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The quantum-kinetic equation for the two-time correlation function of the operators of a nonequilibrium 
oscillator interacting wtih a medium is derived and solved for an arbitrary ratio between the vibrational­
level nonequidistance due to nonlinearity of the oscillator to the level width. The polarizability and 
luminescence kinetics, total luminescence spectrum, and also the polarizability and luminescence under 
stationary conditions are considered. A criterion for amplification of light by an anharmonic oscillator 
under stationary conditions is found. The possibility of amplification by means of local and quasilocal 
oscillations in crystals is considered. 
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The relaxation of a harmonic oscillator was investi­
gated in a number of studies. This problem is of interest 
as an example of the establishment of equilibrium be­
tween a subsystem and a thermostat. [1-4J An examina­
tion of the dynamics of an oscillator interacting with a 
medium is encountered in some problems in the theory 
of lasers, [5-7J and also in the theory of local and quasi­
local oscillations of impurities in crystals. [8J To ex­
plain the experimental results, however, it is frequently 
necessary to take into account the internal anharmonicity 
of the selected oscillator. For example, the radiation­
oscillator anharmonicity due to the nonlinear terms in 
the polarizability of the medium governs the distinguish­
ing features of the .behavior of the propagation of light 
in nonlinear media. 

The internal anharmonicity of local and quasilocal 
oscillations leads to asymmetry of the peaks in the spec­
tra of infrared absorption and inelastic scattering of 
neutrons by these oscillations. [9J The asymmetry re­
sults from the fact that the vibrational levels of the 
nonlinear oscillator are not equidistant. If the deviation 
~W from equidistance is much larger than the reciprocal 
lifetime r, then the peak in the oscillator spectrum can 
have a fine structure whose individual lines correspond 
to transitions between different pairs of neighboring 
levels (the contributions from individual transitions 
cannot be identified in the spectrum of a harmonic os­
cillator). It should be noted that the non-equidistance 
becomes manifest in spectra of equilibrium oscillators 
only at finite temperatures, when the average occupation 
numbers of the excited levels differ from zero. 

It is of interest to investigate the local and quasilocal 
oscillations under nonequilibrium conditions, for this 
makes it possible to study excited states of oscillations 
at low temperatures, when there is no thermal smearing. 
There is a special class of local oscillations that can 
exist only in a disequilibrium state, namely the strongly 
excited intramolecular oscillations in molecular crys­
tals, which were considered by Ovchinnikov. [10J The 
localization of such oscillations is due to their internal 
anharmonicity, and their decay is made possible by the 
nonlinear interaction with phonons. 

To determine the shapes of the peaks in the spectra 
of local and quasilocal oscillations it is necessary to 
calculate the spectral distribution of the correlation 
functions of the coordinates of these oscillations. To 
calculate the correlation functions if the equilibrium 
anharmonic oscillators interacting with the medium, 
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Krivoglaz and the author [llJ have obtained, on the basis 
of a previously-developed procedure, [12J a quantum-' 
kinetic equation valid directly for the correlators. This 
procedure will be generalized in this paper to include 
the case of nonequilibrium anharmonic oscillators. 

In Sec. 1 we obtain in explicit form the solution of the 
kinetic equation for the correlator of the operators of a 
nonequilibrium oscillator. This relation is used in Sec. 
2 to find the time dependences of the polarizability and 

, luminescence of the oscillators, and to investigate the 
complete luminescence spectrum. In Sec. 3 are analyzed 
the polarizability and luminescence of a nonequilibrium 
oscillator in the stationary regime. Criteria are ob­
tained for amplification of light by an oscillator, and this 
amplification is analyzed. Section 4 contains concluding 
remarks. In particular, certain methods of oscillator 
pumping are considered. 

1. CALCULATION OF CORRELATION FUNCTIONS 

We consider a nonlinear oscillator of frequency w 
interacting with a medium consisting of a set of harmonic 
oscillators. The oscillators of the medium are numbered 
by the subscript k and their frequencies ~ form a quasi­
continuous spectrum. We assume the interaction to be 
small enough, so that the relaxation time is r-1 »w-1 

and r-1 »w~, where wm is the maximum frequency of 
the continuous spectrum. This model describes well, 
for example, the frequency-nondegenerate local or quasi­
local oscillations of a weakly bound impurity in a crys­
tal. 

The Hamiltonian of the system is 

H=Ho+fI;, Ho=wn + + Vn' + I: w.n., 

• 
(1) 

Hi = I: V.ee. ++ I: H •• ,e.e.,; H •• ,= v •• ,c+V kk'e', (2) 
kk' 

11 = 1. Here a, a· and ak' ak are the annihilation and 
creation operators of the selected oscillations and of the 
continuous-spectrum oscillation. The parameters con­
tained in Hi and the non-equidistance parameter V con­
tain small constants in the assumed model. 

We have left out of the Hamiltonian Ho the cubic­
anharmonicity term Yc 3, which is rapidly oscillating and 
leads in the effects considered later on to the renormal­
ization (~y2) obtained in [13J for the parameters V and 

Copyright © 1976 American Institute of Physics 1042 



w. We shall assume this renormalization to have been 
effected (V = 0 if the oscillator is located in an inversion 
center). Nor does Ho include small rapidly-oscillating 
terms such as Va3a+. The effect of the terms of the type 
VkC2Ck' which have been omitted from formula (2), on the 
correlation functions of the equilibrium oscillators was 
considered in detail earlier. [llJ If the density of the os­
cillations of the continuous spectrum in the vicinity of 
2w is equal to zero, then allowance for the terms 
VkC2Ck leads to addition of terms ~ Vk to V and w (the 
corresponding expressions are given in[12J ). This re­
normalization will also be assumed effected in what 
follows. 

Many properties of a nonequilibrium oscillator are 
determined by the two-time correlation function 

<A(t+t)B('r) >~Sp[A (t)Bp('r) l. (3) 

where p is the density matrix of the system, and A and 
B are the operators of the selected oscillator. Assume 
that at the instant of time t = 0 the oscillator is described 
by a density matrix po and the oscillations of the med­
ium are in the state of thermodynamic equilibrium. To 
calculate the function (A(t + T)B(T) at the times 
t, T »w-l, wci (it is precisely this time region which is 
usually of greatest interest, since it determines the 
spectral characteristics of the oscillator), we use a 
time-asymptotic perturbation theory, which is a gener­
alization of the methods developed in [11, l~J to include 
nonequilibrium problems. 

We proceed to the interaction representation, intro­
ducing the operator U(t) = eiHote-iHt. Calculating the 
trace in formula (3) for the complete system of eigen­
functions (ml and (mk l of the harmonic oscillators in the 
occupation-number representation, accurate to terms 
quadratic in Vk' Vkk', and Vkk" we obtain 

l: f (q, m.IU(t) Ir. n.) (8, n.IU(T) II, m.) 
.. ,m", 7111: •••• 

(m/<-F'I'I/I') 

X exp ( "':'v l: (ll.m.) exp [iT L, <il. (m,-n.) ] } (6) 
, . 

have been discarded, since they are proportional to in­
tegrals (with respect to wk) of terms that are rapidly­
OSCillating (owing to the last factor in (6)) at T »w~, 
and are of the order of r/w, r/wm, Idr/dwl « 1 (this 
can be easily verified by expanding the operators U in 
(6) in powers of Hi)' This approximation is valid if, as 
will be assumed from now on, 

sp (ABpo) *0, Sp [ABe-···] *0. 

An equation for the function f can be obtained in the 
same manner as used in [11, 12J for the analogous equili­
brium function. Accurate to terms r/w, IVI/w, Idr/dw I 
« 1 we have 

a/(q,p; m,r; t) D 
at = l..J dj(q, p)exp[ -iVj(q-p)t]!(q+j, p+j; m, r; t), (7) 

j=-1 

/(q,p; m,r; 0)~IS..,6p,m, 

where 

do(q, p)=-r(q)-r(p)-l(q-p)'-iP(q-p), 

d±,(q, p) =2r(iI+'/2±'/Z) [(q+'/2±'/') (p+'/,±'/,)],", (8) 
r(q)~r[q(2n+1)+iI], iI~[e'·-1]-' 

Here rand P are the real and imaginary parts of the 
polarization operator R(w - iO), 

R( )= '(l 2V.'<il. + '(l V' ,[ (1+iI.+iI.,) (<il.+OO.') + iI.,-ii. ] (9) 
(J) i....Jw2_(J),,2. .l..i,ul W2-(Ulk+W,Ia;<)2 (O-ffi,,+W,,' 

• M' 

+1: V .. (2i1.+1). 

(A (t+r)B(~;) ~ l:ApqB,,(po),. exp[i(Ep-E,)t+i(Em-E.)'rl 

x /(q,p; m, r; t)/(8, m; n, I; ~), 

Em~oom+'/z Vm', 

(4) In this formula, account is taken, in first-order pertur­
bation theory, of the terms of the fourfold anharmonicity 
in Hi' The main effect due to such phenomena in second­
order perturbation theory is connected with the term 
proportional to y in do, where 

where 

!(q,p; m,r; t)= II (Hii.)-' l: (q, m.IU(t)lr,n.) (5) 
.•. , flI k,71J,;, ••• 

xexp ( -vl: <il.n.) (m,n.IU-'(t)lp,m.), 
, . 

the sum in (4) is taken over all integer values of 1, m, n, 
p, q, r, and s from zero to infinity. It is clear from (5) 
that the function f describes the oscillator relaxation due 
to the interaction with the medium. From (4) we can con­
clude that the individual oscillator operator matrix ele­
ments relax independently of the oscillator density­
matrix elements. This result is essentially analogous 
to the results of Sec. 10 of the book of Farn and 
Khanin, [14J obtained from the condition of the diagonal 
singularity and the smallness of the interaction Hi under 
the assumption that certain effective initial conditions 
are satisfied. In the method proposed here there is no 
need for any special premises, and the calculation is 
carried out directly. 

In the derivation of formula (4), expressions of the 
type 
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1=4:n: L, V;.,iI.(iI.+1) II (<il.-<il.') , (10) .. ' 
This term describes the modulation damping of the off­
diagonal elements of f, which is connected with the elas­
tic scattering of the continuous-spectrum oscillations by 
the selected oscillator; it is frequently decisive in the 
width of the spectral lines of high-frequency local os-
cillations. [9, lSJ , 

If the levels are equidistant (V = 0), then Eq. (7) coin­
cides, accurate to terms with y and P, with the density 
matrix considered in[4J for the damped harmonic oscil­
lator. The presence of non-equidistance, however, 
greatly alters the manner in which equilibrium is estab­
lished in the system. For example, if IV I »r, then the 
qualitative Singularity of the oscillator relaxation, 
namely the connection of f(q, p; m, r; t) with f(q ± 1, 
p ± 1; m, r; t), practically drops out for the off-diagonal 
elements of f, since terms with j = 0 in (7) contain 
rapidly oscillating factors. The relaxation is then des­
cribed by the usual expression for the energy-nondegen­
erate systems (the expression for r(q) in (8) coincides 
with the half -width of the q -th level, calculated in ac­
cordance with the usual Weisskopf and Wigner perturba­
tion theory). 
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In the general case of an arbitrary ratio /v//r, Eq. 
(7) is conveniently solved by the method of generating 
functions. [12, 4J For the function 

~ ( 0:1 ) 'I. [1] j.(x, t; m, r)= 4..J (it I(q, p; m, r; t)x'exp iPkt + -ZiV(p'-q')t ; 
,_0 

o:=max(p, q); ~=min(p, q); k=q-p, (11) 

we can obtain from (7) a linear partial differential equa­
tion of first order, the solution of which is of the form 

I (- I'm )-[ h t+2r (2M1)-4xrMiVk ] -1'1-1 
""'" ,r- c air. sha"t 

2a, 
(12) 

xexp [ - ( lk' - ~iVk-r)t ] I .. (x, t; m,r), 

a. '=r'+irVk (2;1+1) -.1/, V"k', 

where 

I .. (x, t; m, r) = {_x-=[".;a,;.:,,-_a...:,:.... e_x;,p ..:...(2--:a.~t )~j~-....:a:::. .. a~,:::.. [....:1----.::..ex::!p':..:(:::2a~,~t )~j }. " (13 ) 
x[ 1- exp(2a,t) j-[a .. -a .. exp(2a,t) j 

( £1 ) 'I. 
X ~ 6'.,-m; S = max (m, r); 1'] = min(m, r); 

a1t.I,2 

2r(2ii+1)+iVk±2a. 

4rn 

Expressions (4) and (11)-(13) enable us to find the 
two-time correlation functions of the nonequilibrium 
oscillator interacting with a medium at an arbitrary 
ratio of the non-equidistance of the vibrational levels to 
the damping, and at arbitrary temperatures. 

2. INTERACTION OF NONLINEAR 
NONEQUILIBRIUM OSCILLATORS 
WITH RADIATION 

We consider the linear reaction of a nonequilibrium 
oscillator to an electric field. Greatest interest attaches 
to the resonance region, when the field frequency 0 is 
close to the oscillator frequency w. For a non-equili­
brium oscillation, which is described at the instant to by 
a density matrix Po, we can introduce a polarizability 
X (0, t - to) that depends on the time and on the frequency, 
such that 

<M(t) >E=""X(Q, t-to) Eor'o" 

where (M(t)E is the field-dependent part of the oscilla­
tor dipole moment (a nonequilibrium oscillator can have 
a dipole moment also in the absence of a field), EO is 
the intensity of the field at the frequency 0, and f.J. is a 
coefficient that determines the dipole moment of the os­
cillator M = f.J. (a + a +). It is easy to show that 

• 
x (Q, t-to) =i J e'OU-'lx(t-'t, 't-to)d't, X (t, 't) =Sp{[c(t), C ]p('t)}. (14) 

'. 
In the calculation of lasers in plasma theory and for 

a number of other applications, it is frequently neces­
sary to know the power wO(t - to) qrawn by the field 
form the non-equilibrium oscillator excited at an instant 
tOo 1) If the. oscillato! is in a classical field of intensity 
E = Eoe-lnt + Ei1elnt, then, accurate to the rapidly­
oscillating terms, 

Watt-to) =-2Q",' lEal' 1m X(Q, t-to). (15) 

Formula (15) allows us to investigate the spectrum of 
the absorption (amplification) of the light by the non­
equilibrium oscillator. 

To investigate the luminescence spectrum it is neces-
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sary to consider the interaction of the oscillator with 
equilibrium radiation having the temperature of the 
medium. In this case the power radiated by the non­
equilibrium oscillation is determined by the expression 

-
W(t)= J 1'] (Q)dQ ",'QQ(Q,t-t,), (16) 

, 
Q (Q, t-t,) =2 Re J d't e'O('-'lqo (I-'t, 't-t,) 

'. 
qo (I, 't) =Sp {p ('t)[ (iio+1) cc (t) +iioc (t) c]}. 

Here nO is the Planck number. The function 1](0) is de­
termined by the photon state density, so that . 

<E'>= J 1'] (Q)dQ(2iio+1). 
o 

It is assumed henceforth that 1] (n) is a smooth function 
in the vicinity of 0 ~ w. 

It is seen from (14)-(16) that an analysis of the inter­
action of a non-equilibrium oscillator with radiation 
entails the calculation of two-time correlation functions, 
which was carried out in general form above. 

Since we are considering the resonance region 0 ~ w, 
it is necessary to retain in X (t, T) and qO(t, T) in the 
calculation of the shapes of the absorption and lumines­
cence peaks, only the terms that comprise products of 
e-iwt by a smooth function of t and T. To this end we 
take into account the term act) in the operator c(t), the 
term a + in c, and only the diagonal elements in p(T). This 
approximation is valid if 

rl<a'>ol<C!lI<aa+),/, <A),=Sp (p,A). 

Using formulas (4) and (11)-(13) as well as the 
analogous expressions for the function (B(T)A(t + T) 
and taking into account the explicit form of the opera­
tors, we obtain accurate to terms r/w, /V/!w, and /dr/dwl 

v [ V ] r <p(t,'t)=i-;IJl-I(t)shate-zr" lJl(t)=chat+ Hi2f" (2n+1) -;;-shat, 

a'''''a,'=p'+irV(2n+1)-V'/4, iil=C!l+P, Pm=(m/p,lm). (17) 

Without going into details of the analysis of this formula, 
we note that the polarizability of the harmonic oscillator 
does not depend on its initial state, inasmuch as at V = 0 
we have 

<p(t,'t)=o, 1: pm=1, x(t,'t)=exp[-iiilt-(l+r)tj. 
m_' 

As T - "", the quantity x(t, T) tends to the equilibrium 
polarizability obtained in [12J for a nonlinear oscillator. 
However, whereas the nonequidistance of the levels 
manifests itself in the polarizability of the equilibrium 
operator only at finite temperatures, n > 0, [12J the 
polarizability of a nonequilibrium oscillator, as seen 
from (17) is affected by the nonequidistance also at n = O. 
This is understandable, since the nonequidistance mani­
fests itself when there are transitions between several 
oscillator levels. 

In the resonance region, assuming nO = n, we obtain 
for the function qO(t, T) 
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qg(t,,;) = e-,r, exp[ -iwt- (1-'/,iV -r) t]",-'(t) ~ pm[1- (n+1)<p(t,,;) ]"'-' 

X[1-n<p(t,,;) ]_m_' [m-ii:+n (n+1) <p(t, ,;)]. (18) 

Formulas (16) and (18) describe the time damping of the 
luminescence of a nonlinear nonequilibrium oscillator. 

.Let us see how the energy radiated by the oscillator 
is distributed over the frequency during the entire re­
laxation time, i.e., let us calculate the shape of the peak 
in the luminescence spectrum of the oscillator. As is 
clear from (16), the shape of the peak is determined, 
accurate to the smooth factor 1)(n)n, by the function 

~ ~ ~ 

Q(Q) = S Q(Q, t-t,)dt=2 Re S dt S dTe,g, qg(t,,;). (19) 
t, 

From (19) with allowance for (17) and (18) we obtain 

1 ~ V 
Q(Q) = rIm S dtexp [i (Q-w +2 )t-(1-r)t] ",-'(t) 

• 
x __ a_i1 pm{1- [1-(n+1)<p(1,0) ]m}. 

Vshat i... [1-n<p(t,0)]m+t (20) 
7ll=O 

This formula gives the complete solution of the problem 
of the luminescence spectrum of a nonequilibrium os­
cillator at an arbitrary ratio of the nonequidistance of 
the levels IVI and their width and for arbitrary tempera­
tures. The integrated intensity of the peak, accurate to 
r/w, is equal to r- l 1T(n)o -ii), and is independent of V 
or y. These parameters, however, do determine the 
complicated asymmetric shape of the peak, which can be 
obtained by numerical integration with the aid of form­
ula (2) at arbitrary values of the parameters. 

At V = 0, the function Q(n) has a Lorentz shape with 
half-width r + y and with a maximum at n = W. With 
increasing ratio IVI/r, the line broadens, the position of 
the maximum shifts, the asymmetry increases, and at 
IVI »r(2n + 1) a fine structure appears in the spec­
trum. 

At rv I »r (2n + 1), accurate to terms ~ r/lv I, we 
have 

x{ (2n+1) [ t Pm-e-""'+"] + (s+1) [2e-""·+"-np.-(n+1) PH'] }, 
m=.+l 

Q,=Q-w-V(s+'/2), I'.=2I' (s+1) (2n+l)-r+1. (21) 

The first term in this expression describes the aggre­
gate of Lorentz lines. The half -width r s of the s-th line 
is equal (apart from the modulation broadening) to the 
sum of the half-widths of the levels sand s + 1 (see (8)), 
and its position is determined by the frequency of the 
transition between these levels. The amplitude of the 
s-th line is proportional to the difference between the 
sum of the populations of all the low-lying levels and its 
equilibrium value (this is due to the fact that the transi­
tions occur only between neighboring levels of the relax­
ing oscillator). 

The second term in (21) is proportional to r/ivi. It 
describes the corrections to the calculation of the lumin­
escence spectrum in accord with the usual theory of 
Weisskopf and Wigner, which are connected with the 
partial degeneracy of the oscillator spectrum with 
respect to frequency. When the corrections are taken 

1045 Sov. Phys.·JETP. Vol. 41. No.6 

into account, the fine-structure line shape becomes 
asymmetrical, and the line intensities depend not only on 
the populations of the higher-lying levels, but also on the 
population of the level to which the transition takes 
place. 

Since the line widths increase with temperature and 
the fine structure becomes smeared out, it is of interest 
to consider the luminescence spectrum of the oscillator 
at relatively low temperatures, when n = O. Then 

(the values of all the parameters are taken here at n = 0). 
It is clear from this formula that at finite vir the con­
cept of the line corresponding to an individual transition 
between the levels becomes arbitrary. The amplitude of 
the line is complex and it is determined by the interfer­
ence of the occupation numbers of all the upper (and at 
n ~ 0 also the lower) levels. In particular, in the spec­
trum of the harmonic oscillator there is effectively ex­
cited at n = 0 only one line with s = O. 

3. INTERACTION OF OSCILLATORS WITH 
RADIATION IN THE STEADY STATE 

The investigation of the steady states of non-eqUili­
brium systems is of interest for a number of applica­
tions, especially in laser phYSics. The expliCit expres­
sions (14)-(18) for the absorption and luminescence 
spectra of non-equilibrium nonlinear oscillators make it 
possible to analyze completely any regime, including the 
steady state. To obtain the observable quantities 
X (n, t - to) and W(t) it is necessary to average in 
(14)-(16) with respect to to with a certain weighting 
function '(to) having the meaning of the probability den­
sity for the appearance of an oscillator with a density 
matrix Po at an instant to. The function '(to), just as Po. 
is determined by the external system that excites the 
osc illator . 

In the steady state, the only Singled -out instant of 
time is the observation instant t, and consequently '(to) 
depends on the difference t - to- We note that in the 
stationary regime the function '(t - to) is equal to the 
probability density of an event in which the oscillator 
appears for the last time prior to the observation at an 
instant separated by t - to from the observation instant. 
Using the normalization condition 

t 

SW-to)dto=l (23) 

and Eqs. (14) and (16)-(18), we can show that, accurate 
to r/w, the integral intensity of the absorption peak in 
the stationary regime is 

S dQ 1m )(,1 (Q) =n, 

• 
and the integral intensity of stationary-luminescence 
peak is 

- -S dQ Qst Hl) =2n«n)o-n) S ~ (t)e-zr ' dt. 
o 0 

From these expressions, if (15) is taken into account, 
we see that, relative to the entire spectrum, the oscilla­
tor in any steady state absorbs the energy of the applied 
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field independently of the pump, of the non-equidistance 
of the levels, and of the temperature. It will be shown 
later on, however, that under certain conditions, there 
is an interval of the frequencies n where 1m Xst(n) < 0, 
i.e., amplification of the field takes place. The intensity 
of the luminescence peak is likewise independent of the 
anharmonicity, but the pump and the temperature, as ex­
pected, do affect this intensity. 

If the excitation process constitute shot noise with an 
average frequency A (e.g., scattering of some particles 
by the oscillator), then l; (t - to) = A exp [-A (t - to)]. Let 
us consider in this case the imaginary part of the oscil­
lator polarizability, 

'" (Q) = A Re f dt f d'te,g'-l(t+"x (t,r). (24) 
. . . 

Expression (17) allows us to obtain XA (0) for all tem­
peratures' at arbitrary vir, Air, and Po. and thus cal­
culate completely the shape of the peak of light absorp­
tion by a nonlinear oscillator in the steady state. The 
actual calculation is easily carried out with a computer. 
It is possible to treat analytically several limiting cases. 

At small nonequidistance, when IVI «r, we have in 
first order in vir 

Xl(Q) r+rH A V [Ll Ll] 
(r+rH),+Ll' + r(2rH) (r+1H)'+Ll' -(3r+1H)'+Ll' 

x «n>.-ii), (25) 

A1 = n - W - %V(41i + 1). The peak of the spectral distri­
bution of a nonequilibrium oscillator is asymmetrical, 
as seen from (25), and the asymmetry comes into play 
in first order in vir (for an equilibrium oscillator, it 
is proportional to v3/r3[12J) and increases with the 
pump. At IVI « r the oscillator absorbs the energy of 
the applied field at all frequencies. Neglecting the non­
equidistance, the distribution of XA (n) turns out to be of 
the Lorentz type, and depends only on one pump param­
eter. namely the average excitation frequency A, which 
enters as an increment to the absorption-line half-width. 
The quantity A is added also to the half-width of the 
Lorentz line of the stationary luminescence of the 
harmonic oscillator. At V F 0, the luminescence spec­
trum becomes asymmetrical, and a fine structure ap­
pears in it at IVI »r. 

Expressions (24) and (17) for XA (n) become much 
simpler in the case of low temperatures. At Ii = 0 we 
have 

Xl(~J)= ARe fJ~(f.H-iQ.)-'f. (m) m ~ (m-s) (-1)n(n+sH) 
-'J ~ s p ~ n . 1.+2r(n+s) 
8=0 1»-' . n"""O 

( iV ) n+. 

X 2r+iV ' (26) 

where the rs were calculated with allowance for the con­
dition n = O. 

Formula (26) demonstrates the interference of the 
transitions between the levels of the nonlinear osc illator. 
If IV I »r, then the individual transitions occur almost 
independently, and we can obtain in first order in r/v 

I. - r.H -
Xl(Q)=2r {E (f.H)'+Q.' E pm[6m.,+C(I.; m,s) 1 

8=0 m_8 
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. (A ) m'rr'"-' (H2f. )-. C(A;m,s)= 1-- - --+j 
2r s! 2r . (27) 

i_O 

This leads to a criterion for the amplification of light by 
a nonlinear non-equilibrium oscillator in the case of 
stationary excitation of the shot-noise type 

1.>2r (iVI>f). (28) 

If (28) is satisfied we have C(A; m, s) < 0 and the prin­
cipal term in XA (Sl) can be negative. It is interesting 
that the amplification criterion is independent, accurate 
to terms ~r/v, of the pump power, i.e., of the energy 
that the oscillator acquires during one excitation act, 
and indicates only that the average excitation frequency 
should exceed the characteristic reciprocal relaxation 
time 2r. The amplitudes of the fine-structure lines that 
are asymmetrical when the second term of (27) is taken 
into account, and in particular of the lines corresponding 
to amplification, depends on the pump power, which is 
characterized by the matrix Po, and the amplification 
increases with increasing pump. 2) 

The qualitative picture of the change of XA (Sl) with 
changing A, Pm' and vir at Ii = 0 is shown in the figure, 
where it is assumed for simplicity that y = 0 (this corre­
sponds, for example, to the case of very low tempera­
tures T « wm ). When comparing curves 1 with 4, and 
2 with 5, on which A and Pm are the same, we see that 
with increasing nonequidistance the gain and the ampli­
fication frequency region increase; they increase also 
with increasing pump frequency A (curves 2 and 3), and 
especially with increasing pump power (curves 2 and 4) 
(it has turned out, for example that if vir = 6 and the 
pump goes to the first level, P1 = 1, then no gain is pro­
duced at any value of A). 

In the derivation of (24)-(28) we have assumed that as 
a result of each excitation act the diagonal elements of 
the density matrix of the oscillator Po turn out to be the 
same, i.e., in fact averaging was carried out over the 
state of the oscillator immediately after the excitation, 
independently of the averaging with respect to the instant 
of excitation. It is clear that this is valid if the energy 
spectrum of the excitation is broad enough (?: w). How­
ever, even under more stringent assumptions these 
averagings are relatively independent at A « w, if the 
duration of the excitation act is much shorter than A-1 

or r-l, since the final state is determined by the phase 
of the initial one (by the rapidly-oscillating off-diagonal 
elements of the oscillator density matrix). 

4. DISCUSSION OF THE RESULTS 

The theory of oscillator relaxation and the time­
dependent linear theory of the interaction of a non­
equilibrium nonlinear oscillator with light, which were 

Dependence of the imagi­
nary part of the polarizability 
of the nonlinear oscillator in 
the stationary regime on the 
frequency ff = 11 - w - V/2 
at different pumps and dif­
ferent ratios vir (n = 0). The 
curves correspond to the fol­
lowing values of the param­
eters (in a scale in which r = I): 
I-A=2.5, V=6,pz= 1;2-X 
=2.5, V= 12,p)= 1;3-X=4, V 
= 12,p)= 1;4-X=2.5, V= 12, 
pz= 1;5-X=2.5;V=20,p)= I. 
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developed in this paper, can be applied to a large num­
ber of physical systems. The relaxation theory des­
cribes, e.g., laser radiation in nonlinear media, particu­
larly in a plasma. An example of nonlinear oscillators 
can be electrons and holes in a quantizing transverse 
magnetic field in thin films or in narrow near-surface 
channels of a semiconductor, when a strong electric 
field leads to quantization of the motion transverse to the 
surface and the corresponding band splitting is large in 
comparison with the cyclotron frequency. A nonequili­
brium state in the system can be obtained by abruptly 
turning on an electric or a magnetic field. The anhar­
monicity of the oscillators is due to the nonparabolic 
dispersion of the carriers, and the energy relaxation is 
due to several mechanisms, included among which is the 
inelastic scattering of the carriers by the phonons. If 
this mechanism predominates, then certain results of 
this paper (in particular, the indiyidual results concern­
ing the amplification of the light) can be applied also to 
such systems if there is no degeneracy in them (we did 
not consider the translational motion of the carriers 
along the surface). 

All the results obtained in this paper are directly 
applicable to local and quasilocal oscillations of weakly 
bound impurities in crystals, and to nonequilibrium local 
oscillations in pure molecular crystals (see [10J). The 
characteristic frequencies w of the local and quasilocal 
oscillations of the impurities amount to 1013 _1014 sec-l, 
and the widths r at low temperatures can be 
1010-1011 sec-1 (according to estimates by 
Ovchinnikov, [10J for a strongly-excited local oscillation 
of a molecular crystal the value of r can be. 
10-105 sec-I). An investigation of the transient proces­
ses in systems of local and quasilocal oscillations can 
be carried out with the aid of two short (of duration 
< r-1 ) pulses, by using the first (high-power) pulse as a 
pump and measuring the absorption or scattering of the 
second (weak) pulse as a function of the interval between 
them. Experimental installations of this kind with pi:co­
second pulses are already in existence (see, e.g., [16J ), 
and a theoretical analysis of the results on the basis of 
formulas (14), (15) and (17) makes it possible not only to 
determine all the parameters of the investigated oscilla­
tors, but also to find directly the change of the state of 
the nonlinear oscillator in the field of a strong wave (the 
matrix Po). 

The density matrilc Po can be determined also from 
the luminescence of the selected oscillations. Since 
either local or quasilocal oscillations are frequently ex­
cited in the impurity center in the case of an electronic 
transition, [17J it follows that the determination of Po 
from their emission will make it possible to reconstruct 
the essential details of the electron-phonon interaction. 

The development of steady-state lasers operating on 
local and quasilocal oscillations calls for a high pwnp 
frequency A :;:: 2r (formula (28)). The stationary excita­
tion by a neutron or electron flux with sufficiently large 
A is a complicated task, since large particle flux densi­
ties are needed. A feasible way of exciting quasilocal or 
local oscillations is by optical means. For real impurity 
local or quasilocal oscillations, values A ~ 1010 sec-1 

can be obtained at a stationary pump field 104-105 V fcm 
(it is desirable that the laser pump frequency coincide 
with one of the secondary peaks in the impurity-oscilla­
tion spectrwn). The stationary pumping can also be 
effected with the aid of periodic high-power picosecond 
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pulses. The polarizability and lwninescence in such a 
regime are determined by expressions (14)-(18) and by 
the excitation-probability function?; (t - to) 
= T-18 (T - t + to), where T is the pulse repetition period. 

In the case of wide-band semiconductors at very low 
temperatures, pumping with high A can be obtained if 
the local oscillations are connected with the impurities 
that with which the strong-field -activated [18J hopping 
conductivity is realized. 

We note that inhomogeneous broadening of the spectra 
of the local oscillations in impurity crystals is of no 
Significance from the point of view of amplification if 
the frequency region of the amplification exceeds the 
inhomogeneous broadening. To increase the amplifica­
tion region it is necessary, as seen from the figure, to 
increase the average energy of the oscillator. 

The author is grateful to M. A. Krivoglaz for interest 
in the work and for valuable discussions. 

l)Expressions (14) and (15) forx(n, t-to) and wn(t-to) are valid also in 
the case when a wave of frequency n is incident on the nonequilib­
rium oscillator at the instant to. In this case Po depends on to-tb 
where t 1 is the instant of excitation of the oscillator. 

2)The terms -r/V were omitted in the derivation of the amplification 
criterion (28). When (n)o» I (large pump power, these terms can 
be significant and the condition (28) becomes less stringent. We note 
also that other pumping regimes correspond to other amplification 
criteria. In particular, if ~(t-to) = 6(T - t + to), then even in the 
harmonic-oscillator spectrum there are frequency intervals correspond­
ing to amplification. 
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