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The stationary distribution of magnons induced by parametric excitation by a uniform high frequency 
magnetic field parallel to the anisotropy axis in a ferromagnetic crystal is investigated. If the magnon 
system attains a stationary state. then this state can be defined in a self-consistent manner. On the other 
hand if the self-consistency conditions are not satisfied. this signifies the absence of a steady state. In this 
case a periodic regime sets in. with a period and amplitude that depend on the high-frequency field 
amplitude and on the magnitude of the interaction between the magnons. 

PACS numbers: 75.30.Fv 

Spin waves are excited in a ferrodielectric placed in 
a high-frequency homogeneous magnetic field parallel 
to the easy axis. At field amplitudes exceeding a cer­
tain threshold value, the number of spin waves increases 
exponentially in time (parametric excitation).[l-31. Inter­
actions in a system of magnons (including their interac­
tion with other subsystems) limit this growth. In addi­
tion, dissipative processes can lead to establishment of 
a stationary magnon distribution. If a stationary distri­
bution is established in a magnon system, then the sys­
tem goes over into a saturation state and cease~ to ab­
sorb energy. 

We have obtained in our study the conditions that 
must be satisfied in order for such a stationary distri­
bution to exist. If these conditions are not satisfied, 
then a nonstationary regime is established in the sys­
tem. By way of example, we consider a simplified situ­
ation in which this regime is periodic. 

The Hamiltonian of the system considered by us is of 
the following form[41: 

J'e= 1:, [ e.a.+a.++(v.a,a_,e'.f+v •• a.+a_.+r'.f)] +~,.~ . ' 

e.=(A.'-IB.I')\' V'=l'hJ1.I2e.. (1) 

where ak and ak are the Bose creation and annihilation 
operators; in the long-wave approximation we have 

A.=e,a'k'+I'(H+~M,) + IB.I. 
B.=2fi~,sin'~,exp (2~.). 

Mo is the saturation magnetization, {3 is the anisotropy 
constant, i.J. is the Bohr magneton, a is the lattice con­
stant, lIc is the exchange constant, ~k and CPk are the 
polar angles in wave-vector space, ho is the amplitude 
of the alternating field, and H is the constant field ap­
plied along the selected axis. We have retained in the 
Hamiltonian (1) only the resonant terms that describe 
the decay of the photon into two magnons and the in­
verse process. The remaining terms, which contain the 
,alternating field, and for which the energy conservation 
law 2Ek = tiw is not satisfied, can be taken into account 
by perturbation theory, since it is assumed that i.J.ho/ Ek 
«1. 

The time evolution of the system in question is de­
scribed by the equation for the denSity matrix p: 

tJi o~ =[JI#,p]. (2) 

With the aid of the unitary transformation 
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p=U-1pU, U=exp [ - i;t 1:,ao+ao] (3) 
• 

the explicit dependence on the time is eliminated from 
(2), as a result of which we get 

op -
tJii)t=[J'e.p], (4) 

- hro ~ -
J'e"",U-1JI#U - 2 L...J a. +a,=JI#,+J'e,." 

• 
.;ie,= 1:, [( e.- ~ro )a.+a,+~(v.a.a_.+v •• a.+a_.+)]. 

• 

(5) 

(6) 

Under the transformation (3), the interaction Hamilton­
ian Hint remains unchanged, since we confine ourselves 
to Bose-operator fourth order terms t~at are of ex­
change origin and therefore contain equal numbers of 
creation and annihilation operators: 

d6,nt= 1:, cDl.2,3,4.al+a:+aaa .... 
1%"34. 

(7 ) 

On going from the operators connected with the spin 
deviation to operators ak of "true" magnons (diagonal­
ization with account taken of the dipole interaction), 
there appear in the interaction Hamiltonians also terms 
with unequal numbers of creation and annihilation oper­
ators, which are proportional to ~Bk and which we 
have neglected, assuming that 1 Bk 1 « Ak. 

In the Hamiltonian :i'o, the spectrum of the "oscilla­
tor" with fixed value of k is discrete if 1 Eh - tiw/21 
> 1 Vkl, and continuous if 1 Ek -llw/21 s 1 Vkl. The 
wave-vector-space region delineated by the second 
inequality is precisely the region of the parametric ex­
citation, in which the operators 

a.(t)=exp ( ~ ~,t) a.exp ( - ~ ~ot) 

and ak(t) in the Heisenberg representation increase 
exponentially with time. This causes also the experi­
mental growth of the pair correlators nk = (akak) and 
(Jk = <aka-k), where the averaging is carried out with 
the density matrix p. From (4), USing (6) and (7), we 
get 

,23 

tJid.= (2e.-hro)o. +V.· (2n.+1) + E [cIl',,;3,,(a,+a.a,a_.>+cIl_.,,;.,,(a.a,+a,a,> 1. 
12' (8) 

The smallness of the magnon interaction makes it 
possible to split up the higher correlators into pair 
correlators, taking into account at the same time that 
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not only the nk but also the ak differ from zero. After 
splitting the quaternary operators in (8), we obtain 

ilili.=a .. a .. -a.a.+2.E 'I «t ... ;,.,<a.+a.+a,a,>~ c.c.], ... 
t/iU.= (2e.-hro+2A.)a.+a .. (2n.+1) 

+2.E' [«t •. "..,<a.+a,a,a_.>+«t_ •. " ... <a.a.+a,a,>], (8') ... 
where 

a.= v. +2.E «t •. _.; ••. _.·a.··. A.=21:, «t •.•. ; •.•. n •.• (9 ) 

.' .' 
and the sums with the primes denote the remaining parts 
of the corresponding sums after the splitting in the first 
stage. These parts make a contribution linear in the 
interaction to the equations for nk and ak, and play the 
role of the collision integral. To find its explicit form 
we can use, for example, a method similar to the 
Bogolyubov method for deriving the kinetic equation. 
The resultant equations have the following structure: 

ilin.=a;a .. -a.a.+/ft{n. a}. 
iha.=(2tl.-hro+2A.)a.+a;(2n.+1)+I.{n. a}. (10) 

where In· and Ja are the analogs of the collision inte­
gral, and nonlinear functionals of nk and ak, and are 
very complicated and cumbersome in form. 

Equations analogous to (10) were considered by 
Zakharov, L'vov, and StarobinetsY] The dynamic parts 
in their equations and in (10) coincide. As to the colli­
sion terms, in the cited papers they are represented by 
expressions Yk(nk - nk) and Y~k respectively in the 
first and second equation of (10) (nk is the equilibrium 
Bose distribution of the magnons). This representation 
corresponds to linearization of the collision integrals 
in the deviation from the equilibrium distribution, and 
natu;ally requires that nk - nk and ak be small. In the 
case when the amplitude of the high-frequency field does 
not exceed the threshold value, the quantities nk - nk 
and ak are small to the extent that the amplitude is 
small. Then the collision integrals I n and Ja are re­
duced (neglecting the arrival terms) to the relaxation 
terms Yk( nk - nk) and Yk ak, respectively .. 

1. If the collisions cause a stationary distribution to 
be established in the system of magnons described by 
the equations in (10), Le., as t -00, the derivatives nk 
and ak .tend to zero, then the stationary values of nk 
and ak are determined from the equations 

a .. a.-a.a.+I.{n. a} =0. 
(2e.-hro+2A.)a.+a,'(2n.+1)+I.{n. a}=O. (10') 

Zakharovet al.[5] retained the expressions Yk(nk 
- nk) and Ykak for the collision terms when they de­
rived the stationary distribution. The stationary distri­
bution obtained in this manner differs appreciably from 
the equilibrium distribution with nk = nk and ak = O. 
Consequently, the values of nk - nk and ak for this 
distribiJtion are not small, so that a phenomenological 
account of the relaxation is not suitable for the deter­
mination of the stationary distribution. 

Equations (10) can be obtained from the effective 
Hamiltonian corresponding to the self-consistent field 
approximation in the system with the Hamiltonian (5): 
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(}ffeff=.E [~.a.+a.++(a.a.a_.+a.·a.+a_.+)] (11) 
• 

+ .E «tl." ... a/a,+a,a.. s.=e.-nro/2+A •. 
fZs:f, 
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Here Ak and .lk are determined by formulas (9), in 
which nk and ak are equal to their stationary values. 
The stationary distributions coincide for the systems 
with the Hamiltonians (5) and (11). The constancy of 
Ak and .lk makes it possible to diagonalize with the aid 
of the canonical uv transformation 

a.=u.b.+v;b_.+. a .... =u.b_.+v .. b.+, lu.12-lv.I'=1 (12) 

the quadratic part of the Hamiltonian (11). As a result 
we have 

(11' ) 

where 

(13) 

and £'4 is obtained from the interaction Hamiltonian of 
(11) by changing from the operators ak to the operators 
bk with the aid of (12). The coefficients Uk and vk are 
defined as follows: 

(14) 

It is obvious that diagonalization of the Hamiltonian 
(11') is possible only under the condition 

Is.I>la.1 (15) 

for all k. In addition, from the fact that \ Uk \2 is posi-
ti ve it follows that the sign of Ek should coincide with 
the sign of the quantity ~k' On the other hand, the sign 
of ~k should be the same for all k, for otherwise ~k 
should vanish at certain values of k, by virtue of the 
continuity, and this would contradict the condition (15). 
The sign in (13) is chosen under the assumption that 
~k > O. 

The "new" quasiparticles are described by the 
kinetic equation for the distribution function Ilk = (bkbk): 

nk=Iii. 

The collision integral Iii corresponding to the Hamilton­
ian £'4 takes the usual form (the difference between the 
departure and arrival terms) and can be obtained, for 
example, by calculating the transition probabilities in 
the quasiparticle system. The equilibrium distribution 
of the new quasiparticles, which corresponds to the 
stationary magnon distribution defined by Eqs. (10'), is 
determined from the equation 

1;;'=0. (10" ) 

Followin~ the transformation (12), the interaction Ham­
iltonian H 4 and the collision integral contain terms with 
and without conservation of the number of quasiparticles. 
Therefore the equilibrium distribution satisfying Eq. 
(10") is described by a Bose function with zero chemi­
cal potential: 

ii.=lexp (~';T)-11-'. (16) 

For the correlators nk and ak we obtain with the aid 
of (12) and (14) the following stationary values: 

n.++= : (n.+~4-). a.=-~:· (n.+f). (17) 

and from (9) we obtain, in analogy with the BCS model 
in superconductivity theory, the self-consistency consti­
tutions [6]: 

A.= .E 1PM '[ !:: (ii.' + ~) -4-]. (18) 

(18' ) 
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'¢1t1t' = 4!tA, k'j k, A', 'X1Ik'=«!>A, -Itj A', -"'" . 
Thus, the magnon system goes over under conditions 

of parametric excitation into a stationary state if the 
self-consistency conditions (18) and (18') have a solu­
tion. The stationary distribution is determined in this 
case by formulas (16) and (17), in which T is the tem­
perature of the thermostat. The role of the thermostat 
can be played, for example, by a phonon system that is 
in thermodynamic equilibrium. 1) The corresponding 
magnon-phonon interaction is due to magnetostriction 
energy of exchange origin and therefore conserves the 
number of magnons. 

The distribution (16) changes if account is taken of 
relativistic magnon interactions that do not conserve the 
number of magnons. However, in view of the smallness 
of the relativistic interactions in comparison with the 
exchange interactions, they result in small corrections 
to the distribution (16). Formulas (17), which express 
nk and ak in terms of nk in the stationary state, re­
main the same as before. It is easy to verify that the 
distributions (17) cause the vanishing of the dynamic 
parts of Eqs. (10'). The same distributions (17), in 
which nk satisfies Eq. (10"), cause also the vanishing 
of the collision integrals I n and Ja . From this it fol­
lOWS, in particular, that a magnon system in the station­
ary state does not absorb the energy of the pump field. 

2. In view of the complexity ofthe system (18) and 
(18'), we consider a very simple model, in which the 
interactions are constant and real: IPkk' = IP, Xkk' = X 
and Vk = V. Here Ak and .o.k are also real and con­
stant. By going from summation to integration in (18) 
and (18') we obtain transcendental equations for the 
self-consistency parameters A and .0.: 

A _ Ijla"" { (O,a'k'+~) (11.+'/,) 1}, 
-2n'S [(O,a'k'+!;)'-I~I']'I. 2" kdk, 

o 

(19) 

~=V - xa' ~ 7 (ff.+'I,)k'dk (20) 
2n' 0 [(O,a'k'+s)'-I~I'l'" 

where km is the value of k on the boundary of the 
Brillouin zone, and 

~=A+EO-liOl/2. (21) 

The condition (15) reduces in this case to the inequality2) 

(22) 

For simpliCity we assume a quadratic dispersion of the 
magnons up to the boundary of the Brillouin zone. This 
does not affect qualitatively the conditions for the 
existence of the stationary distribution. 

We consider first Eqs. (19) and (20) at zero tempera­
ture. IntrodUCing the dimensionless integration variable 
x = (IIC/~)l/2ak, we obtain . 

liOl/2-Eo 1 Ijl ( i~1 )'" 'I""'S [ 1+x' 
I~I +tj= 4n'e; T tj' [(1+x')'-tj ']'1. 

. 0 

1]x'dX, 

(23) 

tj=VI~1. x .. = (OJs)'l·ak... (24) 
It follows from the inequality (22) that the left-hand 

side of (23) cannot be less than unity. Therefore the 
necessary condition for the existence of a solution of 
(23) is the inequality 

_1_-'1:.. (~)'I' f(tj);;;'1 
401' 0, 0, ' 

. (.)- 'I'S-[ 1+x' 1] 'd 
f tj -tj . [(1+x')'_tj-'],I. x x 

o 
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(we have increased the right-hand side, replacing the 
upper limit by infinity). 

The function f (TJ) is finite at all 1'/ in the interval 
(1,00) (with f(oo) = 0), and its maximum value is 001. 
For the existence of the solution there should therefore 
be satisfied the inequality 

or 

-'1:..(~)'J.>K, 
0, 0, 

4n' 
K = ---,-:-:­

maxf(tj) 
(25) 

On the other hand, it is seen from (24) that at positive 
X we have 1.0. I < I VI, and according to (25), for a solu­
tion to exist we must satisfy the inequality 

'i'>KO,(OJIV\)"', 

which is impossible. 

Since the integrand in (24) is always smaller than 
unity, the integral does not exceed xm ~ (lIch)1/2. 
Therefore at negative X it follows from (24) that 

~<V/(1-lxI/O,). 

The inequality (25) leads in this case to the following 
necessary condition: 

1-1"1..110,< IVI'i"/O,', 

Le., the amplitude of the interaction should be close to 
IIc, which contradicts the assumption that the interac­
tion is small. 

Thus, the self-consistency equations (23) and (24) 
have no solution at zero temperature for reasonable 
values of the parameters V, IP, and X. 

Let now T ~ 0 and let the terms containing the tem­
perature be large in comparison with those considered 
above (otherwise the conditions for the existence of the 
stationary state remain the same as before). We then 
obtain from (19) and (20), introducing the dimenSionless 
variable x = €k/I .0. I, 

{ X ( I~I ) 'I, - (l'X'H-tj)'I'dX} ~ 1+- - S -V 
4n' e, 1x'H[exp(xl~IIT)-11 - . 

..... lIL I 

The integral in (26) has the largest value at 1) = 1, 
the obtained integral is smaller than 

- 1xdx ( T )'1, 1; .' 
J= ! exp(xIAIIT)-1 = ~ 2~('I,), 

where t(z) is the Riemann zeta function. 

This leads to the following necessary condition: 
~('I,) (T) 'I, 

A< 8n'I,1jl 80 . 

(26) 

(27) 

and 

(28) 

On the other hand, it follows from the inequality (22) 
that A> tiw/2 - Eo. A comparison of the last two inequal­
ities shows that in the considered model (IP and X con­
stant) the necessary conditions for the existence of a 
stationary state at T ~ 0 also turn out to be quite 
stringent. This is the consequence of the replacement 
of the amplitudes IPkk' and Xkk' by constants, as a re­
sult of which the dangerous region shifts towards lower 
k, where the convergence of the integrals in (19) and 
(20) is ensured by the smallness of the density of states. 

We call attention in this connection to the fact that in 
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the two-dimensional model, even within the framework 
of the considered crude model, the self-consistency con­
ditions are always satisfied at T #- O. Indeed, the inte­
grals in the right-hand sides of the equations that re­
place (19) and (20) diverge logarithmically in the two­
dimensional case as ~ - \ a \, and this ensures the 
existence of a solution without restrictions on the 
parameters. Assuming, e.g., X = 0, i.e., a = Y, we ob­
tain the equation 

-A=~ln{1-exp[- l's'-V']} 
4n9, T 

(~ = A + Eo -l1wI2), which, as can be readily seen, has 
a solution at all values of I/!, Y, w, and T. 

3. In the nonstationary case, the time behavior of the 
system should be described by the equations for the 
correlators nk and uk: 

i!in.=t...·o .. -t...o., 

i!ia.= (2e.-!ioo+2A.) o.+t.. .. (2n.+1) ; 

Ak and ~ are defined by relations (9). 
(29) 

Since the collisions in the system of magnons do not 
lead in this case to establishment of a stationary state, 
allowance for the collision integrals in Eqs. (29) would 
lead apparently to quantitative but not to qualitative 
changes. In linearized form (Ak = 0, ak = Yk), this 
system describes an exponential growth of the correla­
tors nk and uk, with a growth rate 

fj'=[ IV. I '-(e.-lioo/2)')"'. 

Since this system is inhomogeneous, it has nonzero solu­
tions also at the zero initial conditions nk(O) = Uk(O) = O. 

Let us examine the influence of the anharmonicities 
that lead to a limitation on the growth of the correlators, 
under the following simplifying assumptions: 

The latter condition denotes neglect of the dependence 
of the energy Ek on the wave vector k, corresponding 
to a pump-field frequency w close to 2Eo/l1. Under 
these assumptions, the system (29) reduces to a system 
of nonlinear differential equations for the quantities 
n= En.IN, 0= L,o.lN: 

• • 
ilin=V(o'-o) , 

ilia=21jlno+(V+xo) (2n+1) , 

ilio''';21jlno'+(V+xo') (2nH). 

(30) 

The system (30) reduces to a differential equation of 
second order for the quantities n, which has the follow­
ing first integral at zero initial conditions: 

1I'~·=n[4V'+n(4V'-X')-2n'x(1jl+x)-n'(1jl+x)'], (31) 

so that the solution can be expressed with the aid of the 
elliptic integral 

S .. dn 1S d 
[nP,(n) ]". 11 t, 

(32) 
o 

where P,(n) is the polynomial in the square brackets in 
(3i), and no is the smallest positive root of the cubic 
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equation P,(n) = O. At least one positive root of this 
equation eXists, since P,(O) > 0 at n = 0 and p,(n) 
- - 00 as n - 00. If X and I/! have the same Sign and 
\ X \ > 2\ Y \, then there is only one positive root. 

Thus, periodic oscillations are produced in the sys­
tem, and their period and the maximum value of n de­
pend on the ratio of the field amplitude Y to the ampli­
tudes X and I/! of the interactions between the magnons. 
Thus, at X = 0, if \ Y \ « \ I/! \, then the maximum value 
of the increment to the magnetization is aM 
I':; J.J. \ Y I I/! \2/', and the period of the oscillations is 
T :::; li(y2\1/! \tl/2. If the inverse inequality \ Y \ » \ I/! \ is 
satiSfied, then the amplitude is aM:::; J.J. \ Y \ 1\ I/! \, and the 
period is T:::; 111\ Y \. 

The absorbed power (per particle) is expressed in 
terms of the derivative n: 

( a~>= !ioon 
at 2 

and also varies periodically with amplitude 
7'2 w (y41 \ I/! \)1/', if \ Y \ « \ I/! \. In the other limiting case, 
the amplitude of the absorbed power is equal to 
wy2/2\1/!\. 

We take the opportunity to thank I. M. Lifshitz, A. F. 
Andreev, M. I. Kaganov, and L. P. Pitaevskil for a use­
ful discussion. 

I) A similar analysis for a semiconductor in the field of a strong electro­
magnetic wave is carried out in [8]. 

2)In a preceding paper [7] we have assumed not that 1/1 and X are con­
stant, but that they are different from zero only near the surface 
2€k = Iiw in a layer of width V. This assumption, however, is not 
valid, since the magnon interaction region is not connected with the 
magnitude of the pump field. 
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