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Methods of nonlinear mechanics are used to investigate the motion of domain walls (DW) in a uniaxial 
ferromagnet. In this way it is possible to reduce the description of domain wall dynamics by means of the 
magnetization field, on the basis of the Landau-Lifshitz equations, to a description by means of the 
coordinate of the DW center, and to relate the parameters that characterize the DW dynamics to concrete 
microscopic characteristics of the problem. On the basis of the effective equation of DW motion obtained, 
problems considered by way of example are the interaction of a DW with a crystallite boundary parallel to 
it and its interaction with substitution impurities precipitated on such a boundary. Analytical expressions 
are obtained for the dependence of the interaction energy on the elastic fields generated by such a 
boundary and on the distribution of the concentration of impurities precipitated on a dislocation boundary. 
The equilibrium distribution is found for a DW pinned on obstacles of this type; the effective breakaway 
fields from such obstacles are determined, and also the spectrum of surface waves of the Winter type. 

PACS numbers: 75.60.F 

1. The dynamic properties of domain walls, which 
separate the phases of a ferromagnet with opposite 
orientations of the magnetic moment, determine to a 
Significant degree the magnetization processes in ferro­
magnets. Domain walls (DW) are regions in which the 
magnetization has a spatially nonuniform distribution 
that corresponds to a minimum of the free energy ff of 
the ferromagnet; that is, it is a solution of the equation 

bg-=O, (1 ) 

where the case of a ferromagnet with anisotropy of the 
"easy axis" type (in the present article we shall re­
strict ourselves to consideration of only such ferromag­
nets) 

{
CX ~ HZ } 

g-=Jdv 2"(VM)'-2"M,'+ 8: -MH,. (2) 

Here a is the constant of nonuniform exchange interac­
tion, [3 is the constant of magnetic anisotropy energy 
(the Z axis is chosen along the anisotropy axis), M is 
the magnetic-moment density of the ferromagnet, Ho is 
the intensity of the external magnetic field, and Hm is 
the intensity of the static magnetic field produced by 
the magnetization M and satisfying the equations of 
magnetostatics 

rot Hm=O. div (Hm +4nM) =U. (3 ) 

In the absence of an external field, the spatially non­
uniform solution of equation (1) that describes the mag­
netization distribution in a DW has the form (Bloch wall) 

x-x, 1= (~. )"', n cos8=-th-z-. ~ rp=-;;-: (4) 

() is the angle formed by the magnetization M with the 
Z axis, <p is the azimuthal angle of the vector M, x is 
the coordinate along the direction perpendicular to the 
plane of the DW, and Xo is an arbitrary constant having 
the meaning of the center of the DW. 

When an external field along the Z axis is turned on, 
the DW will move in such a way as to increase the vol­
ume of the domain with magnetization parallel to the 
external field. The motion of the DW is described by 
the equation of motion of the magnetization field, the 
Landau - Lifshitz (1] equation 

where g is the gyro magnetic ratio, A is a relaxation 
constant, and Heff is the effective field acting on the 
magnetic moment and determined by the relation 

H'It=-8g-/bM. (6 ) 
During its motion in a real crystal, the DW will in­

teract with a different sort of inhomogeneity present in 
the crystal. Because the characteristic relaxation times 
of the electronic subsystem of the crystal are signifi­
cantly shorter than the relaxation times of elastic pro­
cesses, in the investigation of DW motion the defects in 
the crystal lattice may be considered frozen. The elec­
trons whose state determines such magnetic parameters 
of the crystal as the exchange-interaction constant and 
the magnetic-anisotropy constant adiabatically adjust 
themselves to the local changes of crystal-lattice 
parameters caused by the presence in the crystal of any 
defects. Thus the effect of inhomogeneities on the be­
havior of a DW can be described by means of a quasi­
static external field, modulating the local values of the 
magnetic parameters of the crystal. Change of the mag­
netic parameters a and [3 of the crystal will lead, obvi­
ously, to change of the free-energy density ff of the 
magnet; in other words, the dynamiCS of the DW with 
allowance for the inhomogeneities present in the crystal 
will be described by the equation 

~=g[ 8fT M] +t.[M[ {jg- M]], 
(it 8M bM 

(7) 

fr=g-+ J dvf(r,M(r,t», 
(8 ) 

where f (r, M( r, t» is some function that describes the 
change of the free-energy denSity of the ferromagnet 
that is caused by the presence of inhomogeneities in the 
crystal lattice. 

Investigation of Eq. (7) in general entails serious 
mathematical difficulties, Since concrete expressions 
for the function f(r, M(r, t» in the case of a definite 
sort of defect in the crystal lattice have complicated 
form. For this reason the authors of early works[2] 
devoted to investigation of the DW dynamics gave up the 

oM/ot=g[MH'It]+A[M[MH,It]], 

approach based on investigation of (7). In these works 
the problem of the motion of a DW parallel to itself was 
formulated by means of a time-dependent DW coordinate 
XO. During the DW motion the magnetic moment at each 

(5)* . point of the crystal rotates about the X axis, and in 
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consequence there appears a component Hmx of the 
magnetic field. From the equation of motion of the free 
magnetic moment 

it follows that 

11M = 11M IIx. =g[MHm] 
ot ax. at 

ax. ae 
H,..=-g-'~ ax' 

where e is determined by the relation (4). With the 
field Hmx is associated an additional OW energy, 
caused by its motion, 

1 S • 6..o/'"=~ H ... dv. 

This kinetic energy of the OW can be easily put into the 
form YZ/J.S (axo/iH)z, where S is the area of the OW 
surface, and where it is natural to identify /J. = (211lgZr1 
with the mass of unit OW area. But in such an approach 
it is impossible to determine by means of the OW 
parameter Xo the energy of interaction of the OW with 
a different kind of inhomogeneity present in the crystal, 
by starting from a microscopic description of the inter­
action of these objects with the magnetic subsystem of 
the medium. Therefore in[Z] and in all subsequent 
works[3,4] devoted to the investigation of OW dynamics, 
the energy of interaction of a OW with obstacles was 
approximated by a harmonic potential well Kx~/2, 
where K is a phenomenological constant qescribing the 
frequency of uniform oscillations of the OW about this 
defect of the crystal lattice. 

For all its simpliCity and lucidity, this method has 
an important shortcoming, namely: the problems are 
formulated, as a rUle, without visible relation to the 
basic dynamic equation (7) of magnets. As a result, the 
statement of new problems is impeded and requires 
special phenomenological considerations. Therefore 
many interesting and important questions have remained 
uninvestigated-interaction with an external field, allow­
ance for spatial dispersion, the effective field for break­
ing away from an obstacle, and so on. 

In the present work an approach is suggested that 
permits a unified and physically clear formulation of a 
large range of problems on the dynamic properties of 
domain structures that occur, for example, in such 
media as ferromagnets, superconductors, antiferromag­
nets, ferroelectric materials, and so on; and a method 
is described for systematically obtaining the equations 
of motion of OW in ferromagnets, by starting from the 
Landau-Lifshitz equation (7)1). The second section of 
the present work is devoted to this question. In the 
third section there is conSidered, by way of illustration, 
the problem of the interaction of a OW with inhomo­
geneities in the crystal caused by the presence of dis­
locations. The fourth section is devoted to discussion 
of the question of interaction of a OW with impurities. 
In the fifth section scattering of a spin wave, normally 
incident on a OW, is studied, and it is shown that in this 
situation a spin wave does not undergo reflection. 

2. By transformation to dimensionless quantities, 
t - T/gMo, r - rl, M - Mo.!lJl" H - Moh, Eq. (7) is 
conveniently rewritten in the form 

iJ9)! H.[!!JI, a!!JI]=(lH.')[!!JI,h'ff]. (9) 
a't liT: 

(Hereafter we shall omit the tilde mark on the radius­
vector r and its components.) Equation (9) together 
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with the equations of magnetostatics (3) completely de­
scribes the dynamic behavior of an isolated OW in a 
ferromagnet, in the language of the magnetization field. 

We shall conSider those motions of a OW in which the 
deviation of the distribution of the magnetization !Ill 
from its equilibrium distribution in a OW is small. 
Then the concept of OW described by equation (4) re­
tains its meaning, but the constant xo, which plays the 
role of the coordinate of the center of the OW, becomes 
a function of y, z, and T. Consequently, the solution of 
(9) and (3) can be represented in the form 

!IlI=!IlI,(x-x,(r, 't))+m(r, 't), (10) 

where the vector !IlIo has the following components: 

!IlI.x=O, !IlI.,=sin e (x-x,), !!JI .. =cos e (x-x.). 

We shall suppose that the components of the vector m, 
the derivatives with respect to T and to the transverse 
coordinates y and z, and also the amplitude ho of the 
external magnetic field and the perturbation of the free 
energy f(r, !VI (r, T)) caused by the presence of defects 
in the crystal, are quantities of a single order of small­
ness. With accuracy through quantities of the first order 
of smallness, the equations of magnetostatics (3) have the 
solutions 

( IIx. IIX.) 
h..x=-4n mx-!IlI"8i; -!!JI., a;" , 

(11) 

From the expression (11) it follows that at distances 
sufficiently far from the OW, there appears a finite 
magnetic field ± 411 axo/az, whose presence leads to 
divergent expressions in the calculation of the energy 
of a curved OW. This means that the OW possesses ap­
preciably larger stiffness with respect to bending along 
the Z axis than with respect to bending along the Y axis, 
and consequently the motion of the OW will occur in such 
a way that axo/az will be appreciably smaller than 
axo/ay according to the parameter llL, where L is a 
characteristic radius of curvature of the wall, which is 
assumed in the problem to be substantially large. For 
this reason we shall hereafter neglect the quantity 
axo/az, laying aside, for example, the problem of the 
interaction of a OW with a center of dilatation, where the 
value ofaxo/az is appreciable, because consideration of 
problems of this sort entails Significant modification of 
the method being presented. 

We transform to new variables by USing the relations 

m,=m,cose-m,sine, m,=m, cos e+m, sin e, m.=mx, (12) 

that is, we in effect transform to a rotating system of 
coordinates in which the vector !lJI.o(x - xo) at each point 
is directed along the Z' axis. Then, with allowance for 
the fact that axo/az = 0, equation (9) can be rewritten 
after linearization in the following form: 

a'mx 4n 1 ae IIx. 4n ax. ( 3) 
---cos28mx--mx=------sine, 1 

ax' ~ ~ ax. ih: ~ 8y 

a'm. 1. ae ox. 1 0 mx a'8 ob (14) 
-' --cos2em,=---------+[!!JI., (h.+hm+li )]x, 
ax' ~ IIx, O't ~ O't oy' 

where the field of the obstacle is defined by the relation 

Ifb=.:.._II_J dvt {!IlI,(x-xo),r}. (15) 
ll!Ill. 

On substituting the solution of equation (13) 
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( IIx. 1 ax.) 
m,.= -+-- sine 

ay 4n a't (16) 
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into equation (14), we get 

~(~-cos2fl)m'=A~ AX. 
ax' ax. (11: 

. ( a'x. 1 a'x. ) afl o'x. 
-slDfl ------ +~---

a y aT 4" aT' ax. oy' 

o'fl (ax.), ob ob (17) -~-- -- +sinfl(h,.+h. +hm.)-cosfl(h,,+h. +hm.). 
ax,' ay 

The inhomogeneous equation (17) has a bounded solu­
tion if its right member is orthogonal to the solution of 
the homogeneous self-adjoint equation 

m~om =A sin fl. (18) 

From the solvability condition follows also the desired 
effective equation of motion of the DW: 

1 a 'x. a'x.. ax. fJ'x. au 
--+4--+2A--2~-= --, 
2" aT' aT oy aT iJy' ax. 

(19) 

U=M.-' J dxf(f11I(x-x.),y,x)-2h.,x •. (20) 

Thus the problem of the motion of the magnetization, 
described by the Landau-Lifshitz equations (9), has 
been successfully reduced to the problem of the motion 
of curved surfaces (domain walls) which is described 
by equation (19). The quantity U in this equation plays 
the role of the energy of interaction of the DW with the 
external magnetic field and with inhomogeneities of a 
different sort in the crystal, and it therefore determines 
all the static and dynamic properties of the DW. 

The equation of motion (19) differs from the equation 
obtained in[2] in that in the approach that uses the inter­
action function U, there is a possibility of describing 
more accurately the interaction of the DW with external 
objects in each concrete case. Furthermore, Eq. (19) 
takes account in an explicit manner of spatial disper­
sion and of the influence of an external magnetic field. 

The equation of motion (19) without the dissipative 
term AaXo/OT follows from a Lagrangian formalism, in 
which the Lagrangian is defined by the expression 

!E=S dy{~(ox')'+2ox, ~-.L(~)'-f(x"Y)+2x.h"}. (21) 
4" iJ,; 0'; oy 2 oy 

According to this Lagrangian function, the vector 
energy-momentum density has the form 

1 (OX)1 ~ (OX )' P'= 4" 0';' +""2 iJy' +f(x.,y)-2x.h,,, (22) 

P'= ·ox. (~ ox. +2 ax.) . (23) 
oy 2" a,; iJy 

It should be mentioned that the expression (22) for the 
Hamiltonian density pO of the system can be obtained 
directly from the expression (8) for the free energy of 
the ferromagnet, in which the presence of defects has 
been taken into account. But this is insufficient for de­
scription of the dynamics of the DW, since the Hamil­
tonian is not expressed in terms of canonically conju­
gate variables, which in the case of the Lagrangian (21) 
are Xo and 

1 ox. ax. 
p=--+2-. 

2" 0,; all 

The expression for the Hamiltonian of the system in 
terms of the canonically conjugate variables Xo and p, 

E= f P' dy= f dy {"p'+2px.} +U (x., y) (24) 

or the expression (21) for the Lagrangian function can 
be obtained only from the dynamic equation (9). The 
Hamiltonian density for uniform motion of the DW, 
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ox%y = 0, is of the form 

P'="p'+f(x., y) -2x.h". 

In closing this section, we emphasize that the dy­
namic behavior of the DW is characterized by the follow­
ing peculiarity. The dispersion law for small oscilla­
tions of an isolated (not pinned on any obstacle) DW in 
an ideal ferromagnet has the form 

ro=4"gM.(k,+ (1+~/4,,) "'I k,I), (25) 

where wand ky are the frequency and wave vector of 
a surface spin wave; this coincides with the spectrum 
obtained in[4] 2) . The spectrum is not invariant with re­
spect to the substitution ky - -ky; this is due to the 
fact that the ground state of the system is not invariant 
with respect to the substitution y - -y (in such a sub­
stitution the DW transforms to another DW, which ad­
joins the one under study). 

3. We shall consider the problem of the interaction 
of a DW with a dislocation or a group of dislocatiOl.s·. 
The microscopic characteristics that enter into the 
expressions for the magnetic parameters of the crystal 
(the exchange constant a and the anisotropy-energy 
constant (3) depend on the distances between the atoms 
in the crystal. Local stresses produced by dislocations 
deform the crystal lattice near the dislocations and 
consequently lead to local changes of the magnetic 
parameters that determine the energy of the DW. It is 
natural to suppose that these parameters depend only on 
the dilatational part of the stress tensor aik. This 
means that a hydrostatic (for simplicity) pressure 

p(r) =-'/'(0=+0 .. +0,,) (26) 

modulates the exchange and anisotropy constants, which 
now depend on the coordinates in accordance with the 
nonuniformity of the distribution of the hydrostatic com­
preSSion near the dislocation. On the assumption that 
the pressure and the changes that it produces in these 
parameters are small and are taken into account only 
in a linear approximation, we get the expression for the 
energy density of interaction of the DW with disloca­
tions 3) 

fd='/'~'YPp(X. y)sin'fl(x-x.). (27) 

The constant Yp describes the reaction of the magnetic 
parameters to hydrostatic compression: 

'Yp=d In (a.M/dp. 

The nonuniform hydrostatic pressure near an iso­
lated dislocation, so oriented that its Burgers vector b 
is perpendicular to the DW, while the tangent n to the 
dislocation is parallel to the axis of easy magnetization, 
is determined from (see, for example,[5]) 

Hv "b y (28) 
p(x, y)= 1-v 3;t x'+y" 

where b is the length of the Burgers vector, IJ. is the 
shear modulus, and v is Poisson's ratio. The expression 
for the energy of interaction of a DW with a single dis­
location is obtained after substitution of (28) and (27) 
into (20). An estimate of the expression thus obtained 
gives us 

(29) 

Hence it follows that when an arbitrarily small external 
field hOz is turned on, the equation of motion (19) of the 
DW has no stationary solution, and consequently a DW 
does not become pinned on an isolated edge dislocation. 
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It must be noted that it is an isolated DW that be­
haves in this manner. In the presence of domain struc­
ture the problem requires separate consideration, since 
here it is necessary to take account of the interaction 
between domain walls because of demagnetizing effects. 

The expression (29) is correct at distances much 
smaller than the distance to the nearest dislocation. 
Since in a real crystal the density of dislocations is 
such that an appreciable number of them will occur on 
a single domain wall, their collective interaction with 
the DW will lead to pinning of it. In view of what was 
said above, an interesting problem is the interaction of 
a DW with a regular aggregate of dislocations. We shall 
consider, by way of example, the interaction of a DW 
with a dislocation boundary. The nature of the interac­
tion of a DW with such an obstacle depends both on the 
type of dislocation boundary and on its orientation with 
respect to the DW. 

Restricting ourselves to dislocation boundaries of the 
"pure tilt boundary" type, we shall describe its orienta­
tion by two vectors: the Burgers vector b and the 
tangent n to the dislocations that constitute the bound­
ary. We shall so choose the system of coordinates that 
the unperturbed DW is parallel to the YZ plane (the Z 
axis is along the anisotropy axis). 

A. n II X, b arbitrary. In this case p(r) is independ­
ent of x, the potential energy Ud is independent of xo, 
and consequently the DW, as was to be expected, does 
not interact with such a dislocation boundary. 

B. n II Y, b arbitrary. The potential energy Ud de­
pends on the coordinate z: 

ud = ~'YP S· dx p(x,z) 
2 _~ ch'(x-xo) 

=U.(x"z). 

In this problem the gradients axo/az become important, 
and it requires special consideration, which is not un-
dertaken in the present work. . 

C. nil Z, b II X (Fig. 1). By means of formulas (20) 
and (26) and the expression for the deformation ten­
sor[51, we obtain the potential energy Ud of interaction 
with a dislocation boundary of this type: 

(30) 

where N = 21Tl/D; D'is the distance between disloca­
tions. 

We consider the case N» 1; here (30) is conven­
iently put into the form 

• - e-Nml:rl dx 
Ud = ~r & sin Nmy_I ch' (x-x,) , 

(31 ) 

r= IJ.b'Y. 1+v . 
6l 1-v 

(32) 

The principal contribution in this case comes from the 
region of small x; this enables us to convolve the 
series in the expression (31): 

. \ i Ny (2k-i)n 2nk 
--;-' --N--<Y<N 

u.=~r<ll(y)ch-2x,; <II(y)= _ 2nk. _ 
. 0, y-N' k-0,±1,±2,... (33) 

We shall find the form of a DW pinned on the disloca­
tion boundary under consideration. This form is de-
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scribed by the function xst( y) that is the solution of the 
static effective equation 

d2xstldY'+h"/~+rcD (y)<p(xst) =0, <p(X") =sh x,t ch-' Xst. (34) 

Equation (34) has a periodic solution of the following 
form: 

Xst=a+x(y), x(y) =-r'l'(a)[Ny'/6n-y'/2+nyI3N). (35) 

The value of a, the mean distance of the DW from 
the dislocation boundary, is determined from the condi­
tion for a maximum of Ueff: 

n'r' 
UeIT = -~ 90N' '1" (a) -h"a. 

(36) 

As is evident from Fig. 2, on which is shown a graph of 
the function Ueff( a) for various fields, Ueff( a) at small 
fields has two minima, corresponding to two stable 
states, ai and a2. With increase of field, one minimum 
first disappears at field hOz = hi = 0.024,BMor2/N2, 
which is the field for breaking away of the DW from the 
dislocation boundary. With further increase of the field, 
at a certain value hOz = h2 = 0.042,BMor2/N2 (the field 
for surmounting of the dislocation boundary by the do­
main wall), the second minimum disappears. On substi­
tuting the value of the parameter Yp r::J 6 X 10-6 bar-\ we 
get, for D/b ~ 10 to 100, the following values of the 
critical breakaway fields hcr ~ 10-6 to 10-8 (Ni), 10-5 to 
10-7 (Fe). 

The start fields hi and h2 are in essence effective 
quantities that characterize an individual isolated DW 
in an infinite crystaL In a comparison of the theory 
with experimental data, obtained for example in the in­
vestigation of Barkhausen jumps, it is necessary to 
bear in mind that during the motion of a DW in the case 
of a periodic domain structure, the magnetic field in­
side the specimen changes in consequence of change of 
the boundary conditions on the specimen surface. Con­
sequently the effective field for breakaway of an iso­
lated DW from an obstacle will differ from the effective 
breakaway field of an individual DW in a many-domain 
structure. 

We give the following rough estimate from above 
for the breakaway field of a DW in a many-domain struc­
ture. We assume for simplicity that at hOz = 0 all the 
DW, distributed uniformly with density 1/ per unit length, 

z 

FIG. I. Structure of a domain wall near a dislocation boundary. 

FIG. 2. Effective energy of inter­
action of a domain wall with a dislo­
cation boundary. Curve 1, hOz = 0; 
2, hOz < hi; 3, hOz = hi; 4, hOz = h2 • 

A. E. Borovik et al. 

............ q 

.... 

1121 



are located exactly at the centers of identical potential 
wells near dislocation boundaries. We shall suppose that 
after turning on of an external field hOz ... 0, all the OW 
in the ferromagnet move simultaneously through such a 
distance Ax as to compensate the magnetic flux through 
the specimen. This determines the displacement of each 
OW in field hOz . 

t1x=ho'!BnT]. (37) 

On substituting for Ax the value of the critical distance, 
we obtain an estimate of the breakaway field in a many­
domain structure (the thickness of the crystal is of the 
order of 1 mm): 

hcr=BnT][a(O) -a(h,) ]. (38) 

Thus, for example, hcr = 8.0 Oe for Ni and hcr = 31.3 
Oe for Fe. 

In cloSing this section, we shall consider small 
oscillations of a OW pinned on an obstacle of the "pure 
tilt dislocation boundary" type, oriented as shown in 
Fig. 1. We express the solution of the equation of motion 
of the OW, xo(y, t), in the form 

xo=Xst(y)+x(y, "t), (39) 

where Xst( y) is the solution of the static effective equa­
tion (35), and where x(y, T) is a small addition that de­
scribes the oscillations of the OW. We shall seek a 
solution of the linearized effective equation 

_1_ a'x +4\~2~ alx -2~r~ (Xst)x=O (40) 
2n iJ"t' ay ay' axo 

in the form 

x("t, y)=[8(y)+S(y)]e'"', (41) 

where the functions E(y) and ~(y) are, respectively, 
slowly and rapidly (in comparison with the function 
cf1 (y)) oscillating functions of the coordinate y. 

After substitution of (41) in (40) and separation of the 
slowly and rapidly oscillating terms, we obtain the fol­
lowing system of equations: 

~_2~~+~8+rd'lp(a) (x~)8_rd'lp(a) <xtllp 
dy' ~ dy 4n~ da' da' (42a) 

+r dlp(a) <~s>=O, 
da (42b) 

d's_2 iQ ~+.E:....s+r{d!p(a) ~(y) + d'lp(a) [Xtll-<x~)l} 8=0, 
dy' ,~dy 4n~ da da' 

where < ... > means an average over the period of the 
function cf1 ( y). 

On substituting into equation (42a) the solution of 
(42b) 

dlp/da 
Bm= -=-----:----:::-:­

niN'g(m,Q) 

where4) 

rip (a) [1 4 ] 
da' N'g(m, Q) 3m' - n'm' ' 

d'lp(a) 

Q' Qm 
g(m Q)=--+2--m'*0, 

, 4nW' ~N 

we get the equation for E( y): 

(43) 

d'8 +2 iQ dB +{~+ d'Uefr(a)} 8=0. (44) 
dy' ~ dy 4n~ da' 

(Equation (44) was obtained on the assumption that 
n « (31/ 2 N, which, as will be seen below, is well ful­
filled for small ky .) 
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Equation (44) has a solution of the type E ~ eiky 
with dispersion law 

CJl=gMoQ=gMo[ -4nky+ (d'Ueff (a)/da'+4n (4n+~) k')'f']. (45) 

As estimate tells us that for N ~ 10 to 100, the gap in 
the spectrum has the order w( 0) ~ 1 to 10 MHz. 

4. In this section we shall conSider the problem of 
the interaction of a OW with nonmagnetic impurities. 
The presence of impurities leads to a change of the 
magnetic parameters of the crystal. Since the OW width 
l ~ (105 to 103 ) ao (ao is the atomic dis tance), we can 
describe the modulation of the local values of the con­
stants a and (3 by means of a continuous function of the 
coordinates c( r), the impurity concentration. In other 
words, in the expression (20) for the energy of interac­
tion Us of a OW with impurities, the function fs has 
the form 

j.=l.~c(r) sin' e(x-xo), (46) 

where Ys = d In (a{3)/ dc describes the reaction of the 
magnetic parameters of the system in the presence of 
impurities. It is obvious that a OW will interact only 
with inhomogeneities in the distribution' of impurities; 
these may be produced by various physical causes: the 
presence of dislocations, of dislocation centers, of 
block boundaries, etc. In the present work we shall re­
strict ourselves to consideration of the problems of the 
interaction of a OW with substitution impurities, pre­
Cipitated on an isolated dislocation and on a group of 
dislocations of the "pure tilt boundary" type, oriented 
as is shown in Fig. 1. 

The distribution of impurities in a crystal at not too 
low temperatures, in an inhomogeneous stress field, 
far from the dislocation cores, is described by the ex­
pression [5] 

c (r) =co exp { 
p (r) (v.-v.) } 

kBT ' 
(47) 

where Co is the relative concentration of impurities in 
the crystal in an unperturbed region, Vs and va are the 
atomic volumes of the atoms of the substitution impurity 
and of the matrix, T is the temperature, and kB is 
Boltzmann's constant. 

A. In the case of impurities precipitated on an edge 
dislocation, so oriented that the hydrostatic pressure p 
is described by equation (28), the expression for the in­
teraction energy ug is obtained after substitution of 
(46), (47), and (28) in (20). Asymptotic estimates of this 
expression lead us to 

(48) 

U.'= 

iyi<l, r.'y<o 

where T d _ ILb (v.-v.) 1 +v . 
• - 3nlk B i-v' 

or a wide class of magnets, Tg ~ 0.1 to 1 K. 

As in the case of direct interaction with an isolated 
dislocation, the effective equation (19) has no static 
solution if ug is described by the expressions (48). 

B. The energy u~ of interaction of a OW with im­
purities preCipitated on the dislocation boundary de­
picted in Fig. 1 has the form 
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l'~Co S~ {[ T. b sin Ny ] } 
U. b =-2- c11-' (x-xo) exp - T chNx-cosNy -1 dx, (49) 

where T~ = 1TlTg/D; in most crystals, for D/b ~ 10 to 
100, T~ ~ 10 to 100 K. 

If we consider only T » T~, we get 

U.b= _~ V,-v. Ud. (50) 
1. kBT 

It is clear that the expression for U~ will lead to a 
static solution of the type (35) and to effective break­
away fields that differ from the field for surmounting 
the dislocation boundary by a factor A, where 

A""10c,'(Dlb) '(T,IT)', (51) 

and also to a dispersion law, analogous to (45), for small 
oscillations; the gap changes by a factor IA. For the 
parameter values Co = 0.04, D/b = 80, and~T = 500 K, 
the constant A takes the value 0.2. It must be noted that 
in the calculation of the obstacle parameters, both ef­
fects (impurity and dilatational) are combined. 

5. We shall show that the transmission coefficient of 
a spin wave normally incident on a DW is unity. For 
this purpose we shall seek a solution of equation (5) in 
the form 

M=M,(x-x,)+,,(x, t), (52) 

where IJ. far from the DW (x - ± 00) describes a spin 
wave with the dispersion law (see, for example/6]) 

w=gM,[ (~+C!.k') (~+4tl+C!.k') l"'. 

On transforming to the variables (12), we obtain from 
equation (5) the following system of linearized equations: 

am/a't=C!.t.m.-4tlm.-~m. cos 28 (x-x,), 

amJa't=-C!.t.m,+~m, cos 28 (x-x,). (53) 

The exact solution of this system having the asymptotic 

form ei(wt+kx) for x - +00 (transmittedwave)has'the 
form 

m., ,=Be"·t+hx) (th (x-x,) IlHkl). (54) 

Hence it is evident that the solution (54) has no terms 

~ei(wt - kx) (reflected wave); that is, the coefficient of 
transmission of a spin wave through a domain wall is 
unity. 
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I)This method is essentially a generalization of the method proposed by 
Landau and Lifshitz [1]. 

2)Winter [3] studied the spectrum of small oscillations of a DW by direct 
investigation of the Landau-Lifshitz equation, and he took account of 
the interaction with obstacles by rewriting the interaction energy 
KX02/2 in the language of the magnetization field. Allowance for the 
energy of interaction with obstacles leads to the appearance in the 
spectrum of a gap ~ = 47TgMoIC 

3)The arguments presented above are of course correct only in the case 
of those dislocations that produce at each point of the crystal a change 
of the specific volume, for example edge dislocations. As regards the 
class of dislocations (including, for example, screw dislocations) that 
generate a stress tensor with zero trace, they require special considera­
tion. We note only that apparently, by virtue of the considerations 
enumerated, they influence th~ behavior of DW to a lesser degree than 
do edge dislocations. 

4)It is obvious that values of il that are solutions of the equation 
g(m, il) = 0 are forbidden, and close to these energy values the method 
of solution used is not suitable. But we are interested only in ky « I 
(the function Z(y) must be smooth in comparison with <I> (y), and 
consequently the frequency is close to (d2Ueff/da2) 112 «il* where 
il* = 47TN[(\ + 13/471')112 - I] is the lowest forbidden frequency value. 
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