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An analytic solution is obtained for the set of kinetic equations for the vibrational state population of 
molecules in the field of resonant radiation. The solution is obtained in the harmonic approximation at 
arbitrary relations between the characteristic times (the pulse duration, the vibration-vibrational and 
vibration-translational relaxation times, and the stimulated radiative transition time), under the assumption 
that rotational relaxation occurs. The time dependence of vibrational energies and vibrational level 
populations in a mixture of two gases is derived in the case when the natural oscillation frequencies of the 
molecules are close to each other. Optimization of the parameters of the problem is discussed in connection 
with chemical reactions of two types. 

PACS numbers: 32.20.Pc, 31.70.Hq 

1. INTRODUCTION 

The possibility of using laser to stimulate chemical 
reactions has been widely discussed in the literature in 
recent years. [1-7J A number of experimental investiga
tions of chemical reactions in a field of a resonant 
infrared -radiation source has confirmed this possi
bility. [8-11J The resonant action of laser radiation of 
frequency w not only can greatly accelerate the chemical 
reactions, but can also initiate reactions that do not oc
cur in thermal excitation of molecules. 

For adiabatically slow collisions of excited and un
excited molecules it can be assumed that the activation 
energy Eo is determined only by the electronic wave 
functions. In this case the height of the barrier Eo does 
not depend on tlw. If the molecules are excited in the 
first vibrational state with the aid of the induced tran
sition 0 - 1, then the vibrational energy can go over 
during the collision process, with a probability P10, into 
translational energy. Thus, an additional fraction of·the 
molecules, whose kinetic energy prior to the collision 
was smaller than Eo by an amount tlw, can enter in the 
reaction. The relative change of the reaction yield, upon 
excitation of the vibrational level, is then given by an 
expression of the type 

1)=1+pP .. (e'·M-1) , (1.1) 

where p is the fraction of the excited molecules. It is 
assumed that the excitation of the upper vibrational 
states as a result of the collisions is insignificant. This 
mechanism can lead to an increase of the reaction rate 
by several times (if tlw « Eo). If tlw ;:; wo, as is the 
case, e.g., under experimental conditions, [10J then the 
increase of the reaction rate can be much larger. [3J 

Another catalYSis mechanism consists of rapid heating 
of a selected vibrational degree of freedom of the mole
cule up to its dissociation. The produced free radicals 
become capable of actively entering in the reaction. As 
they interact with one another, the molecules become 
succeSSively excited to a dissociation energy E compar
able with the reaction barrier. Thus, the reaction time 
is determined to a considerable degree by the time re
quired for the molecule to acquire an energy ~ E. The 
vibrational temperature begins to differ appreciably 
from the translational one, and the rates of the reactions 
initiated by laser radiation can exceed the rate of the 
vibration-translational relaxation. This makes it possi
ble to realize intense special-purpose chemical reac-
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tions. [1, 2J Selective excitations of the molecules of one 
of the isotopes by laser radiation makes possible photo
chemical separation of the isotopes in the infrared band, 
a fact already demonstrated experimentally. [10, 12J 

The kinetics of the excitation of molecular systems in 
the field of resonant infrared radiation, with account 
taken of the relaxation in the collisions, have been con
sidered in a number of papers [1,2,4-8,13, 14J. Thus, the 
kinetics of oscillatory systems was studied in [13 J, in the 
diffusion apprOXimation, in the case when the relaxation 
of the rotational degrees of freedom has no time to take 
place because of the large probabilities W of the induced 
radiative transitions, such that WTrot » 1, where Trot 
is the rotational-relaxation time. This is accompanied 
by the so-called "bottleneck" effect, which limits the 
rate of excitation of the molecules in the system. In [2J 
is considered the kinetics of oscillatory molecular sys
tems. Here, too, a diffusion approximation is used and 
presupposes a continuous distribution of the population 
of the vibrational levels; this is valid, of course, only in 
the case of sufficiently small nw. Cases when tlw is not 
small in comparison with Wo are far from rare, so that 
an exact solution of the initial kinetic equations is in 
general essential. Artamonova, Platonenko, and 
Khokhlov [lJ discuss the continuous irradiation regime, 
and also a pulsed regime with very short pulses of dura
tion to « To, where To is the time of the vibration-vibra
tional relaxation. A number of papers [4,5,14J deal with 
the kinetics in the so-called cutoff oscillator model, ac
cording to Which the molecule is described by a harmonic 
oscillator with a finite number of levels, and the rate of 
decay of the upper vibrational level determines the 
molecule dissociation rate. A solution of this problem 
has been obtained, however, only in the case of station
ary and quasistationary excitation of the molecules. Of 
very great interest are the results of an investigation of 
the distribution function for the vibrational-level popula
tion and dissociation rate in a more realistic model that 
takes the anharmonicity of the molecule into account. [4,5J 
The solution of the stationary and quasistationary prob
lems has shown in this case that allowance for the 
anharmonicity greatly influences the vibrational tem
perature and leads to a noticeable deviation from a 
Boltzmann distribution function. We note that in spite of 
the large number of recent papers devoted to the kinetics 
of molecular gases in laser-radiation fields, the non
stationary problem has not yet been solved even in the 
Simplest harmonic-oscillator model. 
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This paper is an attempt at an analytic solution of the 
system of kinetic equations in the harmonic approxima
tion for an arbitrary ratio of the characteristic times 
to, 70, l/W, and 71' Here 71 is the vibration-translational 
relaxation time. It is assumed that rotation relaxation 
does take place in the system, so that 

(1.2) 

We consider here two cases: the case when cascade ex
citation of the molecules takes place, which obtains at 
small anharmonicity, and the case when only the first 
vibrational state of the molecule is resonantly excited by 
the radiation (the 0 - 1 transition). The upper excited 
levels are then populated only by collisions. The seco~d 
case occurs at large anharmonicity. Thus, the two 
models describe the real situation from two aspects. 
Actually there exist conditions when laser radiation can 
be used to excite several vibrational levels in succession. 
The cascade-excitation model is therefore optimistic in 
the case of the mechanism of reactions with dissociation, 
while the model of the one-step excitation is, to the con
trary, pessimistic. We consider the kinetics of the exci
tation in both a Single-component gas and in a mixture 
of different gases. The mathematically simpler case of 
cascade excitation will be treated quite briefly, and only 
the results necessary for a comparison of the cascade 
and one-step excitation of molecular systems will be 
presented. 

2. CASCADE EXCITATION IN A ONE-COMPONENT 
SYSTEM 

If we neglect the change of the population balance of 
the vibrational levels on account of the reaction, then the 
system of kinetic equations for ~ can be represented in 
the form 

dn,Jdt=(k+1) W"nA+,+kWOIn._,-n.[ (k+l) WOI+kW" l 
+t',-'{(k+1) [(Ha)n.+t-an.1-k[ (Ha.)n.-an.-,l) (2.1) 

+t',-' {(k+l) (n.+t-e-on.) -k(n.-e-on._,)}. 

It is assumed here that the relaxation times 70 and 71, 
and also e = nW/T, do not depend on the temperature and 
that the radiative relaxation is small. The probabilities 
of the radiative transitions 0 - 1 and 1 - 0 are deSig
nated WOl and W100 

It is easily seen that the "reserve" of the vibrational 
energy 

depends on the time in the following manner: in the time 
of action of a rectangular pulse to we have 

a(t)=Wt',(l-e-"<'), (2.2) 

and after the pulse is switched off, O! relaxes in accord 
with the law 

a(t) =a(t,) exp [- (t-t,)IT,l. (2.3) 

We have accordingly for the populations of the vibra
tional levels 

n,=[l+WT,(i-e-"<') 1-' if t";;;t,, 
(2.4) 

We note that the function nk(t) is determined only by 
the cross-relaxation time 71 and by the intensity of the 
source W. In the case of a short pulse, such that to« 710 
we have 
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If the intensity is such that Wto » 1, then 

i.e., at high intensities we have no, nl « 1 and the upper 
excited states are strongly populated. This is bad in the 
case of the first mechanism for the stimulation of chem
ical reaction, but is suitable in the case of the second 
mechanism. At low intensities Wto « 1 we have 

Therefore this case is bad from the point of view of both 
reaction-stimulation mechanism. If the pulse duration 
is large, so that to »71, then O!"" = Wh, 

( ) _, 1 (WT') • n,= l+WT, , n.;>,=-- -- . 
l+WT, l+WT, 

In this case the vibrational temperature is 
l+W't, 

Trib=flCtl/ln-w . 
't, 

(2.5) 

(2.6) 

At high intensities, such that W71 » 1, we can formally 
obtain a very high vibrational energy O!, and corre
spondingly Tvib = nwW71' It must be remembered, how
ever, that the inequality W71 » 1 can contradict the 
condition (1.2), the satisfaction of which is necessary for 
the foregoing calculation. We note that the population of 
the first excited state cannot exceed 1/4 (in which case 
no = 1/2, a value attained at intensities corresponding to 
the condition W71 = 1). In light of the mechanisms that 
proceed from the first excited state this is the optimal 
case in the continuous irradiation regime. 

3. CASCADE EXCITATION IN A TWO-COMPONENT 
SYSTEM 

Let the system constitute a mixture of two molecular 
gases A and B. In analogy with (2.1) we can write down 
systems of kinetic equations for the populations n~ and 
n~, assuming, for example, that the gas A is at reson
ance with the laser radiation, and that the molecules of 
the gas B can be excited via collisions. We then have for 
the gas A 

dn.A 
= (k+l) W"n;~.,+kWOIn:_l-n .. <[ (k+l) WOI+kWI01 +Zll"{ (k+1)n:+ , 

dt 

- [ (k+1) exp( -8A ) +k1n."+k exp( -8 .. ) n:-l} +Z"A {(k+1) (a.+pA) n:+t 

- [ (k+1)a.+k (a.+pA) 1n .. ·+ka.n~,}+Z"A{ (k+1) (~+p.) n:+ 1 

(3.1) 
- [ (k+1) ~ exp (e.-e .. ) +k (~+P.) 1 n. "+k~ exp (e.-eA) n,~,}, 

Here 

ZAA and ZBB denote the frequencies of the molecule 
collisions A - A and A - B, respectively, ~ is the 
probability of the transition from vibrational to transla
tional energy, ~A is the probability of the transfer of 
vibrational excitation in molecule collisions, P A and PB 
are the fractions of gases A and B in the mixture: 

- -
PA= .En"A; PB=.E nAB, 

A-O A-O 

and f3 is the dimensionless vibrational energy for the 
gas B. 

The system of kinetic equations for n~, in contrast to 
(3.1), does not contain radiative terms. Multiplying (3.1) 
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by the corresponding system of equations for n~ by k 
and summing from 0 to 00, we obtain equations for a 
and [3: 

We consider the case when the frequencies of the 
molecules A and B are close, as, e.g., in the case of an 
isotope mixture. The system (3.2) and (3.3) is then 
linearized. Assume that the rates of the vibration-trans
lational and vibration-vibrational relaxations in gases A 
and B and in the mixture are the same. This assumption 
slightly overestimates the rate of energy transfer from 
the molecules of gas A to the molecules of gas Band 
vice versa, for in the real case it is necessary to take 
into account the resonance defect, which is equal to the 
isotopic shift. At such small resonance defects, how
ever, the cross sections for excitation transfer are only 
insignificantly decreased (see, e.g., [15J). Taking these 
remarks into account, we obtain at t :5 to 

a(t) =a~-e, exp (-th',) -e, exp [- (1I1;,+1!-t,) tJ, 

~(t)=~~ -~E.exp (-~) +e,exp[- (!..+..!..) t ] 
PA 'tl ,to 1't1 

(3.4) 

where 

We introduce the function 

<p(t) =~(t)/a(t), (3.5) 

It is interesting that cp (t) does not depend On the intensity 
of the source. This function is plotted in Fig. 1 for dif
ferent PA and Toh1 • At t :2: Tl, the function cp(t) tends 
to a limiting value CPoo = PB/(PA + Toh1). At small PA' 
when the content of one of the isotopes in the mixture is 
small, we have [300 » a oo if, furthermore, Tohl « 1. 
This is inconvenient in the case of isotope separation 
under continuous irradiation, because of the small yield 
of the required isotope. At small PA it is convenient to 
have ToiTl ~ 1. Since as a rule in real gases we have 
ToiTl « 1, we can decrease Tl by adding a buffer gas 
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FIG. 1. The function 'I'(t) for different system parameters in the case 
of cascade excitation: curve 1-PA = 0.01, TolTI = 10-2; 2-PA = 0.1, 
TolTI = 10-2 ; 3-PA = 0.01, TolTI = 0.5; 4-PA = 0.1, TOITI = 0.5; S-PA 
= D . .}, TolTI = 1. 
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that does not resonate with the main mixture. This role 
can be played by the reagent itself in the case of chem
ical reactions. We note that a = [3 at t ~ 2To. We can 
therefore work effectively in the pulsed regime, by 
limiting the time to of the pulse to certain values To 
(depending on the ratios PA/PB and Tohl' see Fig. 1). 
It is convenient to deal with the relations between a and 
[3 in the case of isotope separation in chemical reactions 
of the second type. When seeking for the optimal variant 
for isotope separation in reactions of the first type, it is 
necessary to know the behavior of the function 

Q(t) =n,B(t)/n,"(t). 

It is necessary, in addition, to indicate the conditions 
under which the population of the first excited state of 
the molecule of the required isotope is appreciable while 
A(t) is small. 

To ascertain these conditions it is necessary to have 
expressions for n~(t) and n~(t); these are easily ob
tained by the method of generating functions. We present 
here only the final result. For k :2: 1 we have 

(3.6) 

and for n~ and n~ we obtain the expressions (at t :5 to) 

n," (t) =PA (1 +-.:,!-t.,) [1+-.:,!-.:,+W-.:, (PA+-.:,I1;,) 

-p~W-.:,(1 +-.:,I1;,)e-'lt,-W-.:,P. exp {- (111;,+1/-.:,) t} ]-', 

no"(t) =p.( 1 +-.:,11;,) i 1 +-.:,11;,+ W-':,PA-PA WT, (1 +-.:,i"t,)e-'It, 
+W-':,PAexp {-(1/-.:,+1I-.:,)t} ]-'. 

(3.7) 

Figure 2 shows plots of Q(t) for various values of PA' 
y = Toh .. and x = Wro. 

The function Q(t) increases monotonically with time. 
At low initial concentrations of one of the iSotope s 
(PA ~ 10-2) and small y we have Q < 1 at very short 
pulse durations to;S 0.170. At small PA and Tolrl ::; 1, 
we get Q < 1 already for to :s To, and the largest value 
of Q does not exceed 3. The function Q(t) assumes its 
asymptotic value faster the larger WTo. In the case PA 
= 0.5 and small y, the function Q(t) is small up to to 
i>:! 0.5To- On the other hand if ToiTl 'S 1 and WTo :s;, 1 we 
have Q(t) < 1 for any pulse duration. In this case Q as
sumes its asymptotic value at to amounting to several 

50 0.1+ 0.5 1.0 5 10 !. 50 
6,7,8 t,f', 

5 10 

FIG. 2. The function Q(t) for various system parameters in the case 
of cascade excitation: Curve I-p A = 0.01, y '" 0.01, x = 0.1; 2-PA 
= 0.Q1, y = 0.01, x = 1.0; 3-PA = 0.01, Y = 0.Q1, x = 10; 4-PA = 0.01, 
Y = 1.0, x = 0.1; S-PA = 0.01, Y = 1.0, x = 10; 6-PA = 0.5, y = 0.01, 
x = 0.1; 7-PA = 0.5, Y = 0.01, x = 1.0; 8-PA = 0.5, Y = 0.Q1, x = 10; 
9-PA = 0.5, Y = 1.0, x = 0.1; 10-PA = 0.5, Y = 1.0, x = 10; 6/-PA = 0.01, 
Y = 1.0, x = 1.0; 10/-PA = 0.5, Y = 1.0, x = 1.0. 
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times TO. Depending on the values of the parameters 
considered above, one can organize isotope separation 
in chemical reactions of the first type in such a way that 
the molecules of the unneeded isotope B enter in the 
compound. It is necessary then to have Q > 1, which is 
attained at relatively large pulse durations. To the con
trary, if the excited isotope A is separated in a new 
chemical compound, then the values of the function Q 
should be small. It must be remembered here that at 
small Q the population nf- should be appreciable to ob
tain noticeable amounts of matter of the required isotopic 
composition. 

4. ONE-STEP EXCITATION IN A ONE-COMPONENT 
SYSTEM 

Let the frequency of the laser radiation be resonant 
with the transition 0 - 1. In this case the system (2.1) 
remains in force only for k = 0 and k = 1. At k 2: 2, 
there are no radiative terms and the relaxation of the 
excited states is determined by the collisions. If we in
troduce for the generating function 

the expansion 
M 

t»(x, t)= .E "{.(x-1)', 

then all the required properties of the system are de
termined via ')Ik' Indeed, 

~ 

Consequently in the continuous regime (t » T1) and at 
T1 ITo » 1 the vibrational temperature is 

Tvib~1i"'(1:Jro)"'. 

This result agrees with the conclusions of[1,2J o How
ever at source intensities that satisfy the inequality 

(W1:,)-'I, (:: ) "~ >1, 

O!(t) takes the form 

a(t) '" (Wor.) '''{ 1- exp [ - ~: (W1:.) -'I'D. 
For WT1 » 1, the vibrational temperature is asymp
totically proportional to 11/3 , where I is the source inten
sity. At low intensities, such that WTo« 1, the asymp
totic behavior of O!(t) is different: 

a(t)"'~{1-exp[-t(~+2W)]} . 
i+2W1:. 1:. 

(4.3') 

If WT1 « 1, then expression (4.3') holds true in the en
tire region t »To, but if WT1 ?: 1, then the validity 
range is 

"0<t<1/2W. 

At t ?: 1/2W we obtain 

a{t) "'(W1:.)'''{ i-exp [- 3(:~n D, _ i 
t--. 

2W' 

We note that the vibrational temperature depends here 
on the source intensity logarithmically. 

Let W-1 « To «T1' Then at t « To we have 

a(t) ""/,(1_e-2W'). 

np = ~ C,""{.(-i)·-P, "{0=1, a=,,{ •. 
In the region To« t « 71, the value of O! increases with 

It is easily found that the ')Ik satisfy the equations (k > 1) the time more weakly than (thO)113; 

Consequently ')Ik can be represented in the form 

"{A = k"~;'~t~) ,1 dt, a' (t.)f(t.)[q (t, t.)]·-', 

where 
i ' i i 

q=--Sa/dt, /(t)= exp[(-+-) t]. 
1:./(t) " '" ". 

substituting (4.2) in the equation for O! = ')11 

da a 
-= W(no-n.)--, 
dt '" 

we obtain 

(4.1) 

(4.2) 

da =-~+w[-~+ 1+1:0/';. 
dt '1:. 1:, [1+q(t,O)]' 

2 S dt, da(t,) /S!:l] 
o [1+q(t,tj)]' dt. '/(t) . 

(4.3) 
An analogous equation for O! was presented without proof 
in [14J 

We 'proceed to investigate this equation in various 
time intervals. We consider first the case of high in
tensities, such that W-1 « To « T1' It then follows from 
(4.3) that at t » To 

• [a(1+a)' '1: ]-' t i Sda(a+2) ---+~(1+a)2-i ""~, 
• W~ ~ ~ 

a-1, 1-'1:0. 

If WTo > (T1ho)112, then 

(
'1:, )',. 

a(t) '" ~ [1-e- 21/',]. 
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[ t-I ] 'I. i [ t-I ] -'f, 
a(t)'" ~'+(1-S0)3 +- -+(i-SO)3 , 

"0 3 "0 
where ~ 0 ~ 1/2 andt ~ 1/2W. 

At low source intensities (WTo« 1) we have O! ~ Wt 
at t « To-

In the region To« t « T1 it turns out that 

a. (t) '" (C+3Wt) 'f'_i, 

where C ~ 1. 

Thus, even with Single-quantum excitation it is possi
ble to obtain large values of O!, and consequently also a 
large difference between the vibrational and translational 
temperatures, provided the laser-radiation intensity is 
not too low. Particularly optimal from this point of view 
is a regime in which WTo » 1, but the vibrational tem
perature exceeds the translational one even in the case 
of much lower radiation intensities. At low gas pres
sures, WTo exceeds unity at very modest radiation fluxes. 
For example, in the case of C02 (A = 10.7 J.l) at 
A = 102 sec-1 we have 0'01 ~ 10-16 cm2. At a pressure 
P ~ 1 Torr, we have To ~ 10-5 sec. [lJ Under these con
ditions WTo ~ 10 at I ~ 102 W/cm2. 

Comparing the Single-quantum excitation with the 
cascade excitation, we can see that at equal parameters 
of the radiation and of the medium the value of O! is 
much larger in the cascade case, which is quite natural. 
Thus, for example at t »T 1 we have O!cas = W T1, while 
the optimal value of O! in Single-quantum excitation is 
~(T11To)1/2. Therefore for stimulation of chemical reac
tions of the second type, the cascade regime, if realiz
able, offers great advantages. 
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In concluding this section, we write out the calculated 
level populations Ilk(t). For no(t) and n1(t) we have 

, 
'to + 1+'to/,;, S f(t,) da(t,)ldt, d 

no (t) =-~ Hq (t) - 0 M [Hq (t) _q (t,) l' t" (4.4) 

n,(t)= (~+~) ~+s' f(t,) da(t,) 1-q(t)+q(t,) dt, 
'to 't, (Hq)' 0 jet) dt, Hq(t)-q(t,) , 

(4.5) 

which coincides with the results of [14J. For k »2 we 
obtain 

n =(k+I) (k+2) S'dt a'(t,)fU.) [a(t,t,)I' 
."" 0 ' 'tof2 (t) [1 +q (t) -q (t,) Ik 

[ , 2ka(t,t,)+ k(k-I) 1 
x a (t, t,) - k+2 (k+I) (k+2) , 

where a(t, t1) = [q(t1) - q( t)] /[ 1 + q(t) - q(t1)] . 

5. SINGLE-QUANTUM EXCITATION IN A TWO
COMPONENT SYSTEM 

(4.6) 

In the case of a mixture of two gases A and B, when 
only the transition 0 - 1 is resonant (for the gas A), the 
system of equations for n~ is the same as in cascade 
excitation, and the system for n~ in the form (3.1) is 
valid for k = 0 and k = 1; for k ~ 2 there are no radia
tive terms. 

The method of generating functions leads to the fol-
lowing equations for a and (3: 

da 1 [ pAexp(-8A ) ] 
- = - -[ I-exp(-8A) I a- -'-----=--':-::---7' 
dt 't, l-exp(-8A) 

+~[~ exp(8B-8A) (a+pA)-a(~+p.) I+W"noA-W"n,'A; (5.1) 
'to 

d~=-~[I-exp(-8.)I['~ p.exp(-8.) ] 
dt T, 1-exp(-8.) 

1 
+-[aexp(8A-8.) (~+p.)-~(a+pA) I. (5.2) 

'to 

We have neglected in these equations the dependence of 
the excitation-transfer cross sections on the resonance 
defect, i.e., we have put 

ZII=l/'t" ZI2=Z,,=I/'to. 

We shall henceforth assume that W 10 = W 01, and fur
thermore that the natural frequencies of the molecules 
A and B are close enough. The procedure for eliminating 
~ and n~ from Eq. (5.1) is analogous to the case of one 
component, which was described in the preceding sec
tion. We therefore present only the final result: 

~=_ (PB +~) a+W{PA 
dt 'to 't, 

-25' f(t,) (1/';0+1h,)a+daldt,} + PA~ 
,~fW R ~' (5.3) 

S dt. 
A=H (a+~)f(t,) ~(_) ; 

" f t 'to 

d~ = p.a _ ( PA +~) ~, 
dt 'to 'to 't, 

where 
f(t) =exp[ (1/';0+1/';,)t]. 

We consider first the continuous radiation regime 
(t »T1)' Since the equations for {3 in the case of a cas
cade and Single-step excitation coincide, the asymptotic 
value of the function cp = {3/a remains the same as before. 
Therefore the recommendations described in Sec. 3 and 
concerning the continuous regime remain in force in this 
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case, too, but the values of a and {3, at the same source 
and medium parameters, differ noticeably in the cas
cade and single-step excitation cases. At t »To in the 
case WTo » 1 and ToiT1 « 1 it follows from (5.3) that 

a~= (PA+'tO/'t,) [(1+PAT,!To) "'-I], 

~~=rB[ (1+PAT,!'to)"'-1]. 

At PAT1iTo »1we have 

a~""p~ (T/'to)''', ~~""'/,p~ p.('t/'to)"'; 

and in the opposite limiting case 

so that 

At low source intensities, such that WT1 < 1, 
a~"" (W'to) "',(pA't,!'to+l) 'I, 

(if WTo« (1 + P A T1 iTo)1/2). 

Thus, at low source intensities I, we have a ~ 11/3. 
The vibrational temperature depends on I logarithmically 
if PAT1irO« 1, and is proportional to 1113 if PAT1iTo 
»1. 

Let us investigate the behavior of a and (3, and also of 
cp (t) and Q(t), in differe nt regions of t. To find Q(t) we 
need expressions for n~,B in terms of 0/ and (3. We 
present them here: 

A s' dt, d • S· dt, d n, - 0 M~[f(t,)a(t,)IF(t,t,), n, = f(t) dt,"[f(t,)~(t,)IF(t,t,), 

o (5.4) 

where 
F(t, t,) =2( Hq(t)-q(t,) )-'- [Hq(t)-q(t,) )-', 

I 

q(t)= S (a+~)f(t,)dt,/,;,f(t). 
(5.5) 

The general expressions for ~~~ take the form (4.6), 

except that in the case of n~ it is necessary to replace 

a 2(t1) under the integral sign in (4.6) by a(tl)[a(t1) + (3(t1)], 
and for n~ by (3(t1 )[ 0/ (t1) + (3(t1)], and the corresponding 
q(t) must be used. 

Let the intensity I be such that WTo » 1. We then get 
for a 

(5.6) 

Here 

( 1 tM [ (t ) eXP(-,tltM)-exp(-2Wt)] 
~ t)""-PAP'- l-exp -- ----"--::--::=0-----

2 To tM 1-2Wt .. 
(5.7) 

where 

At very short times (t « 1/W), a and {3 are small 
and increase in proportion to the time (or to the pulse 
duration to): 

and Q F':! cp = PB(WTof1 « 1. 

In the interval 1/W < t « To the quantity 0/ is des
cribed by (5.6), and 

1 { t 1 [1 'wII} ~(t)""-PAPB -+-W -e- " 
2 'to 2 T, 

The function Q(t) is then much smaller than unity: 
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t 
Q (t) ""q>(t) ""PB- [1_e- 2W 'j-'. 

To 

If PAPB /2(PA + Toh1) « 1, then the solutions (5.6) 
and (5.7) are valid for the entire range of variation of t. 
If the concentration of the isotope A in the initial mix
ture is not very small, so that PA » Toh1' then (5.6) 
and (5.7) remain in force up to the time t ~ tM. At 
t >tM 

cdt) "" P1' (T,ho) 'I, [1-e-'Tt l"'. 
~(t)""PBlpAa[1-exp (-tltM) j. 

(5.8) 

where Y = 2/PAT1' In the region tM « t « l/y we have 
a""2'I'PA (tITo) "'. ~""2'I'PB(tho) 'I,. 

At t ;G tM we have <p(t) - <Poo' 

In the region tM « t « 1/y the populations n~ and n~ 
decrease with time like (thof1/2. The function Q(t) as
sumes its asymptotic value at times much larger than 
tM. We note that at sufficiently low intensities, such that 
WTo « 1 at Toh1' we obtain the following: If WPAT1, 
then Q! and {3 are small. At t « To we have 

PAWt pAWTo (~O)2, 
a(t) ""-2-' ~(t)"" 2(1+PA/PB) • 

and in the region To ~ t « T1 we obtain 

a(t) "" PAWTO [1-e- t/"j+ PA (PA +~) Wt. 
2 2 T, 

~(t)=~PAPBWTO{~- [1-e- t/"l}. 
2 To 

At t ,G T1 we obtain an asymptotic solution of the type 

a(t) ""pAWT, [1-rt/',], ~(t)"" a(t)pB . 
2 PA+Toh, 

In the other limiting case when WPAT1 »1 but~WPATo 
« 1, the values of Q! and (3 are small up to a time t 
which will be defined below. 

Thus, at t « To we get 
a""pAWt, ~""PAPBWt2ho. 

In the region To ::::; t « l/2WPA we have 
1 T. To 

a"'PA Wt+-pB-(1-e- t/,,). ~"'PAWt-PB-(1-e-t/',). 
2 T, T, 

The quantity {3 is not small in comparison with unity at 
t ;G l/PA W > tM, where tM = (PAho + 1h1f1. At 
PAT1ho« 1 we have Q!oo ~ (PA + Toh1)112« 1. If the 
concentration of the isotope A is not too small, so that 
P A T1 ho » 1, then at times t ;?; t we have 

a(t) '" p~. (WT,) 'I, (1_r3l/ i). ~(t) "" pBa(t), 

where the characteristic time t depends on the source 
intensity: 

t = p;'I. (WT,)'!,To. 

We note in conclusion that both in the case of stimula
tion of chemical reactions and in the case of isotope 
separation, the optimal are the laser intensities corre
sponding to WTo »1. However, the values of the other 
parameters, particularly the pulse durations, are not 
the same when the two types of reaction indicated above 
are cOr;lsidered. 

It was assumed above that exp(6B - a A) ~ 1, i.e., 
a B ~ e A' This assumption does not introduce a large 
error at times when the distribution of the populations 
n~,B(t) has not yet settled and the concept of vibrational 
temperature is meaningless. In this case the isotope
separation effect can be large and is characterized by 
the functions <p(t) and Q(t). However, at times when a 
stationary distribution is established in the sy'stem, it 
follows from the indicated assumption that T~b = T~ib' 
In fact, there is a difference between the vibrational 
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temperatures, which can be determined from the solu
tion of the stationary system of kinetic equations: 

6 = T (~ __ 1_) = -.!.In ( 1 +a 1 +c ) 
T~b T~b hCt) 1-b 1+d 

where 

a=(a+l..~)-' 1.~-+-exp(-eA) , [ aCt) To ] 

T T, 

[ aCt) To ] 
b=(~+l..a)-' l.a---exp(-9B) • 

T T, 

c= (~+M:x) -. (I.PA +PB+to/T.), d= (a+I.~) -. (ApB+PA+Toh,). 

AW = WB - wA' A = a(Aw)/a(O) is the ratio of the real 
excitation-transfer cross section to the resonant one. [15J 

In the case Toh1 « 1 and at P A = PB we have 

_ aCt) [21. r .. /r ( 2To ) '4] 
~ - -;.;- HI. + ~ -;.- . 

At low initial concentrations of the excited component 
(PA/PB « 1), the difference between the vibrational 
temperatures T~ib and T~ib is negligibly small and in 
the stationary case there is no hope for a noticeable . 
isotopic effect. In the nonstationary case, however, when 
the pulse duration is comparable with the time of the 
vibrational exchange in collisions, the separation effect 
in selective excitation of one of the isotopic modes in 
chemical reactions, especially in the case of cascade 
excitation, can be appreciable. 

The authors are grateful to R. V. Khokhlov for a dis
cussion. 
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