integral. 

Let n be the number of kinks per unit length of the 
dislocation. If the mean distance n- l between them is 
large compared with the interaction range xo, the kinks 
can be regarded as a dilute gas of quasi-particles. The 
interaction range is determined by the condition U( xo) 
~ J, where U(x) = alx is the interaction energy of two 
kinks, inversely proportional, as is well-known[l41, to 
the first power of the distance x between them. Here a 
is a certain constant, equal in order of magnitude to 
O! ~ !la4 , where !l is the shear modulus. 

An important experimentally observable characteris
tic (e.g., in measurements of the internal friction) of 
the gas of kinks is their diffusion coefficient. In the 
high-temperature region this is determined by colli
sions of the kinks with phonons and with vibrations of 
the dislocation. As the temperature is lowered the 
number of phonons and vibrations decreases and the 
diffusion coefficient increases rapidly, until it attains 
a limiting value determined by the mutual collisions be
tween the kinks. To estimate this limiting value it is 
important to note the following. In the one-dimensional 
case the momenta acquired by the quasi-particles as a 
result of a binary collision are uniquely determined by 

FIG. 2 
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the conservation laws. In this case, the only solution is 
the trivial one corresponding to the fact that the quasi
particles exchange their momenta as a result of the 
collision. The quasi-particle momentum distribution 
function is not changed at all in this case. In other 
words, the binary collision integral is equal to zero and 
all kinetic effects are determined by triple collisions. 
The corresponding mean free path Ls differs from the 
me'an free path l2 ~ n- l characterizing the binary colli
sions by the large factor (nxo rl. Thus, the diffusion 
coefficient is equal to 

AS T'a 
D-l.-_ ----, 

'(jp lir:t,n' 

Le., in place of the usual law D ex: n-\ in the given case 
a reciprocal dependence of the diffusion on the square 
of the quasi-particle density should be observed. 

3. In concluSion, we shall make a few remarks con
cerning the temperature and concentration dependences 
of the diffusion coefficient of the point defects. This 
question is of special interest in connection with the 
experiments[3-5] on the diffusion of Hes impurities in 
solid He4. In the work of I. Lifshitz and the authorU ] it 
was ascertained that in the region of sufficiently small 
concentrations of impurities, their diffusion coefficient, 
determined by the collisions of impuritons with phonons, 
is inversely proportional to the ninth power of the tem
perature T. Subsequently, Kagan, Maksimov, and 
Klinger[ 11, 12] showed that the region of applicability of 
the T-9 law is considerably broader than was indicated 
in[1], and extends into the region of temperatures in 
which the mean free path of the impuritons is much 
shorter than the lattice constant. We shall show that 
this result can be obtained without any calculations, by 
ascertaining the region of applicability of the classical 
kinetic equation. 

We are concerned with the motion of a quasi-particle, 
interacting with phonons and with the spectrum 

e(p)=e.+,l(p), 

where € 0 is a constant and ~ (p) is a function of the 
quasi-momentum that is small compared with the tem
perature T, which, in its turn, is small compared with 
the Debye temperature ®. 

The kinetic equation for the classical quasi-particle 
distribution function f ( r, p, t) has the following fo rm : 

(8) 

where F is the external force acting on the quasi-parti
cle and I is the collision integral for the collisions with 
the phonons: 

1=-J d'p' J d'kd'k'W(k~ k') {n(k) [Hn(k') If(p) 

-n(k') [Hn(k) ]j(p')} II (.k+p-k'-p') II[ID (k)-ID(k') 1. (9) 

Here n( k) is the phonon distribution function, w (k) is 
the phonon energy spectrum and W is the probability of 
a collision of an impuriton with a phonon. In the argu
emnt of the O-function, which expresses the energy 
conservation law, we have neglected the quantity ~(p) 
in comparison with the phonon energy, since the latter 
COincides, in order of magnitude, with the temperature. 

It is easy to see that in this form the kinetic equa
tion is valid under the condition lilT «T (T is the time 
between collisions). The more stringent condition 1i/7 
« ~(p), which is equivalent to the condition that the in-
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teratomic spacing is small compared with the impuriton 
mean free path, is not required. In fact, if f and F 
vary slowly in space and in time and the force F is 
sufficiently small, Eq. (8) is also valid in the general 
quantum case, but the quantity I describing the colli
sions is, generally speaking, not even expressed in 
terms of the distribution function. However, if we 
neglect ~(p) in the expression for the defecton spec
trum, the condition 1i/7 « w - T guarantees the possi
bility of using formula (9), inasmuch as the uncertainty 
iii T in the energy is small compared with the phonon 
energy. Then the energy ~ (p) does not appear at all in 
the problem. The difference between the cases 1i/7 
« ~ and lilT» ~ lies only in the fact that, in the first 
of these, it would be possible to take ~ (p) into account 
in the argument of the o-function in (9), whereas in the 
second this would be excessively accurate. In both 
cases, to determine the diffusion coefficient we must 
use Eqs. (8), (9), from which the T-9 law is obtained. 
In this case, the condition 1i/7 « T is obviously equiva
lent to the inequality T « ®. 

We shall now discuss the question of the concentra
tion dependence of the diffusion coefficient in the case 
when it is determined by the mutual interaction of the 
impurities. In the paper by Melerovich and the author[8] 
it was stated that the diffusion coefficient should be pro
portional to x-lis in the region of not too small concen
trations J/uo « x « (J/Uo )3/4. This result is incorrect. 
The correct law can be obtained if we note that in the 
concentration range under conSideration the mean dis
tance r between impurities satisfies the condition 
a(J/Uo)1I3» r» a(J/Uo)I/4 and that formula (1) can 
therefore be used. Substituting r - a/xl/3 into it, we 
find 

D-T'a'x-'/'/IiUo, (10) 

which coincides with the result of the paper by Landes
man and Winter[ 10]. It should be noted however that 
the concentration range indicated in[lol, in which for
mula (10) should be applicable, differs substantially 
from J/Uo « x« (J/Uo)3/4. 

I express my gratitude to I. M. Lifshitz for useful 
discussion. 
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