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Current states in long superconduction junctions (of the S- CoS type) are investigated. The Josephson 
model can be used if a < d< ~ (a is the junction radius, 2 d is its length. and ~ is the coherence length). The 
critical current is shown to be determined by the concentration N, of the superconducting carriers and the 
current density exceeds the pair-breaking current id' At d< e. macroscopic quantization of the system state 
occurs, thus leading to a nonunique dependence of the current on the phase. Criteria for the realization of 
branches of the energy En ('f') and current In ('f') as functions of the phase 'f' in the stationary or dynamic 
regimes are discussed. The amplitude of the alternating Josephson current decreases with junction length 
like Ia- 1/ d. 

PACS numbers: 74.30.Mt 

1. INTRODUCTION 

The purpose of this work was an investigation of the 
super conducting currents in inhomogeneous supercon
ductors under conditions when the weak-superconduc
tivity situation is realized. According to the previously 
adopted classification/ll weak super conducting junctions 
include systems of the S-I-S (superconductor-insulator
superconductor), S-N-S (where N is a normal-metal 
layer), and S-C-S type (where C is a geometrical con
striction of radius 'S ~) type, and others. The theory of 
S-I-S and S-N-S junctions has by now been sufficiently 
well developed (see [1, 2]). As to junctions of the third 
type (which are possibly of greatest interest for appli
cations[3]), there is no detailed explanation of their 
properties. Aslamazov and Larkin[4] have shown on the 
basis of a solution of the Ginzburg-Landau equations 
that in the dirty limit the constriction between the super
conductors can be described by a Josephson model[5] that 
includes the Josephson current Icsincp and the conduction 
current VIR. 

The most interesting are bridges whose dimensions 
2d in the current direction are large in comparison with 
the constriction radius a (we shall call these "long" 
bridges). With increasing length d, a transition takes 
place from the behavior typical of a weak junction to the 
behavior corresponding to a one-dimensional super
condUcting channel. The main task of the present paper 
is the analysis of this transition. It will be shown that 
the current state of the bridge is unique at d » a, but 
d 'S. ~(T), where ~ is the temperature-dependent co
herence length, and a discrete set of allowed states is 
produced at d» HT). 

In Sec. 2 we consider the model of a bridge in the 
form of a narrow super conducting channel in contact 
with superconducting edges. By analyzing the spreading 
flow of current injected into a superconductor from an 
infinitesimally thin filament, we obtain the boundary 
conditions at the point of contact between the filament 
and the bulky superconductor. The current states in the 
S-C-S junction correspond to the value of the current 
density in the narrowest part of the constriction, which 
greatly exceeds the pair-breaking current density.[6l In 
the dirty limit (mean free path 1 « a) we obtain the Am
begoakar-Baratov formula for the critical currentpl 
and in a pure superconductor (l» ~o) the critical current 
is determined by the concentration of the super conducting 
electrons and does not depend on 1 (i.e., on the resistance 
in the normal state). 
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In Sec. 3 we investigate the properties of bridges of 
length d > ~. In the latter case there arises a situation 
that recalls the Parks-Little effect[6], or the current 
states in a superconducting ring in the field of Ii vector 
potential. We call this the case of macroscopic quanti
·zation, since it is connected with discrete quantum states 
of the super conducting condensate in a region bounded 
by the geometric dimension d of the filament. The evo
lution of such states determines the possible manifesta
tion of the nonstationary Josephson effect in the system. 
We analyze criteria that make it possible to discrimi
nate between different branches of the dependence of 
the current on the phase and to predict the behavior of 
the system in the dynamic regime, i.e., in the presence 
of an accelerating field. 

We shall show that the amplitude of the nonstationary 
Josephson current decreases with length d like lid at 
a « d « ~ and d» ~, and that in the latter case this 
amplitude is much smaller than the critical current 
Ic of the bridge. An important effect is exerted on the 
appearance of current oscillations in long bridges (of the 
Josephson type) by fluctuations of the order parameters, 
but these are not considered in this paper. 

2. CRITICAL CURRENTS IN SHORT BRIDGES 

In this section we conSider bridges whose length is 
small in comparison with ~ (T), but at the same time is 
large in comparison with the transverse dimensions (a). 
Weak super conducting bridges can be simulated in vari
ous ways, say in the form of a hyperboloid of revolution 
(Fig. 1) or in the form of a filament (channel) that joins 
two superconducting half-spaces (massive "shores") 
(Fig. Ib). It is clear that the qualitative features of the 
situation do not depend on the concrete geometric form 
and are determined only by the length of the bridge 2d 
and its radius a. An important role is played by the di
mensionality of the problem. We consider three-dimen
sional bridges, in contrast to one-dimensional weak con-

FIG. 1. Scherriatic diagramof S-C~S ju~ction: a) hyperbolic bridge, 
b) rectangular bridge. 
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nections in film bridge-type junctions. For the latter it 
is impossible to obtain the simple boundary condition at 
the point of contact with the bulky superconductor, a 
boundary condition that is derived below in the case of 
a three-dimensional constriction (S-C-S junction). 

Proceeding to the investigation of the three-dimen
sional bridge, we use the Ginzburg-Landau scheme. In 
terms of the normalized variables, the Ginzburg-Landau 
equations take the form 

V'1jl+1jl(1-r1jlI')=o, (nV1jJ).=O, (1) 

where S denotes the surface of the superconductor, n is 
a local normal to S, and the unit distance scale in (1) . 
corresponds to the coherence length ~. 

The current flowing through the bridge takes the 
form (the integration is 'over the cross section) 

1=1. f ds 1m (""V1jl) , 

where Io is a dimensional parameter equal to 

1.=2ens I ",. I 'Im=N.ehSf2m, 

(2) 

(3) 

Ns is the. concentration of the super conducting electrons. 
Within the limits of applicability of the Ginzburg-Landau 
theory, the geometric parameters of the bridge a and d 
are assumed to be large in comparison with the coher
ence length HO) of the superconductor at T = O. 

In the case of the bridge shown in Fig. 1b, under the 
conditions a « ~ (T) and d» a inside the filament, we 
can solve the one-dimensional Ginzburg-Landau equa
tions, and the shores of the bridge are equivalent here 
to certain boundary conditions at the points x = ±d. 

To determine the boundary condition at the point of 
contact between a thin filament and a bulky superconduc
ting shore, we must solve Eq. (1) for a half-space with 
a pointlike singularity corresponding to injection of a 
current of finite value I into the superconductor (Fig. 2a). 
One might think that if the filament radius a« 1 (or if 
a« ~ in dimensional units) the situation shown in Fig. 
2a does not differ from spherically symmetrical out
flow, of current from a sphere of radius a, as shown in 
Fig. 2b (the arrows show the current flow lines). This 
situation leads to the following equations (in spherical 
coordinates) : 

11d(,dF) i' --- p - --+F(1-F') =0, 
,a' p' dP._ dp p'F' 

. 1 'F,dX ]=-p -, 
a dp 

(4) 

(5) 

where F and X are the modulus and the phase of the or
der parameter ~, j = 1/41Ta2 is the current per unit area 
and measured in units of 10 , while the radiUS vector P 
is measured in units of a. The boundary conditions for 
Eq. (4) are 

b 

~ )$t 
:: tI 

FIG. 2 
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F(p) =1 as p_oo, dF(p)/dp=O at p=1, (6) 

where p = 1 is the radius of the source (the black sp ot 
in Fig. 2b) in units of a. The boundary condition at the 
point p = 1 corresponds to matching to the solution of 
the Ginzburg-Landau equation in the channel region in 
which the current is much smaller than l/a. As will be 
shown later on, the critical current of the bridge is of 
the order of ~l/d and satisfies this criterion at d» a. 

Let us find the solution of the boundary-value problem 
(4), (6), letting a - 0, but leaving the product aj finite. 
This assumption is subsequently confirmed, inasmuch 
as a calculation shows that the maximum value of the 
current that the aperture is capable of passing is of 
the order of l/a. 

At a« 1, the equation 

v=2a;, 

F'(1)=O, F(1)=F. 

can be easily integrated. The solution takes the form 

F= [Fo'+(v/2F.) '(i-l/p)')'''.· 

(7) 

(8) 

To determine the constant Fo we proceed as follows: We 
consider the exact equation (4). The solution (8) is valid 
in the range of variation of the variable p« l/a, in which 
the discarded term a2F(1- F2) is small in comparison 
with the term v2/4p4F3. 

In the region p» 1/..;a, we solve the linearized 
equation for the quantity f = 1 - F: 

_ -.!..~ (p,..!L) +2a'f = ~ 
p' dp dp 4p' 

f(oo) =0, 

from which we have 

v' { s· exp (2'f'ap ) 
f(p)";"'-82'f, exp(-2'f'ap) 3 'dp, 

. ap c p. 

(2'f ) s· exp (-2'f·ap.) d } -exp 'ap p, . 
• OD P1 3 

(9) 

(10) 

The regions of applicability of the solutions (8) and 
(10) overlap, since l/a» l/ra. Considering the asymp
totic forms of the solution (8) at p» 1/ ra and of the so
lution (10) at p « l/a, we obtain from the conditions 
that they match the values of F 0 and C. For F 0 we get 

Using (5) we obtain analogously for the phase X: 

x (p=1) =x (p=oo) -arctg(I/F.'-I) 'f,. 

(11) 

(12) 

It follows from (11) and (12) that at j « l/a the values 
of F and X at the point p = 1 coincide (accurate to terms 
~ (aj)2) with their values at p = 00. This means that the 
boundary condition at the point of contact between the 
bulky superconductor and the channel reduces to con
tinuity of the 1/!-functiop.. We note that in the two-dimen
sional case this condition no longer holds, since the two
dimensional equation analogous to (4) has no bounded 
solutions as a - O. 

It is curious to note that the solution (8) makes it 
possible to find the dependence of the current on the 
phase for a channel of infinitesimally small length 
(d« a). In each of the half-spaces we solve the equa
tion of the spherical outflow (7); the boundary condition 
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F' = 0 at the point where the half-spaces are jointed is 
in this case the natural consequence of the symmetry of 
the problem. Assuming X(l) = 0 and calculating the phase 
at infinity (:l = 00), we identify it with cp/2, where cp is the 
total phase difference. As a result we find 

1p=2arctg(1/F.'-1) 'I,. 

It follows therefore that cp = sin-1v or 

j=j, sin 11', 1,=1/24. 

(13) 

(14) 

We proceed further to the study of the current states 
in a bridge of length d » a. In the case of the bridge 
having the geometry of Fig. lb we get, taldng the ob
tained boundary conditions into account, the system of 
equations 

1jl"+1jl(1-1 1jl1 ')=:0; (15) 

1jl=e-;o/' at x=-d, 1j1=e~1> at x=d, (16) 
'". \.. 

where cp is the total phase difference on the bridge. The 
solution at d « 1 takes the form 

II' x fj)' 
1j1(x) = cosT+ i7sint-. 

We then have for the current 

Ii", I' 
1=1.81m (Ij)' CZ; ) = 2~ na' sin 11'. 

(17) 

Returning to the dimensional variables, we find that 
the critical current of the bridge is 

1,=N.ehna'/4md. (18) 

This formula agrees with (14) at d ~ a. 

For a dirty bridge with a mean free path smaller than 
the constriction radius, expressing Ic in terms of the 
normal-state resistance RN, we obtain 

1,=n/!'/4eR"T" l<s., l<a, (19) 

which agrees with the usual Josephson expression for 
the weak-coupling critical current as T _ Tc .[4-7] 

We note that (18) holds true in both the dirty and the 
pure limits, and in each limiting case it is only neces
sary to substitute the corresponding expression for Ns ' 
Thus, using the expression for Ns of an alloy with a 
mean free path l « ~O,r9) we obtain formula (18). For a 
pure superconductor we have Ns = 2(1- T/Tc)N as 
T - Tc; for l» ~o we can represent the critical cur
rent in the form 

(20) 

from which we see that Ic is in this case smaller by a 
factor ~o/l than the value given by the Aslamazov-Larkin 
theory, [4) and does not depend on the mean free path l, 
since RN '" )/l. 

Formula (18) has a lucid physical meaning. The crit
ical current density jc = Ic/7Taz in the constriction is 
equal to 

, " ,N elt' , t. ""~(Vlp);"', ... (21) 

where (VCP)max '" l/d is the maximum value of the phase 
gradient. Under the assumptions made, it is much larger 
than the critical pair-breaking momentum vcp ~ 1/~.[6] 
It can thus be stated that the weak-superconductivity 
situation corresponds to stabilization of the current 
state at pair momenta appreciably larger than the crit
ical pair-breaking momentum 1/~,on account of the lo
cal inhomogeneity. 
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FIG, 3. Phase trajectories for a 
rectangular bridge. 

In an inhomogeneous system, the pair momentum has ' 
no definite value, and by virtue of the uncertainty rela
tion 6.pme '" fl., where me = d, we find that the permis
sible values of the momentum are at most of the order 
of 6.p, i.e., p ~1i/d. These values of the momentum still 
do not lead to complete suppression of the superconduc
tivity, so that the critical current of the bridge can be 
~Nsefi/2md. Formula (18) does not contradict this es
timate. Consequently the "weak" superconductivity 
critical current density in the bridge exceeds the pair
breaking current density jd, while the small value of 
the total current Ic is due to the smallness of the radius 
a of the S-C-S junction. 

In the case of a hyperbolic bridge (Fig. la), the role 
of the effective length is played by the quantity d = acot9o• 
At d» a, in coordinates, oblate spheroidal the problem 
also reduces to one-dimensional. The equation for I/! 
takes in this case the form 

chu !u(ChU ~!) +d'ch'u1jl(1-hj>I')=O, 

1jl(±oo)~-';'Oli, ., 
(22) 

where u is a coordinate that identifies the points in the 
direction of the length of the bridge, _cO < u < +00. At 
d « 1 we can neglect the nonlinear term in (22). The 
correctness of this procedure can be proved in analogy 
with the derivation of the boundary conditions (16) in the 
case of a filament. As a result, accurate to numerical 
coeffiCients, the expression for the critical current of 
the hyperbolic bridge coincides with (18). Introducing 
the normal resistance, we arrive at expressions that 
coincide with (19) ,and (20). 

Let us remark concerning the properties of a bridge 
in an electric field. If a potential difference V is applied 
between the superconductors 1 and 2 of Fig. lb, then cp 
in (16) varies with time in accordance with the equation 

2eV=hq, (23) 

The behavior of the bridge in this case is illustrated by 
its "phase trajectory"-see Fig. 3. In the complex plane 
(He I/! , 1m zfJ), the order parameter is mapped, as x varies 
from - d to +d, by a point on a line that begins and ends 
on a unit circle of radius IzfJ I = 1. In the course of time, 
this phase curve shifts to the left, and when the point B 
is reached it is "reflected" and begins to move in the 
opposite direction, oscillating between the points A and 
B at a frequency equal to the Josephson frequency 
w = 2eV/Ii . 

3. MACROSCOPIC QUANTIZATION AND CURRENT 
STATES IN LONG BRIDGES 

In this section we analyze the pr'operties of bridges 
whose length exceeds the coherence length ~. This COl::
responds to the limit d » 1 in Eq. (15). Putting '/I = Fe1X, 
we obtain an equation for F: 

F"-rIF'+F(1~F') =0, (24) 

-
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where I = F2X' is the conserved current, and from the 
boundary condition (16) it follows that 

'dx IS F' - q>-2:rtn. (25) -, 
We call attention to the arbitrary phase shift - 2m in 
formula (25) (n is an integer), which is not fixed by the 
boundary conditions (the values of 1/J on the shores); this 
is of great significance in what follows. 

Equation (24) was analyzed in a number of papers 
([10, llland others). Its solution is expressed in terms of 
elliptical functions and has a behavior that decreases 
monotonically or oscillates in space. For a long bridge, 
we are interested in solutions that are equal to unity at 
x = ±d and tends asymptotically to a certain value 
F 0 < 1 at distances that are large in comparison with 
unity away from the edge. There exist solutions that do 
not satisfy this requirement (in particular, a solution 
that vanishes at the center of the bridge at j = 0), but it 
can be shown that at d» 1 these solutions correspond 
to unstable states. 

PlaCing the origin on the edge of the bridge and let
ting d - :'" , we can write down the solution of interest to 
us in the form 

1 I dz 

x = 1'2 I [z(1-z)'+cz-2I')'I. ' (26) 

where z = F2 and c is the integration constant. For x to 
become infinite as. z _ Zo = F~ the radicand must have 
coinCiding roots (Z2 = Zs in the notation of[ll]). From 
this condition we obtain the connection between I and 
Fo. In parametric form we have 

F,=(l-k')"', I=k(l-k'), c=k'(2-3k'). (27) 

Solutions of this type exist at k < 1/ IS. 

Substituting (27) in (26), we obtain the function F (x) 
in implicit form: 

1 I dz 

x = 1'2 f (z-1+k')(z-2k') 'I. . (28) 

Equation (25) can be rewritten in the form 

I[~+2S·(_1 ___ 1 )dxJ=q>-2:rtn (29) 
'F,' ,F'(x) F,' ' 

which yields, when (28) is taken into account, 

2k(d-d,(k» =cp-2:rtn, (30) 

d (k)- 1 S' dz (31) 
, - 1'2,_ •• Z (z-2k')'I.· 

Since do(k) is nearly equal to unity, it can be neglected 
in first-order approximation. At each fixed value of cp, 
Eq. (30) then determines a discrete set of values k: 

k=k.= (cp-2:rtn) !2d, n=O, ±1, ±2,... (32) 

and corresponding currents 

I. (cp) =k. (l-k.'). (33) 

A plot of the corresponding relations is shown in Fig. 4. 
Figure 5 shows (apart from a constant term) the energy 
of the discrete states ' 

• 1 1 1 
E= S [2111"1'-2"/>1'+411/11' ]dX, (34) 

-, 

the value of which as d __ 00 is 

(35) 
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FIG. 4. Branches of the dependence of the current on the phase in 
a long bridge (d «~). The dashed lines passing through the points I{J 
= (2n + 1)11" show the unstable states of the system. 

n=-' 

o 2" 5" 5" 
FIG. 5. Dependence of the energy on the phase for a long bridge. 

The thick line corresponds to the state of absolute energy minimum, 
The dashed line shows the function E(I{J) with account of the fluctua
tions. 

A characteristic feature of the obtained picture is 
that the solutions of the system (24) are multiply-valued 
at given values of cpo As seen from the foregoing, the 
picture recalls the current states in a super conducting 
ring, if cp is taken to mean the integral 

~tf..Adl 
he 'j' 

(A is the vector potential). This of course, is not an ac
cident and reflects the deep analogy between the coherent 
states of all the super conducting systems. 

It is easy to illustrate the transition from the be
havior described in Sec. 2 to the behavior considered in 
the present section. The number of solutions of the sys
tem (15) at fixed cp is of the order of N ~ d (N - d/~ in 
dimensional units) and decreases with decreasing d. At 
d « ~ we have a unique solution. Its limiting form in the 
case d « ~ is given by (17). 

The most interesting question is what the dynamic 
behavior of the system will be at zero voltage V. Accord
ing to (23), cp increases linearly with time in this case. 
States with different values of n are metastable, and if 
their decay times (T) are large in comparison with the 
Josephson period To = h/2eV, they evolve in time in 
accordance with the equation n = O. However, when the 
end of the En (cp) curve is reached there must inevitably 
occur a transition to some other state (presumably the 
closest to the given one[121 En +1 (cp). Consequently, the 
current will depend on the time in this case, as shown 
by the arrows in the upper part of Fig. 4. On the other 
hand if T « To, then at each instant of time under the 
influence of the thermal fluctuations (which were not 
taken into account by us) the system will select the 
value of n corresponding to the absolute minimum of 
the energy, and as a result the current will depend on 
t as shown in the central part of Fig. 4 (solid curve). 
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4. CONCLUSIONS 

FIG. 6. Dependence of the maximum 
superconducting current Ic (curve I) 
and of the amplitude of the alternating 
Josephson current Ia (curve 2) on the 
length of the bridge. At d < dc the 
values of Ic and la coincide. Id is the 
critical pair-breaking current, and 10 
- Id~/a. 

Thus, our analysis shows that the current states in 
super conducting bridges (S-C-S junctions) are quite 
unique and differ from the corresponding states in other 
known types of weak junctions. These features reduce to 
the following: 

1. The density of the critical current of weak super
conductivity is quite large; in par.ticular, it exceeds the 
pair-breaking current density. In the dirty limit (i.e., 
at a small electron mean free path) the value of the crit
ical current Ic is proportional to l and can be expressed 
in terms of the resistance of the constriction in the nor
mal state. At 1 « ~o, the critical current is determined 
not by the normal resistance but by the concentration of 
the super conducting carriers. 

2. An essential role is played by the dimensionality 
of the problem. Three-dimensional constrictions can be 
described by the Josephson current-phase relation 
1- Ic sin cp at d « ~. In film bridges, the phase-differ
ence concept cannot be introduced in the usual manner 
as the difference between the values of arg If! at. points 
far from the constriction region. 

3. starting with a certain critical value of the bridge 
length d = dc ~~, the state of the system becomes am
biguous and there appear a number of branches ("bands" 
of the dependences of the Energy En(cp) and the current 
In (cp) on the phase cp. The physical nature of this effect 
consists in spatial quantization of the macroscopic wave 
function of the pair condensate in a channel of finite width 
d, the boundary conditions in which are fixed by the bulky 
shores. Since cp satisfies the Josephson relation 2eV =n4?, 
the determination of the time behavior of the system re
duces to an investigation of the relaxation of the discrete 
states. 

We note that similar properties (discrete spectrum) 
can be observed also in specially prepared systems con
sisting of two JosephSOn (tunnel or point) junctions con
nected by a long (d» ~) super conducting filament. 

4. Even at d » ~, the bridge can in principle have a 
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Josephson current component that oscillates in time at 
a frequency w = 2eV/il, the magnitude of which (which we 
shall denote Ia) is inversely proportional to the bridge 
length d. The dependence of the critical current Ic and 
of Ia on the length is qualitatively illustrated in Fig. 6. 
Since the Josephson regime is connected at d » g with 
discrete transitions between different quantum states, 
it will be strongly acted upon by the fluctuations and can 
lead -to large widths of the emission line. At suffiCiently 
large d, when the level of these fluctuations becomes 
noticeable, the Josephson behavior vanishes. 

In conclusion, the authors thank A. 1. Larkin, K. K. 
Likharev, Yu. N. Mitsai, and R. 1. Shekhter for useful 
discussions of the results of this work. 
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