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The temperature Green's function of the fluctuating electromagnetic field of a spherical particle submerged 
in an infinite medium is found. Corrections to the thermodynamics of small particles are made on the basis 
of the general theory of van der Waals force.f3 1 These corrections depend on the size of the particle. The size 
dependence of the resultant surface-tension coefficient can be nonmonotonic at sizes R that are comparable 
with wavelengths Ao that are characteristic of the absorption spectra of the substances. This dependence is 
nonanaiytic at R <Ao. For particles with sizes _10- 7 cm, the surface-tension coefficient can increase by 
-10%. The theory of homogeneous nucleation with account of the obtained corrections is compared 
qualitatively with exPeriment. 

PACS numbers: 05.70. 

The thermodynamic properties of small particles 
are determined in large part by the van der Waals 
forces associated with the fluctuation electromagnetic 
field. Thl:! role of these forces for plane boundaries was 
first investigated by E. Lifshitz.ll ] In the case of parti­
cles of finite Size, however, strong dependences of the 
thermodynamic variables can develop in the region of 
sizes comparable with Ao, just as is the case for thin 
films.£2] In contrast with the plane interface, account of 
curvature leads to the appearance of size-dependent 
parts in the surface tension. The present paper is de­
voted to calculation of this contribution. 

1. USing the general theory of van der Waals 
forces,P] we calculate the thermodynamic quantities of 
a spherical particle of radius R located in an infinite 
medium. The medium is characterized by the dielec­
tric permittivity Ed w), the particle by the permittivity 
E2(W). The chemical potential iJ.(p, T) and the stress 
tensor aij in the medium can be represented with ac­
count of van der Waals forces in the form 1) 

/l(p, T)=/lo(p, T)+o/p, 

oij=-6,j[po (p, T) +01 +0,/, 

(1) 

(2) 

where iJ.o(p, T), Po(p, T) are the chemical potential and 
the pressure as functions of the density p and the tem­
perature T as a uniform, unbounded medium. The 
terms a and O'ij' are connected with the effect of in­
homogeneity on the fluctuation field and are expressed 
in terms of the difference of the temperature Green's 
functions of inhomogeneous and homogeneous media 
mfj (r, r'; ~n) in the following fashion:[3] 

T 'f.' 8e (r, is.) E 

0= 4;.i..J p 8p mil (r, r; Sn), 
n=O 

T w, 1 
00' =- - ~ {e (r, is.) [m,/ (r, r; Sn) - - 6i~V (r, r; S.) 1 

2n .i..J 2 
n=O 

+m,t (r, r; S'.) - ~ Ii>IIH (r, r, Sn) 6,,}. 

The prime on the summation sign indicates that the 
term n '" 0 is taken with the coefficient 7'2, while ~n 
'" 2lTnT, 

m,/(r, r'; ~.)=-Sn'm'j(r, r'; ~n), 

m,/(r, r'; Sn)=rot"rotjm'm'm(r, r'; Sn). 

The conditions of mechanical and thermodynamic 
equilibrium should be satisfied at the spherical inter­
face: 
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(3) 

(4) 

(5) 

(6) 

/lOl(P', T)+a/p,=/loz(p" T)+o,!p" 

POI (p" T)+o,-o.,,'-2aop/R(p,-pr) 
=p"(p,, T) +0,-0 ... ' -2C%op,!R(p,-p.) ==p. 

(7) 

(8) 

Here ao is the surface tension coefficient without ac­
count of the van der Waals forces. The indices 1 and 2 
refer respectively to the medium and the sphere. Simi­
lar to what was done in[3], the terms a1 and a2, which 
contain a E/ ap, are included in the replacement of PI 
and P2 in (7) by functions of the pressure PI in the 
medium and P2 in the sphere. Here, in place of (7), (8), 
we obtain 

/l0i (p" T) =/loz (p" T), 

P', ,=p+2C%,p" ,IR(p,-p,) +0'",,2. 

(9) 

(10) 

The pressure difference and the chemical potential are 
connected in the usual way to the coefficient of surface 
tension2) 

p,-p,=2aIR, /l'(P2, T)=/loz(Poz, T)+2aIR(p,-P.), (11) 

where 
c:i:=C%o + R (0:.,-0;,,) 12. (12) 

Thus, account of the fluctuation field reduces to a 
change in the surface tension coefficient, and for further 
calculations, we must find the Green's function 
mij(r, r'; ~n)' The equation for the Green's function has 
the form 

{e (r; isn H,.'6,,+rot'm rotm,}m,,(r, r'; Sn) =-4n6 (r-r')6". (13) 

The boundary condition (in the spherical coordinates 
r, e, q;) is continuity of the quantities 

(14) 

on the spherical surface, which corresponds to continuity 
of the tangential components of the electric and magnetic 
field intensities. 

To solve Eq. (13), we make use of the fundamental 
vector spherical harmonics:[ 5, 6] 

L,m (kr) =V j.p'm (krj, Milm (kr) =rot,pXp.p'm (kr), 
I ~ (15) 

kNjim(kr) =rot;pMp'm(kr), .p'm(kr) =;,(kr)p,m (cos a)e'm., 

where jl(z) '" (IT/2z)1I2Jl+l/2(Z) are spherical Bessel 

functions Pl m I (cos e) the associated Lengendre poly­
nomials. Expanding the right and left Sides of Eq. (13) 
in series in the functions L, M, N, which are orthogonal 
in three-dimensional space, we find the coefficients of 
the expansion for the Green's function of the homogene-
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ous spaceS) Si)ij. Here, summation is carried out over l 
and m, and integration over k. The integration over k 
reduces to the sum of residues of the poles at 
k = ±i.£; ne .t/2(i;n), and k = O. The contributions from 
the pole at k = 0 resulting from the terms containing 
Nand L cancel one another. 

Making use of the expression obtained for Si)lj and 
the boundary conditions (14), we find the Green's func­
tion Si)ij(r, r'; ;n)' For r, r' < R, 

_ I 

Si),j(r,r'; ~.)=ik, E E l;;,,'j,-' (z,)h,(z.) {Q,,(~) 
1_1m=_1 

• • (16) 
XM"m(k,r)M1Zm (k,r') +Q,,(~-I)N"m(k,r)Nlzm(k,r')}, 

where the symbol" denotes replacement of im by -im, 

zl"=k,,,R. kl,,=-iS.e:~~ (is.). ~=k.lk,. 

1(1+1)(l+lml) I 
lZm = (2l+1) (1-1 ml)!' Q12 (~) 

~cpz (z,) -cpz (z,) 

~cpz (Zl) -"'z (z,) • 

d d 
cpz(Z)=-d In[zhz(z)]. "'z(z)=-ln[z;z(z)]. 

z dz 

hZ(z) = (IT/2Z)1/2JI<2)l+1/2(Z) is a Hankel function of the 
second kind. 

For r, r' ;> R, the expression for Si)ij is obtained 
from (16) by the replacements jZ(z) ~ hZ(z), 1 ~ 2 in 
all the expressions. 

2. We find the stress tensor 0'~r2 by ~ubstituting (16) 
in (4)-(6) and performing the summation over m. For 
r < R, 

0,:,= - :: f: k,' .E(21+1)iz-1 (z,) hz(z,)iz' (u,) 
n_O 1_1 

uz=k:.r. (17) 

In the region r> R, the stress tensor O'~ r1 is obtained 
from (17) by the substitution given above. The surflj.ce 
tension is connected with the discontinuity in the stress 
tensor at the boundary by (12); therefore 

, [QI1 (~) +Q" (~-') ]-k,'hz (z,);z (z,) d1(l~~:.) [Q12 (t) +Q12 (t-')} }, (18) 

Expression (18) diverges logarithmically on summa­
tion over l. This divergence is connected with the step­
wise approximation of the dielectric constant and does 
not depend on R. Properly conditioned calculation of 
this constant itself within the framework of the macro­
scopic theory is not poSSible, since a contribution to it 
is made by distances that are comparable with the inter­
atomic distances, at which this theory is inapplicablePl 
However, since a contribution to the dimensionally de­
pendent part is made by distances much greater than 
interatomic, we can use the simple procedure of sub­
traction of the divergence. For this purpose, we re­
place the discontinuity 

llo,; =0;" (R-O) -0:" (R+O) 

in the surface tension coefficient (12) by the difference 

0;" (R-ll) -0;" (R+ll). 

where t:. « R. The expression obtained for the surface 
tension coefficient will be finite. Subtracting a( R) from 
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it as R - GO and setting t:. = 0, we obtain the dimen­
sionally dependent part: 

a=a~+!~~{ ~ R[o,:.(R-ll}-o:,,(RH)]-a'(Il) 1. (19) 

a' (ll) = ~lim {R[o:" (R-ll}-o:" (RH) n, (20) 
2 R_~ , 

a~=a,+a'(ll). (21) 
Here a"" is the experimentally measured coefficient of 
surface tenSion of the plane interface. 

We investigate the expression for the surface tension 
coefficient (18) in two limiting cases: 

1) "Small" particles: R «Ao. Since contributions to 
the sum over n are made only by frequencies ;n for 
which e( i!in ) is Significantly different from unity, i.e., 
';n ;S CiAo « c/R, the arguments of the functions in (17) 
are small (z 1,2 « 1), which makes it possible to expand 
the expression under the summation sign in (17) in a 
series in powers of Zl,2 and to sum over l (see Appen­
dix). For not too high temperatures satisfying the in­
equality 

I.,kT/cll<1, (22) 

the principal contribution to the sum is made by large 
n and one can go from summation over n to integration 
in (17 ).') Then 

a/a.=1+A In(R,/R) + .... (23) 

-
InR,=A-' J /(1') [e. In (2e,"'1') -e, In(28,v,1') ]d1'). 

o (25) 

2) "Large" particles: In this case, the principal 
contribution to the sum over n is made by !in» c/R, 
i.e., the arguments of the functions can be assumed to 
be large (Z1,2» 1); therefore, using the asymptotic ex­
pansions of the Bessel and Hankel functions of imaginary 
argument and summing over Z (see Appendix), we obtain 
an expansion for the surface tension coefficient in 
powers of R-1: 

a/a~=1+R,/R+ .. '1 (26) 
where 

(27) 

F(~)=X(3Y'+7Y+12)+ (Y'-i) Arch(x '/')+ yl1>(t) 
12y y'/' Y Ixl"'(y+2),," 
11> (~) =arccos(~-I) -Arch t. t>1 

11> (t) =Arch(t-1 ) -arccos t. ~<1. 

X=~",_t-'''. y=t+t- I • (28) 

As follows from Eq. (22), in the region R« Ao, the 
contribution to the surface tension coefficient is posi­
tive independently of the spectra of the substances 
(A ;> 0, R1 » R). In the region R» Ao, the sign of the 
coefficient Ro is determined by the function F(!;). It 
is not difficult to establish that F(!,;) < 0 at !,; < 1. 
Since F(I:) = _F(!,;-l), we have F(I:) > 0 at I: > 1. Since 
!,; = (21/2 ~ 1 for a particle in a vacuum, then in this 
case Ro < 0 and, conversely, for a spherical cavity in 
the medium, !,; = e1/2 ~ 1; therefore Ro> O. 

3. Analysis of Eqs. (23)-(28) shows that phenomeno­
logical expansions of the surface tension coefficient in 
powers of R- 1 are valid only for R» Ao. For R« Ao, 
the a( R) dependence has a nonanalytical character. The 
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"~~~<-__ !L , 
t<_ -->, :-----

' ..... -----8; 

behavior of 0:( R) has the character shown schematically 
in the figure. Curve I corresponds to the case of a par­
ticle that is optically more dense than the surrounding 
medium, for example, a particle in a vacuum. Curve II 
is the opposite case-for example, a cavity in a body. 
In the range R ~ Ao (segments AIBI and AIIBII) there 
is definitely a minimum in case I. Moreover, in this 
region, other nonmonotonicities are pOSSible, both in 
case I and in case II. 

The increase of the surface tension coefficient for 
particles with R ~ 10 A can be very significant for com­
parison of the theory of homogeneous nucleation with 
experiment. In the claSSical theory of homogeneous 
nucleation (see the review of Feder et alP]) the quantity 

, 0:3 appears in the exponent for the nucleation rate J. A 
change in a by 1% changes J by a factor of about 10. 
Comparison of the experimental data with the claSSical 
theory with 0: = a DO would at first appear to confirm it. 
However, Lothe and Pound[8] have shown that account of 
the change in volume of phase space due to translational 
and rotational motion of the nucleus leads to disagree­
ment of theory and experiment by a factor of ~10l5. For 
agreement with the experimental data in this case, it is 
necessary to assume an increase in 0: by about 15% for 
a nucleus containing 50-100 particles. Although discus­
sions are still in progress, with arguments as to both 
the value of the correction itself, [1}-13] and the reduction 
of the experimental data,[7] nevertheless, an increase in 
the surface tension coefficient for various liquids by 
- 5-2<1% is recognized as a necessity for agreement be­
tween theory and experiment.[14-l5] 

The difficulty of estimating ~o:( R) according to (23) 
is that E( w) has been poorly studied in the range of 
frequencies w:::. 1016 sec- l.(16] However, we shall at­
tempt to make the corresponding estimates for water, 
using for E( iw) the formula 

e(ifQ)=1+B[1+(ClljCllO)']-', B";1. (29) 

Substituting (29) into (24) and (25) and integrating over 
1}, we get 

(30) 

Setting B '" 0.5, q = 2, 0:"" = 75 erg/cm2, we find that an 
effect of - 1<1% requires that Wo ~ 1017 sec- l . Taking 
into account the conditional character of Eq. (29), such 
an Wo could be regarded as intermediate between the 
characteristic frequencies of strong absorption for 
water, Wl = 1.9 X 1018 sec-l and W2 = 1.5 X 1018 sec- l.l 16] 

It must be kept in mind', of course, that one can use 
Eq. (23) only qualitatively in this case, since woHlc 
:s 13. As is seen from the drawing, for values of R in 
the vicinity of a change of sign of ~o:, the values of both 
J and I dJ/ dR I will be smaller than for a = aoo, which 
possibly (with account of the Lothe-Pound correction) 
corresponds to the experimental results of Allen and 
Kassner.[17] At high degrees of supersaturation, the 
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dependence of J on the supersaturation will be stronger 
than predicted by the classical theory. 

We note that the increase in the surface tension co­
efficient of small particles can also be a consequence 
of other mechanisms, for example, the mechanism con­
sidered by Fletcher(16] of disordering in the surface 
layer in the transition from large to small drops. 

The authors are grateful to Prof. L. D. Pitaevskil 
for interest in the work and for indicating the possibil­
ity of removing the divergence in a by renormalization, 
and are deeply indebted to Corresponding Member of 
the USSR Academy of Sciences. B. V. Deryagin for use­
ful and stimulating comments. 

APPENDIX 

We make use of the representation of the Bessel and 
Handel functions in series form (see[ 19]); then the ex­
panSion in powers of z for the functions jl (z) and 
hl (z) with l '" 0 has the form ' 

in"'(-1)' ( Z ) -'_I [ Z' ] 
h,(z)= 2r('/,-I) '2 1+2 (21_1)+ ... ' 

, n'" ( Z ) / [ Z, ] 
;,(z)= (21+1)r(l+'/,) 2" 1- 2 (2/+3) + .... (A.1) 

Using the expansion (A.1). we can easily find the expan­
sion of the functions qJZ(z), z/!l(z), dqJl(z)/dz, dz/!l(z)/dz, 
after substitution of which in (19) we get for 0:: 

T ~ ~ ~ "H 

«=«0- 2; .E~n'(E'-E')'.E (1- R ) 
11=0 1=1 

1(l+1) + 
(2/-1) (2l+3) [/E,+E, (l+1)] ... , 

(A.2) 

where El,2 == El,2(i~n). Accurate to within a constant 
that is independent of R, and to terms ~~/R, the ex­
pression (A.2), after summation over l, reduces to the 
form 

T '( 2,l ) .E~ ,(8,-E,)' «=«o+-ln - ~n ---+ ... 
8" R (8,+8,) 

n=O 

(A.3) 

As is seen from (A.3), 0: diverges logarithmically as 
~- O. 

To perform the subtraction procedure of (19), we 
first find the expansion in powers of R-l. Taking into 
account the asymptotic representation of the Bessel and 
Hankel functions of imaginary argument at large argu­
ments[19], we obtain the following expansions of jZ(z) 
and hZ(z) in powers of Z-l; 

;,(-ix)= (-i)'exp(-~~+xch~) (1 __ a,_+ ... ). 
2xch/~ xch~ 

(i)' exp(p~-xch~) ( a, ) ---:...;.:.:..",:----'..;., 1+ --+ .. , , 
xch'~ xch~ 

p=l+'/., sh ~=p/x. a,=-'/,+'/"th~. 
(A.4) 

h,(-ix) 

From the asymptotics behavior of (A.4), we find that 
of the functions qJz(z), qJl(Z), dqJZ(z)/dz, and dqJl(z)/dz. 
Substituting the resultant asymptotic forms in (19), and 
replacing the summation over Z by integration (the sum 
differs from the integral by the term ~X-3) we get after 
simple but cumbersome transformations 

T ~ ~ 

«=«0+«' (M+ 32"R .E £o'e'; J y dy{y[j,'I,+I,'f,')f.t,' 
n=O 0 

~/2 1/1 'I, 'I, (A.5) 
-3(~'-1) -, (/,'+1.'/,) (/, +~'/, ) + (f, -I, ) [y (/,+/,) -~/,f,f,t.f,]}, 

where 
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T - -
a' (1\) = 16n E ~n'E, S y dy exp[ -21\~.(E.Y) 'I'l!./,(f,'+/.'/,). (A.6) 

n=O 0 

Under the integral sign in (A.5), we went immediately to 
the limit tl. - O. 

Integration over y leads to formulas (26)-(28). The 
value of a ' (tl.) is computed with logarithmic accuracy 
in tl. and has the form 

. T E- (E,-E.) '" 'I, 
a'(I\)""- £n'---) [E,ln(2E, ~.M-E.ln(28. 6.M]. 

8n . (8,+8. n_' 
(A.7) 

We used this formula in the subtraction procedure (19)­
(21) to remove the divergence in the surface tension co­
efficient. 

Note added in proof (April 23, 1975). Our defmition ofa(R) corresponds to a 
srnaU change in the thermodynamic potential on a small change in the size of the 
particle without any change in its shape (after subtraction of the volume terms). 
The transition to the surface tension coefficient ordinarily used in nucleation theory, 
'Y(R) (n = no + 'Y(R)S) ["] is easily accomplished by integrating the differential 
equation 

dy(R)ldR+2y(R)IR='ln.(R) /R 

with the boundary condition a(oo) = ')'(00). Using the asymptotes (23), (26), we 
can easily establish that the behavior of 'Y (R) is similar to the behavior of a(R). 

l)We have used 1'1= c = k = 1 everywhere, with the exception of the fmal 
formulas; k = Boltzmann's constant, 1'1 = Planck's constant, c = velocity 
of light. 

2>We defme ex as (an/aS)T/L' where n is the thermodynamic potential, 
S the area of the interface. [4] 

JlThe functions L, N are not orthogonal if they are considered on a 
sphere. [5] 

4)For AO - 10-4 cm, the inequality (22) is valid for T -< 300o K. 
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