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Cascade ionization induced in transparent dielectrics by optical radiation of intensity close to the 
breakdown threshold is investigated. The dependence of the character of the interaction between the 
carriers and the phonon field on the carrier energy and on the lattice temperature is taken into account. 
The extreme case of low lattice temperatures, when the carriers efficiently interact with the zero-point 
oscillations of the phonon field, and the extreme case of high temperatures, when the carriers are scattered 
by phonons obeying the equipartition law, are considered. The cascade-development constant and the 
threshold (with respect to breakdown) values of the light pulse are determined in these cases, with account 
taken of the energy lost by the carriers to spontaneous phonon generation. 

PACS numbers: 77.50.+p 

1. INTRODUCTION 

A~~~rding-to-the presently-held opinion, [1] cascade 
ionization is the main process that leads to strong ab­
sorption of a high-power light pulse in a transparent 
dielectric, and is also responsible for the electric 
breakdown. The development of cascade ionization under 
the influence of a single pulse of light was investigated 
quite thoroughly both experimentally and theoretically. 
In the theoretical analysis, several mechanisms were 
proposed for the development of the cascade ionization, 
all of them based on a model proposed by Seitz[2] for 
electric breakdown in a constant field, namely, the "free" 
electrons of the conduction band, acquiring in the field 
an energy E <. I (I is the ionization energy), ionize by 
impact the valence band of the dielectric, after which 
the process repeats with increasing number of "free" 
carriers, leading to a cumulative increase of their 
number. 

Molchanov[3] has assumed that the conduction elec­
tron acquires an energy E ~ I in a series of photon-elec­
tron-phonon collisions. ll Mednis and Fain[4] have de­
veloped an approach suitable for stronger electromag­
netic fields, and proposed to alternative mechanisms of 
energy acquisition by the conduction electron, wherein 
ko photons (ko> 1) are directly absorbed in each colli­
sion act from the external electromagnetic field, and 
the excess momentum is discarded either in a collision 
with the phonon, as in[3], or in a collision by another con­
duction electron. As shown by estimates, the fields at 
which the acquisition mechanisms proposed in[4] become 
competitive are much higher than the experimentally ob­
served threshold breakdown fields Ecr ~ 106 Vic m, and 
therefore these schemes of energy acquisition can be 
disregarded in the field region E ~ Ecr ' 2) 

Finally, Vlasov et alP] attempted to refine Mol­
chanov's results[3] by taking into account the carrier 
energy losses, which were disregarded in[3] and occur 
in the case of intraband scattering by phonons.3) In that 
case, however, a term that is small at fields close to 
the breakdown value and contains the cascade constant 
y was left out from the kinetic equation for the conduc­
tion electron in the electromagnetic-radiation field; 
therefore the breakdown values of the optical-radiation 
flux density were determined, in practice, from the con­
dition that the current be stationary with respect to the 
energy axis, J(E) = const (corresponding to the absence 
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of electron multiplication). This has led Vlasov et al.[5] 
to a strong overestimate of the threshold flux density of 
the radiation energy. It will be shown below that although 
the correction of the electron energy density, necessi­
tated by the neglect in[5], is small, when it comes to the 
corresponding corrections to the current J (E) only the 
second-order correction is small. The first-order cor­
rection, on the other hand, is not small and ensures the 
possibility of carrier multiplication. It was this correc­
tion which determines the cascade constant y. 

In Sec. 2 of this paper we consider the cross section 
for the absorption of electromagnetic radiation by the 
conduction-band electrons. In Secs. 3 and 4 we consider 
cascade ionization in a dielectric at low and high lattice 
temperatures. We determine also the corresponding 
cascade-development constants and the threshold (with 
respect to breakdown) characteristics of the optical 
radiation. Section 5 contains a comparison of the re­
sults with the experimental data and a discussion of the 
validity of the assumed approximations. 

2. ABSORPTION CROSS SECTION AND KINETIC 
EQUATION FOR ELECTRONS 

When a conduction electron absorbs a photon, the 
energy and momentum conservation laws can be satis­
fied in the final state by emission or absorption of a 
phonon; this can occur either before or after the elec­
tron absorbs the photon. In the first nonvanishing order 
of perturbation theory, the transition amplitude M cor­
responding to absorption of a quantum of electromag­
netic radiation of frequency W by electrons of energy E 

from the conduction band is the sum of the four dia­
grams shown in Fig. 1. The matrix element of the tran­
sition is calculated in accordance with the usual rules 
of the diagram technique. During the course of the cal­
culation of Mfi one can neglect the energy nWq ~ 2 x 10-1 

of the phonon that takes part in the process, and the mo­
mentum kw of the radiation quantum in comparison, re­
spectively, with the energy of the optical emission quan­
tum ilw ~ 1 to 2 eV and with the momenta q and p of the 
phonon and of the electron (from the conservation laws 
we have kw/q ~ kw/p ~ 10-3). For the conduction elec­
trons we assume here, in addition, a quadratic dispersion 
law 

E(p) =p'i2m 

and the degeneracy is assumed to be small. Under these 
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FIG. I. Graphic representation of the transition amplitude cor­
responding to absorption of an electromagnetic-radiation quantum by' 
carriers; the wavy, solid, and dashed lines correspond to the photon, 
electron, and phonon propagators. 

approximations, the probability of the process 

P(e,.ro)= ~n I: IM/i') l'Il(.r/') -.ri'» 
'.' 

(where s = 1, 2 corresponds to a transition with absorp­
tion and emission of a phonon, respectively and Iff is the 
total energy of the system}, after summing over the pho­
non momentum q, turns out to be 4) 

P(e (1) =4 A.(e) G,(p) f( ) 
'. (hOI)' p e , (1) 

where 
V 2P ,:2 

G,(p) = ~n:'! B(q) (2Nq+1) (1+ :p') q dq, (2) 

B(q) is the square of the matrix element of the electron­
phonon interaction; AW(E) is the angle-averaged square 
of the matrix element of the perturbation produced by a 
radiation field of frequency w, f(E) and Nq are the energy 
distribution functions of the conduction electrons and of 
the phonons, V is the volume of the dielectric, and m is 
the carrier effective mass. 

By specifying the optical-radiation field in the form 
of a plane wave 

E=E, cos (k.r-OIt), (3) 

we get for AW(E) 

(4) 

where e is the elementary charge. To obtain the cross 
section we substitute (4) in (1) and divide the result by 
the flux density of the incident quanta, which is equal to 
flw/Wn' Here Wn is the average (over the period) value 
of the Poynting vector in the dielectric. Taking (3) into 
account, we get 

_ colEl' enE,' 
lVn =--=--

4n 8n 

where cn is the velocity of light in the dielectric, and 
we have for the cross section for the absorption of op­
tical radiation of frequency w by a conduction electron 

(5) 

The kinetic equation for the energy distribution function 
nk, t) of the conduction electrons 5) in the field of a light 
wave takes in the diffusion approximation (with respect 
energy, h:v « I) (see(6, 3]) the form 

(6) 
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where 
l,=nu-Donl&e, u=DI2e, 

D=WnhOlcr.(e), 

and Q describes the electron losses. 

Disregarding the region of low energies 

e <mu,' (mu,'<t:.!) , 

(7) 

where ul is the velocity of the longitudinal elastic waves, 
we assume that the predominant process is carrier scat­
tering by acoustic lattice vibrations, an assumption that 
holds true except for certain compounds with polar 
bondP] Under these conditions the main contribution to 
Q will be made by the energy losses of the electron to 
the spontaneous emission of the acoustic phonons, and 
accordingly[8] 

01, 1 
Q=:;-, l,=-G,(p)n, 

ve p 
Vm ,p 

G,(p)= 2nh' jB(q)hOlqqdq, 

where, according to(7], 

B(q) =.r,'qI2pu,V 

(lffl is the deformation-potential constant and p is the 
density of the material). Equation (6) takes the form 

onliJt=-&J1oe, l(e, t)=I,(e, t)-I,(e, t). 

(8) 

(9) 

(10) 

The character of the interaction of the conduction 
electrons with the phonon field depends essentially both 
on the lattice temperature and on the carrier energy. In 
the case of predominant acoustic scattering it follows 
from (2) and (9), with 

Nq= [exp (hOl,lkT) -1]-' 

taken into account, that at a carrier energy 

e»eo-0,8(kT) 'Imu,' 

(11) 

the scattering is due to the zero-point oscillations of 
the phonon field (effectively we have Nq « 1 under the 
integral sign in (2)): Conversely, at E « Eo the carriers 
interact with acoustic phonons that obey the equipartition 
law (Nq ~ kT/nwq» 1). Owing to the actual form of (11), 
the transition from one type of scattering to the other 
occurs in a rather narrow region of E/kT near(7] 

E,lkT=0,8 kTlmu,', 

and we can therefore approximately replace the en­
hanced inequalities by the usual ones. Then, if 0 < Eo 
< I, it is necessary to take into account in the solution 
of (6) and (7) the change that takes place in the charac­
ter of the scattering at E ~ Eo. The cascade constant 'Y 
is determined then not only from the usual boundary 
conditions considered in the case of cascade ioniza­
tion (6,3] 

n(e=I) =0, l(e=O) = (1 +a.)I(e=I) (12) 

(where O! is the probability that the electrons will pass 
through the energy region of the inelastic losses and 
trap s), but also from the requirement that n and ani 8E 
(or, more conveniently, n and J) be continuous at ~ = Eo. 
For simplicity we confine ourselves here only to hm­
iting cases, namely, to the case of low lattice tempera­
tures, when Eo « I and the electrons can be regarded as 
interacting with the zero-point oscillations of the phonon 
field in the entire energy region 0 < E < I, and the case 
of high temperatures, when Eo <. I and the carriers in 
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the considered energy region interact with acoustic 
phonons that obey the equipartition law. 

3. LOW TEMPERATURES' 

Taking into account Nq ~ 1 and (9), (2), and (5), we 
have 

cr.(e)=Aoe', 
8' e'f!!.'m 

Ao= . 
45 Cnh'PUI(h",)' 

We seek a solution of (6) in the form 

nee, t) =n(e) exp (lot). 

Then, taking into account (7), (13), and 

I,(e) =Ce"n, C-4m'f!!.'/Y2mnh'p, 

D=2Boe', 2Bo ... W nh",A. 

Eq. (6) can be reduced to the form 

(13) 

e'fi"+ ('I'+1]oe'I,) efi' - (xo+'/2-'I,1]oe'I')fi=0, (14) 

where Ko == 'Yo/2Bo and 1)0 == C/2Bo. 

In the region of threshold fields (at Eo» 105 V/cm) 
we have Ko« 1. We therefore move the term KrJ't to the 
right-hand side of (14) and solve the resultant equation, 
which is now inhomogeneous with a small right-hand 
side, by successive approximations6 ) (i.e., we seek the 
solution in the form n = no + 1in Cl ) + ••• ). For no(E) we 
have 

n.(e)=yeexp{~21]0i8} (C.+C'lz-' exp {21]oz} dz ). (15) 

We likewise seek the current J(E) = J-!fI(E)} in the form 
J = Jo + 1iJ(l) + •••• From (10) with allowance for 
an/at = 'Yon, we have 

l.n=-allas. (16) 

J o corresponds to no(E), i.e., it corresponds to Ko = 0 in 
(14) or to Yo = 0 in (16). Therefore from (16) with 'Yo = 0 
we have Jo(E) = const, and for 1iJOl (E) we obtain 

whence . . 
(j/(l) (e) ""-10 J 110 (z)dz=-2Boxo J no(z)dz. (17) 

Since Yo = 2BoKo is not small (although Ko ~ I!), the cor­
rection /)J(l) is not small. All that is small is the second­
order correction 

We now impose the boundary conditions (12). The first 
of them can be imposed only on no(E), since 1in(l)(E) 
~ Ko~ 1. The second, on the other hand, we impose on 
J o + 1iJ(1)(E) since 5J(l) is not small, whence 

(j/II) (0) =aJ.+ (i +o;){j/II) (I). (18) 

Since we have as t - 0 

we assume, in order to eliminate the divergence in the 
left-hand side of (18), E = Eo ~ I instead of E = O. This 
cutoff is justified not only because in the derivation of 
(5) and (8) we have assumed that € » mUI, but also by 
the fact that at E < €o the zero-point-oscillation approxi­
mation is violated, and 1iJ\M is finite for the acoustic 
phonons that obey the equipartition law (see Sec. 4). In 
addition, at € S mu[ an important role is assumed by the 
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interaction between the carrier and the optical phonons 
or the impurities, which also eliminates the divergence 
of 1iJ(I)(E) as € _0. The energy region 0 < € < to is 
small because Eo ~ I, and cannot make an appreciable 
contribution to J (when account is taken of the already 
mentioned fact that J (E) is real as € - 0). We then have 
from (18), setting the lower limit of the integral in (17) 
also equal to €o for the sake of convenience, 

. JI 0; 
2Box, n, (z)dz "" --/0' 

1+0; 
" 

(19) 

By direct calculation from (7) and (8), using no(E) from 
(15), we obtain J o• Recognizing that the first boundary 
condition yields 

C.=-C,(2Tl,)' J z-'e'dz, 

-
we substitute no(€) in (19). Changing over next to di­
mensionless integration variables and expanding asymp­
totically the integrals with respect to the upper limit 
21)oVl (21)ovr» 1 in the field region close to threshold, 
at Eo ~ 107 V/cm) up to the principal terms, we obtain 

exp(2Tl.YI) 

(2'1. Y I)' 

In (2'1, Yeo) 0; 
-:......:.=--:.:... "" ----

6 1+0; 8x. 

Inasmuch as the argument of the logarithmic term due 
to the cutoff is 21)o.fEo ~ 1, this term can be neglected in 
comparison with the others. We then have 

10;- -
10 = ---2Bo(2Tl.YI)' exp(-2tjoY l) 

8 1+0; 

3'5' 0; Il.'m'uz'",'/' ,[ 45 m'u,fJ)'YI] 
exp -

2"n 1+0; /i'p(eEo)' 8 l'2m(eE.) , 

(20) 

The threshold values (with respect to the onset of the 
breakdown Eo cr and Wn cr are then determined from 
the conditionr2J . 

1.'1'-40, (21) 
where T is the duration of the light pulse. 

4. HIGH TEMPERATURES 

Since the analysis in this case follows Sec. 3 to a 
considerable degree, we note here briefly only the main 
results. In the case of high temperatures Nq ~kT/fiWq 
» 1. Therefore 

( )-A ., A _"e'Il,'(2m)'kkT 
Ow 8 - 7'8, T-I"I 

c.II'pu,' (11",)' 

D=2BTe'/', 2BT=W.II",AT, 1,=Ce"'n, C- (2:'~~.P 

At n(€, t) = tr(E) exp(YTt), Eq. (6) takes the ~orm 

e'fi"+e (1 +1]Te) fi' - (1/.+xTe'I'-'I'tjTe )n=O, 

XT"'"lTI2BT, TlT"",CI2BT. 

The term KTEl/2 :S KTIl/2« 1 in the region of break­
down fields (at Eo» 2 x 105 Vlcm). 

(22) 

We seek the solution of (22) in the form ii(€) = no(€) 
+ 1in(ll(E) + •••• For no(€) we have 

n.(e)=y;"exp(-tjTS) (c.+c. j z--'exP(Tlrz)dz). (23) 

We seek J(E) in the form J(€) = Jo(e) + 1iJ(1) (E) + •••• In 
this case we obtain 

I.(e) =const=-2BTC" . 
(j/ll) (e) =-.2BTXT S n. (z) dz. 

S. I. Zakharov 
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(25) 
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The correct\ol.l 6J(l)(E) is not small (the small correc­
tions are IlJlS) with s :::: 2), and 

lim 6/(1) (e), e->-O 

is finite. The boundary conditions (12) yield 
'IT' 

C,=-C''1T S z-'e'dz, 

6/(1) (O) =a.I.+ (1 +a) 6J<1) (I). 

(26) 

(27) 

For the sake of convenience we choose a = 0 in (25). We 
then get from (27) 

, 
2BTXTJ n,{z)dz ""~/,. 

, l+a 

Hence, substituting (23). (24) and (26) and expanding the 
integrals, in which we first make the integrands dimen­
sionless, in asymptotic series in 1JTI (1JTI::;P 1 at 
Eo« 2 x 107 V/cm) up to the principal-order terms, we 
get 

It follows therefore that 

a 1 
""'~'XTI'I' . 

2 a 'I' { . "(T =--.:.--2BT'IT q exp -'1TI).-
f:rt l+a 

2'/' a iG,'{2m)'i'u.'m'm'P [ u/'m'm'[ ] 
=--;;:;; l+a li'p{kT),I.(eE,) 3 exp -2 kT{eE,)' ' 

(28) 

and the threshold values are determined from a condi­
tion analogous to (21) 

5. ESTIMATES OF THE THRESHOLD FIELDS 
AND DISCUSSION _ 

The calculation of the threshold values VI cr and Ecr 
(here E = Eo/$is the effective value of the electric 
field intenSity in (3)) leads to a transcendental equation. 
In the limit of low lattice temperatures this equation 
takes the form 

(29) 

where 
1+a e'pli' 

IX ul'0)8m7~lzr"t" 

45 m'l·u/m'I'" 
8 0 =...-------"\ , 

16l'2 e' 

and in the case of high temperatures we have 

(30) 

where 
- 1+a e'pli'{kT),I. 

RT =5:rt'''f2 
a u/30)3mU/2fCtZPT' 

ST=m'u.'m'I1e'kT. 

Equations (29) and (30) are similar. (Figure 2 shows 
a graphic investigation of Eq. (30).) Each of these equa­
tions has two roots. It is easy to establish that the larger 
of the roots is a shortcoming of the assumed approxima­
tion, since it leads to Ecr,and Vlcr that increase with in­
creasing 0/ (in addition, it corresponds already to values 
of Eo at which the employed conditions 21Jo.Jr» 1 and 
1JTI» 1 are violated). The smaller root gives a correct 
and physically necessary dependence of the breakdown 
thresholds on 0/, since these thresholds should decrease 
with increasing 0/. After choosing the root, it is easy to 
trace the temperature dependence of the breakdown 
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FIG. 2. Graphic investigation of Eq. (30). Curve I corresponds to 
RTE~r and curve 2 corresponds to exp{ -STE~r)' The root ~p is ex­
traneous. At o! = o!o - 10-4 the roots come together and go off to the 
complex plane. The deviation of o!o from zero is a shortcoming of the 
assumed approximation. The numerical value of EfV is determined by 
successive approximation (see the dashed lines with the arrows). 

FIG. 3. Dependence of the breakdown threshold on the tempera­
ture. Curves I and 2 are results of calculations by (29) and (30) in the 
case of breakdown of leucosapphire and ruby, respectively, by a singie 
pulse from a neodymium laser. The dashed curves denote the extra­
polated region of intermediate temperatures; X and 0 mark the experi­
mental data from [10] for leucosapphire and ruby, respectively. 

thresholds. Whereas the threshold values determined by 
(29) do not depend, naturally, on T, Eq. (30) yields thre­
shold values that decrease with increasing T, namely 
Ecr 0: T- 1/ 2 and Wcr oc T-l • (In addition, in both cases 
we have Ecr oc wand Wcr 0: w2 , which agrees with 
Bloembergen's predictions[1] when account is taken of 
the fact that WT eff::;P 1.) The temperature region in 
which the results of the zero-point-oscillation approxi­
mation valid is then bounded from below, for reasons 
given in Sec. 3, by the condition Eo» muZo and from 
above by the condition Eo« I. Hence 

mu,'/k«:T«: (mu,'I) '''Ik. (31) 

For the high-temperature apprOXimation to be valid we 
need Eo:::: I, i.e., 

(32) 

In the case of breakdown of leucosaphire (p = 3.8 g/cma, 
ttl = 11 eV, I = 0 eV, 0/ ~ 1, uz = 8 X 105 cm/sec, m ~me) 
and ruby (I = 6 eV) by a single pulse from a neodymium 
laser (il.'" = 1.17 eV, T = 3 X 10- 8 sec), the conditions (31) 
and (32) represent 4°K « T« 6300K and T :::: 6300 K for 
leucosaphire and 4K « T« 5300 K and T :::: 5300 K for 
ruby. The results of calculations with (29) and (30), to­
gether with the experimental data of Zverev et al. [10] 

are shown in Fig. 3. The results of the calculation are 
in good agreement with experiment. The discrepancy 
between theory and experiment at low temperatures is 
most probably due to the discarding of 1/ 6ln (27)oVEo) 
when J(E) is cut off at E = Eo. On the other hand, the 
tendency of the discrepancy between theory and experi­
ment to increase with increasing temperature is ap­
parently connected with the lowering of the breakdown 
threshold, due to the enhanced role of the dynamic 
heating of the lattice on account of the spontaneous emis­
sion of photons by the carriers during the time of action 
of the pulse. [11] From the results of the calculation it is 
seen that the strong-field analysis parameter from[4] 

leE, (p-p,) llimm' I «: 1 

in the region of breakdown fields and therefore the use 
of ordinary perturbation theory in 1he derivation of (5) 
is justified. 
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Let us now compare (28) with the result of Mol-
chanov yl To this end we must put 1JT - 0 and C _ o. 
Inasmuch as we used in the derivation of (28) the approxi­
mation 1JTI» 1, this transition to the limit in the final 
result is not valid. However, if the limit is taken prior 
to the use of the asymptotic form, then the result of[31 is 
reproduced. 

We note in conclusion that if the dielectric contains 
an appreciable amountof impurities, then as the lattice 
temperature is lowered the carriers become more fre­
quently scattered by the impurities than by the lattice 
vibrations. The analysis can be carried out in analogy 
with that given above. The corresponding carrier energy 
E o(T) at which the change mechanisms of carrier scat­
tering change place can be estimated from the condition 
that the mean free path times of the carriers be the 
same for scattering by impurities and by lattice vibra­
tions. The character of the dependence of Ecr and Vi cr 
on T then remains the same. . 

The author thanks P. A. Yampol'skir, Yu. D. Fiver­
skii, and Yu. N. Lokhov for valuable discussions. 

I)We have in mind impurity-free dielectrics. In the case of a large num­
ber of impurities, energy can be acquired via a series of photon­
electron-impurity collisions. 

2)The mechanisms proposed in [4] become effective at optical-radiation 
pulse directions T < 10-8 sec, since the inertia of the ordinary cascade 
mechanism with ko = I, which becomes noticeable with decreasing T, 

is cancelled out because ko;;;' I. With further decrease of T, these 
mechanisms should go over into the usual multiphoton case. 

3)The neglect of the losses in [3] led to an underestimate of the break­
down fields. 

4)If the momentum transfer is neglected, the probability P(e" w) can be 
factored out: (1) breaks up into a product of an electron-photon part 
by an electron-phonon (Go) part. Go is proportional to the reciprocal 
free-path time of the carriers in scattering by phonons, Tiff- Thus, the 
factor Go effectively separates from the total number of the electron­
photon collisions only those in which "simultaneous" scattering by a 
phonon takes place with loss of momentum, a process that allows the 
absorption of the electromagnetic quantum. 

S)n = PEf, where PE is the electron state density per unit energy interval. 
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6)Equation (14) has an exact solution in the form [9] 

1 _ - _ 
ii(e) ~ -= cxp( -110 le) {C\W,.m(211o le) + C,W -,.m( -2110 len. 

ie 

where WX,Jl.(z) are Whittaker functions. For the sake of uniformity in 
the analysis of the cases of low and high temperatures (no exact solu­
tion of the equation has been obtained in the latter case) and in view 
of the difficulty of obtaining an explicit expression for the quantity 
'Y in the index of the Whittaker function, we employ here an approx­
imate method. 
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