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Equations are derived which describe the dynamics of stimulated Raman emission in a resonator 
inhomogeneously filled with matter and excited by an external light beam. Cases of traversely 
inhomogeneous and "weak" longitudinal f!Iling are investigated. It is shown that in the case of transversely 
inhomogeneous filling the stationary generation of an arbitrary number of Stokes components possesses the 
same features as in the case of homogeneous filling (the difference is that the parameters of the system may 
change). A principally different pattern of the process emerges in the case of weak longitudinal filling. A 
number of stable regimes of stationary generation arise and the one that is realized depends on initial 
conditions in the sysfem. General expressions are obtained for the fields of all stimulated Raman emission 
components in the regimes mentioned; the dependence of the number of generated components, of their 
intensities, and of their frequencies on the intensity of the incident external beam is investigated. The 
existence of regimes with similar properties in two-level optical lasers is established for weak longitudinal 
filling of the cavity by the active component of the medium. 

PACS numbers: 42.65.Dr 

INTRODUCTION 

This paper is devoted to the development of a theory 
of stimulated Raman scattering in an optical resonator 
excited by an external light beam. The beam is incident 
along the resonator axis on one of the partly-transpar­
ent mirrors, and excites in the resonator one of its 
modes. In turn, the light field of the natural oscillations 
of the resonator causes, when definite threshold values 
are exceeded, generation of light at the first, second, 
etc. Stokes frequencies. At typical values of the dis­
tance between the mirrors, i.e., at resonator lengths 
L ~ 0.03-3 cm, and at spontaneous Raman scattering 
line widths ~W .~ 0.1-10 cm-\ a large number of axial 
(longitudinal) modes can take part in each of the Stokes 
components in the process under consideration. As to 
the transverse modes, it is assumed below that they 
can be selected in the resonator, so that only natural 
oscillations with the smallest transverse numbers, 
which differ only in the values of the longitudinal index, 
can be excited. The process of stimulated Raman scat­
tering for the first Stokes component under the indicated 
conditions was first considered by the present author[ll. 
Later on the results were generalized to the case of an 
arbitrary number of generated Stokes components[2,31. 
The analysis in this paper was limited to the case of 
uniform filling of the resonator with the active medium. 

In this paper, the theory is developed for the case of 
longitudinally and transversely non-uniform filling. In 
analogy with[1-31, the investigation consists in the de-
ri vation of equations describing the dynamics of the 
process of stimulated Raman emission under the con­
sidered conditions and then an analySis of these equa­
tions by the methods of oscillation theory 0 The treat­
ment presented below shows that the transverse inhomo­
geneity of the filling of the resonator under the con­
sidered conditions does not change in prinCiple the 
picture of the generation in comparison with the case of 
homogeneous filling in the sense that the system of 
equations describing the process of stimulated Raman 
emission will have in this case the same form as in the 
case of homogeneous fillingo At the same time, in the 
case of longitudinally-inhomogeneous filling by the ac-
ti ve component of the medium, the generation of the 
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Stokes components of the stimulated Raman emission 
acquires fundamentally a new character, which is deter­
mined by a radically new topology of the phase space of 
the system. 

We consider below in detail the case of "weak" 
longitudinal filling which can be regarded as the opposite 
limiting case of homogeneous filling (Le., filling "to the 
brim"). One of the features of the process of stimulated 
Raman emission in the case of weak longitudinal filling 
is the existence of a stable regime of monochromatic 
generation on one of the resonator modes, in spite of 
the fact that the threshold of the self -excitation at other 
modes, when taken separately, can be lower. This phe­
nomenon can be called self-capture of the mode. We ob­
tain below general expressions for the fields of all the 
components of the stimulated Raman emission in sta­
tionary regimes of monochromatic generation, and in­
vestigate the dependence of the number of stable re-­
gimes, of the number of generated components, of their 
intensities, and of their frequencies on the intensity of 
the incident external beam. 

1. DERIVATION OF INITIAL EQUATIONS 

Inasmuch as we consider below the interaction of an 
arbitrary number of Stokes components of stimulated 
Raman emission and bear it in mind that the field of 
each of these components is itself made up of an arbi­
trary number of resonator modes (whose natural fre­
quencies are close to the frequency of the given com­
ponent), it is necessary to retain all the terms in the 
expansion of the electric field in the resonator in the 
oscillation modes: 

(1 ) 

Here l is the order of the component of the stimulated 
Raman emiSSion, s is the number of the axial mode with 
natural frequency wlS close to the frequency of the 
component of order l (wl = P + lWr, p is the "central" 
frequency of the exciting beam, wr is the frequency of 
the vibrational transition of the medium), Els is the 
axial mode of the oscillations of natural frequency wls, 
the spectrum of the function E(l) is concentrated near 
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the frequency wl (we describe the exciting radiation 
here as a component with index l = 0). 

For the sake of argument, we consider a resonator 
with plane-parallel mirrors, bearing in mind here that 
the linear component of the medium filling the space 
between the mirrors can also be homogeneous in the 
transverse direction with respect to the resonator axis 
z.· If the zero value of z corresponds to the surface of 
one of the mirrors, then the expression for the axial 
modes can be written in the form (see[4,51) 

(2 ) 

where L is the distance between mirrors, mts is an 
arbitrary (large) integer. The natural frequency corre­
sponding to a mode of this type is defined by 

(3 ) 

where c is the speed of light in vacuum, the function 
neff(w) is a specified function of w for a given type of 
transverse inhomogeneity of the linear component and 
is determined by the dispersion of the substance, i.e., 
by the frequency dependence of its refractive index 
n(w), and by the concrete form of the indicated trans­
verse inhomogeneity. 

In the case of greatest practical interest, when the 
characteristic scale of variation of g ls as a function of 
rl is much larger than the length 21T/kzs .of the light 
wave, and when the values of wlS correspond to regions 
of transparency of the linear component of the medium, 
the neff(w) dependence in the vicinity of the considered 
frequencies is usually weak. As to the numbering of the 
modes in (1), it can obviously be arbitrary. For con­
venience in the exposition, however, we adopt here a 
special numbering such that the follOwing inequalities 
hold for l, s, l', and s' 

m,'.'-m,,= (I' -I) L'.m+s' -s, (4) 

where ~m is an integer that does not depend on t, s, t' , 
and s' (convenient values are ~m ~ (1Twr/cL)neff(P». 

The sought system of equations describing the change 
of the quantities tfls should be determined from the 
equations of the field in the resonator and from the 
material equation of the medium. The field equations 
can be written in the form of the following system of 
ordinary differential equations for the coefficients tf qT 
from the expansion of this field in the modes EqT and 
HqT (see[4,6]): . 

(5) 

where 

1 J 2 1 J N,,~- BE" dV=-- J.LH,,'dV 
4n 4n 

is the norm of. the (EqT , HqT ) mode; QqT is its figure of 
merit; € and J.I. are the dielectric constant and magnetic 
permeability of the linear component of the medium; 
P = P(r, t) and M = M(r, t) are the additional parts of 
the polarization and magnetization of the medium with 
respect to those principal parts which are taken into 
account in the definition of the modes. In our case, P 
= Pnl + Pext, where Pnl is the nonlinear form of the 
polarization, determined by the active component of the 
medium in the resonator; Pext = Re(Poe-ipt) and Mext 
= Re(Moe-ipt ) are the speCified extraneous polarization 
and magnetization, and are determined by the exciting 
beam. 
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The equation for the nonlinear part of the polariza­
tion, Le., the material equation of the medium that is 
active in the Raman spectrum, is (see, e.g.p,Sl) 

Pnl=Nx~E, X+2hi+0l;X=~~E2. (6) 
dx m dx 

The constant coefficient da/dx here is the derivative of 
the polarizability of the molecule of the medium with 
respect to the normal coordinate x of the displacements 
of the nuclei, m is the reduced mass corresponding to 
this normal coordinate, h is the half-width of the line 
of the spontaneous Raman scattering (h « wr), and N is 
the density of the molecules of the medium. In the case 
of inhomogeneous filling of the resonator by the acti ve 
component of the medium, the density N depends on r. 

Substituting (1) in (6) and omitting the terms that are 
nonresonant with respect to the oscillator in the left­
hand Side, we can easily verify that x can be repre­
sented in the form 

x= ,I:x,,,'(E,.E,+I."), (7) 
lu' 

(8) 

Substituting further (1) and (7) in the first equation of 
(6), we easily obtain an expression for Pnl, which, tak­
ing (5) into account, yields the follOwing system: 

(9) 

which forms together with (8) a closed system of equa­
tions for the temporal functions CqT and xlss". We have 
put here 

t,. = J (P,E,.-M,H,.)dV =""!:'-J (E,H,.)dS, (10) 
4np 

Eo is the complex amplitude of the electric field vector 
of the exciting beam passing through one of the Slightly 
transparent mirrors (on which this beam is directly 
incident), under the condition that there is no second 
mirror (and by the same token no resonator); the inte­
gration in the last expression of (10) is with respect to 
the internal (relative to the resonator) surface of the 
first mirror. However, for an arbitrary form of the 
inhomogeneity of the active component of the medium, 
Le., for an arbitrary form of the function N(r), the 
system (8), (9) is quite complicated. We therefore con­
fine ourselves below to two cases: 1) transverse in­
homogeneity (N = N(rl» and 2) inhomogeneity corre­
sponding to weak longitudinal filling of the resonator by 
the active component of the medium (see (12». 

In the first case, the system (9) is Simplified be­
cause some of the coefficients that are contained in it 
(in the form of volume integrals) vanish. Starting from 
(2) and (4), we can verify that in this case Eqs. (8) and 
(9) reduce to the system considered in[ 2], in which it is 
only necessary to replace formally the parameters in 
the following manner: 

n (00) -+neff (00), 

N J (E,.E".,) (E,.E, .• ,)dV -+ J N(ri ) (E"E, .•. ) (E"E,.,,)dV. 
(11) 

All the subsequent transformations of the so-obtained 
system, and the conclusions Of[1-3], with allowance for 
(11), are directly applicable also to the considered case 
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of transversely inhomogeneous filling (both with respect 
to the linear and with respect to the active components 
of the medium). 

The regimes of stationary oscillations of the field and 
their stability were investigated in[3l, on the basis of the 
system of[2l, for the case of a sufficient dispersion of 
the refractive index n(w), for example such as the dis­
persion of the refractive index of a liquid or a solid. 
Therefore the results of[ 3l are valid also for the case of 
a transversely-inhomogeneous filling of the resonator, 
provided that the dispersion of neff(w) is relatively 
large (for example, of the same order as the dispersion 
of liquids or solids). In[2 l, in addition, a system of equa­
tions was obtained, valid in the case of very weak dis­
persion of n(w), for example such as the dispersion of 
the refractive index of low-pressure gases. The corre­
sponding system was considered in the subsequent 
paper[9l, where it was shown that in the case of stimu­
lated Raman emission in gases, various field compon­
ents are in general synchronized with one another, so 
that the total output radiation from the resonator con­
stitutes a sequence of ultrashort (subpicosecond) 
pulses. In accordance with the foregoing, the results 
of[9l are valid also in the case of transversely-inhomo­
geneous filling, including liquid or a solid, if the disper­
sion of the quantity neff(w) is small enough (a quantita­
tive criterion is given[2l. for Eq. (11) must also be taken 
into account). Thus. we arrive at the conclusion that in 
the case of suffiCiently low dispersion of neff(w), the 
use of a transversely-inhomogeneous medium (for exam­
ple, fiber opticS[5l) will make feasible the generation of 
subpicosecond pulses by stimulated Raman emission in 
condensed media. 

We consider now the second case, corresponding to 
longitudinal inhomogeneity of the active component of 
the medium, i.e., we put N = N(rl, z), and bear in mind 
the fact that the values of N differ from zero only in the 
interval ° < z < 6. L (or L - 6. L < z < L), and that the 
longitudinal dimension 6. L satisfies the conditions 

h 
t'1£<t:.L, -k,t'1£<t:.1, (1=-1, -2 ... ), (12) 

w, 

where lq = c·1wlneff(w); the linear component of the 
medium can in this case be transversely inhomogeneous. 
The inequalities (12) will be called the conditions of 
weak longitudinal filling. We fix one each of the axial 
modes of the resonator oscillations in the vicinity of 
each of the frequencies wl within the limits of the line 
width of the spontaneous Raman emission, and label 
these arbitrarily chosen modes with the index vl. The 
conditions (12) mean that in the region occupied by the 
active medium we can put sin ktsz I::; sin klvlz. Equa­
tions (8) and (9) then simplify because all the nonlinear 
terms in them can be represented in the form of the 
products tfl tfl+l and linear combinations of the products 
tf qXl, where 

lS, = ~ lS", x, = ~ x,,,', (13) 
,,' 

With the quantities xlss' entering in this system only 
via xl' The system obtained in this manner (which we 
do not write out here for lack of space) differs signifi­
cantly in form from the equations describing the con­
sidered process of stimulated Raman emission for the 
case of a homogeneous medium (see[2l), and this in turn 
leads to principal differences in the dynamics of the 
process. Our problem is to investigate the solutions 
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corresponding to harmonic (in each of the components) 
oscillations of the field and their stability. 

We note first that in all the cases of practical inter­
est the obtained system is close to conservative and its 
solutions can be sought in the form 

lS ",=1/2y" exp[ -i(Q".-6,) tl+ c.c., 
(14) 

With the quantities YqT and Xz regarded here as 
"slowly varying amplitudes." Here t means the dimen­
sionless time pt, and we have introduced the symbol 

Q,.=w,./p. (15 ) 

Substituting the expressions (14) in the system under 
consideration and averaging. as is customary in the 
Van der Pol method over the fast OSCillations, we can 
obtain a system of equations for the quantities YqT and 
Xz; this system. in turn, can be written in the form 

Y"=G(Yq .,, X,), ~X,=H(Y,,,, X,), (16) 

where 

(17) 

.' 
G ~ H; the parameter f3 is small under the conditions 

11I,<t:.I1, 16,1<t:.11 (18) 

and at not too large excess over the generation thresh­
old. We have put here 

11,,=w,,/2pQ,", l1=h/p. (19) 

The first condition of (18) is of greatest practical in­
terest and will henceforth be assumed satisfied. It 
means that the width of the resonance curve of each of 
the conSidered .resonator modes is much smaller than 
the width of the spontaneous Raman scattering line. The 
second condition, as will be seen below, is also satisfied 
if the values of nqvq are correctly chosen or, upon cor-
rect choice of the "zeroth approximation" eigenfunc­
tions numbered by the indices qvq' 

Bearing in mind (18) and assuming here that f3XZ = 0, 
we can write in explicit form the system of equations 
for the quantities Y 1 s: 

(20) 

The nonlinear terms of the right-hand side take here the 
form of linear combinations of the products yt'YZ+IYq-b 
YlYi+l Yq+b the sum of these terms having factors that 
depend explicitly on the time 

(21 ) 

where 

The values of nl:lt) (the expressions for which we do 

not write out), are determined by the function neff(w). 
At dneff / dw == 0, these quantities are equal to zero at 
all values of q and l. On the other hand, if dneff / dw 
== 0, then they are in general different from zero (with 
the exception of n~:q-l and nq~, which vanish iden­
tically). At a sufficient dispersion of neff(w). for exam­
ple on the order of that of the refractive index of liquids 
or SOlids, i.e., at dneff/dw ~ 10'17 sec/rad, the nonzero 
quantities I n~2)1 greatly exceed the typical values of 
JJ.qT, which determine in turn, at not too large excesses 
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above the generation threshold, the characteristic 
times of variation of the amplitudes Yq . If it is recog­
nized at the same time that corrections ~q to the cor­
rectly chosen frequencies nqvq are usually smaller 
than or do not exceed significantly the values J.!. qT (see 
(33 », then we see that in the case of sufficient disper­
sion of neff(w) (it is precisely this case which will be 
considered below), some of the indicated terms in the 
right-hand side of (20) are, on account of the factors 
(21), rapidly oscillating in time and can be left out. As 
a result, Eqs. (20) simplify and take the form 

Y,,=- [f.t,,+i(~,H~,,-Q,v,) lY qT+( 6" I Yo+d '-p" I Y,-II ') Y, (23) 
+iF"6,, exp[i(Q".-~,-l) t], 

where 

1 da 0), 

1']=--.---, Q=-, 
4mrQ dx p 

(24) 

1I0q are Kronecker symbols. Equations (17) compliment 
Eqs. (23) to form a closed system. The values of YqT 
at q > 0 in (23) must be set equal to zero, since the ex­
citation ofthe corresponding (anti-Stokes) components 
generally takes place as a result of terms with factors 
(21). Omitting the corresponding terms, we neglect by 
the same token, in particular. the fields of the indicated 
components. 

It should be noted that the coefficients in (23), just as 
in (16) and (20), depend in fact on prescribed values of 
Vq. By the same token, each of the indicated systems 
actually is an aggregate of systems corresponding to 
different sets of vq. The investigation of the phase 
space of the system (17) and (23), at a fixed series of 
values of vq, would not give correct results on the 
whole, since this space does not correspond on the 
whole to the phase space of the initial system. The 
latter, in turn, is connected with the fact that on going 
from Eqs. (16) and (20) to Eqs. (23) we have assumed 
that the frequency corrections ~q to the values of OqVq 
are relatively small (at a given scale of the time varia­
tion of the amplitudes Yq), which in turn can be satis­
fied for the vicinities· of various regimes only by speci­
fying different sets of vq. 

In accordance with the foregoing, under the con­
sidered conditions (12), at a sufficient dispersion of 
neff(w), the problem reduces to an investigation of the 
equilibrium states of the system (17) and (23) for differ­
ent sets of vq. These states, by virtue of (14) corre­
spond to harmonic oscillations (in each of the compon­
ents) of the field in the initial system. 

2. HARMONIC OSCILLATIONS 

Let the exciting beam be monochromatic and let its 
frequency p be close to one of the natural frequencies 
wOvo' We assume that ~o is equal to 

(25) 

The equilibrium positions of the. system (17), (23) are 
determined from the condition YqT == 0, which yields a 
system of algebraic equations for the time-independent 
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quantities YqT == Yqp The algebr~ic system of equa­
tions obtained in this manner for YqT can be easily re­
duced to a system of equations for the quantities 

Y, = L: YqT. 

We have 

P,[ l-G,(~,) (1\ \Yo+d '-p, I Y,-,J ') 1 =Zoll", (26) 

where we have introduced the notation 

L: 1 
G,(I1,) = -i , 

11 -iu +sI1Q(q) 
s qrq· ax 

(27) 
I1Q .('x) = rec ," 

pLn eff (0),) Uq=u,vq, P,=P,v, 

and we have put IIqT = liqvq and PqT = PqVq' since 
usually the indicated quantities 11 and p are slow func­
tions of T. By virtue of (10) and (24), the quantity Go is 
determined by the complex amplitude of the exciting 
beam, so that the values of \ Zo \2 are proportional to 
the intensity of this beam. At a given set of values of 
linear losses J.l.qs of each of the modes, the quantity 
Gq is a specified function of ~q. For example, if these 
losses do not depend on the index s (J.i.qs == J.l.q), then 
we have 

The system (26) with respect to the Stokes components 
determines the values of \ ~q \2, ~q (q = -1, -2, ... ). 
The phase shifts of the oscillations of each of the Stokes 
components are arbitrary, Le., the initial system is 
autonomous with respect to each of these components. 
We see that Eqs. (26), for any set of values of vq, is a 
system of infinite order. 

Assuming that the mirror reflection coefficients at 
the frequencies of the considered components are close 
to unity, we find that all the resonator modes that take 
part in the stimulated Raman emission satisfy the con­
ditions 

(28) 

Recognizing also that in this case \ ~q \ «~n~ (see 
(33», we can put 

(29) 

In addition, taking (18) into account, the values of ~q in 
the expressions for IIq and Pq can be set equal to zero. 

We present the solution of the system (26), which is 
valid for the case when Gq(~q) is determined by (29). 
The form of this solution depends on the values of \ ZO\2, 
so that the straight line \ Zo\2 ~ 0 can be broken up into 
a number of intervals 

IZ,I~( {'V,} )<lz,l' < IZ,I!-I( {'V,}) 

(m is an arbitrary negative integer), in which this form 
remains unchanged. Each interval of the values of 
\ Zo \2, corresponding to a given value of m, is charac­
terized by the fact that \ m I Stokes components are 
simultaneously~generated in it (Le., Yq '" 0 at q = -1, 
-2, ... m and Yq = 0 at q < m). In the corresponding 
interval, we have for odd m 

q=-l, -3, ... ;;. m 

(30) 
q=o, -2, -4, ... > m 
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For even m, other expressions are valid: 

\ 

~(~(m_I)_~(,'), q=-1, -3, ... > m 
IY,I'= a 

a':' [IZ,I' D(~''''-'') -~(,'], q'=O, -2, -4, ... ;;;. m 
where 

(31) 

.!~(~,q), q=-4,-6 ... 
~(q,= 

( Iql-1 ) , 
~ -2-,q ,q=-5,-7 ... 

!
a(4!-,q), q=-2,-4 ... 

(X.(q) = 

( Iql-1 ) 
a ~,q ,q=-3,-5 .. 

A-I It 

~ (k, q)= 1:, ( II aO+2I '-I) ~O+'I-1+~<+2A-h 
1"",1 1'_1+1 

• 
a (k, q) = II ao+'l-I, 

'¥ (y) = Ip,I-'{-:-(I"Po'+~,p,") +[ Ip,I'(",.'+~,') (y-1)+ 
+ (I',Po'+~,po")2l"'}, 

D( )_ I'o'+~o' 
Y - (lto+Po'y)'+(~,+po"y)" 

~,=I',/lI.', a,=p.'/{j,', 1',=I"'q 

(32) 

(0' , pi, and 0", p" are the real and imaginary parts of 
the numbers 15 and p; here and below it is implied that 
the expressions (24) and (27) for these quantities are 
taken formally at ~q+1 = ~q = ~q-1 = 0). The frequency 
corrections ~q for arbitrary m are given by the formu­
las 

~ =~ + 8,+e,_, 'IY I' 
q J.1q pq q-t 

It ~t 

and the initial amplitudes Yqr are determined by the 
expressions 

(33) 

Y.,=G.- 1 (~,) [I',,+i(~,+Q,;-Q"q) j-IY,. (34) 

We present also expressions, which follow from (31) 
and (30), for the boundary conditions 1 Zol:n({vq}) that 
determine the excitation thresholds of the generation 
regimes 1 m 1 of the Stokes components: 

IZI'({v})={~("'_')/D(~(m), m=-1,-3,-5,00' (35) 
Om, ~(m)/D(~(",-l). m=-2.-4,-6 .... · 

We see that according to (24), (27), and (30)-(34), all 
the considered regimes that are possible in the initial 
system at fixed values of its parameters have different 
sets of values of Vq,. and these values of Vq can be 
specified arbitrarily. Expression (34) is exact in this 
case. Expressions (30)-(33) and (35) are the lowest ap­
proximation in terms of the parameter J.l.q/ ~n~ (see 
(28)). The corresponding higher-order approximations 
will not be written out here 0 The presented expressions 
make it pOSSible, in particular, to estimate the total 
number of the possible regimes in the initial system at 
given values of its parameters, and to classify these 
regimes in accordance with the number of the generated 
components, by starting from the fact that the oscilla­
tion regimes with participation of 1 m 1 Stokes compon­
ents correspond only to those sets of Vq for which 

IZ,lm'( {v,}) < IZ,I'· 

It is interesting to note that according to (1), (14), 
and (34), the spatial structure of the field in each of the 
considered regimes is determined for each of the com­
ponents by a linear combination of the coordinate parts 
of Eqr of different resonator modes. Nonetheless, we 
shall refer to these regimes subsequently (although 
conditionally) as single-mode, bearing in mind the fact 
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that when (28) is taken into account the dominant role is 
assumed in the indicated combination, for a given value 
of vq, by the mode Eqvq . No such situation arises in 
the case of homogeneous filling of the resonator by the 
active component of the medium, when the regimes of 
the monochromatic generations are strictly single­
mode (see[l,3]). 

We consider now the general character of the depend­
ence of the intensities of the oscillations 1 Yq 12 on the 
excitation intensity. With the aid of (30) and (31) we can 
easily see that under the conditions (28), when an odd 
number 1 m 1 of Stokes components is generated, the 
intensity of the oscillations of all the even components, 
including the exciting one, is practically independent of 
the intensity of the beam incident from the outside. The 
intenSities of the oscillations of all the odd components 
increase monotonically with increasing incident inten­
sity. At the same time, when an even total number of 
Stokes components is generated, it is the intensities of 
the oscillations of all the odd components which turn out 
to be practically independent of the intensity of the light 
incident from the outSide; the intensities of the oscilla­
tions of all the even components, including the exciting 
one, increase monotonically with increaSing intenSity of 
the exciting beam. 

As to the corrections ~q to the natural frequencies 
of the resonator oscillations, they are due according to 
(33) to a change in the refractive index of the medium in 
the strong field, and at not too large excesses over 
threshold, Le., at not too large 1 Yq_112 they can be 
seen to be usually less than or not much larger than the 
values of J.I.q. We see also that at 1 ®ql, 1 ®q-11 « J-I.q or 
else at 1 ®q + ®q-11 « J-Lq the values of 1 ~ql cannot 
exceed the values of J-Lq even at very large values of 
IYq_11 2 • 

3. STABILITY OF HARMONIC OSCILLATIONS 

In the case of homogeneous filling of the resonator, 
the only stable stationary regime is the one character­
ized by the fact that'in each Stokes component there is 
excited a mode with the lowest self-excitation threshold 
(see(1,3]). In the considered case of weak longitudinal 
filling, such a regime can be set in correspondence only 
to one of all the possible sets of Vq. The remaining 
aggregate {vq } corresponds to regimes in which the 
prinCipal role is played by the oscillation modes with 
higher self-excitation thresholds. We shall show that 
these regimes, in the case of a weak longitudinal filling, 
turn out also to be stable, and furthermore in a wide 
range of the system parameters. For simpliCity we 
confine ourselves to the regime in which one first 
Stokes component is generated, with allowance for the 
two modes in it (r = V-1, 0). We assume also that 

~=O; IQ-1._,-11.IQ_,,-11~1'; (36) 

I'-"~ I Q-I._.-Q-J" 1,1'0. 

This means that the frequency of the optical oscillations 
in the exciting beam coincides exactly with the natural 
frequency nOv of the resonator. Both natural frequen­
cies of the oscfllations in the Stokes component lie near 
the center of the line of the spontaneous Raman scatter­
ing; the resonance curves of the corresponding modes 
are much narrower than the frequency interval between 
them and than the frequency width of the mode at the 
exciting-beam frequency. Under these conditions, Eqs. 
(23) reduce to the system 
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where (l = Go(O)p~ > 0; T = 11-1, 0; K = 2. We shall re­
gard the case iJ. -111_1'" j-L-1O, as possible, so that the 
self-excitation thresholds of the considered modes, 
when taken separately, can differ significantly. 

Linearizing the system (17), (37) in the vicinity of 
the considered equilibrium position, we obtain the fol­
lowing expression for the characteristic polynomial 
D(A) that determines the stability of the corresponding 
generation regime: 

.,(4al1_,,)Y-,I' ) (Q Q)' D (A) = 1.'+21. + 11_10-11_"., + A -".,--10 
1+alY_,I' 

4(Q _Q )' GtI1-".,IY-,I' 
+ -"., -10 1+alY-tl' 

(38) 

Applying next the Routh-Hurwitz criterion, we obtain the 
stability condition 

(39) 

We see that if the intensity of the oscillations I Y_ 1 12 
exceeds the value of 0'-1 (this corresponds to an approxi­
mate two fold excess above the generation threshold for 
the mode II-d, then the condition (39) is satisfied at any 
ratio of iJ.-111_1 and iJ.-1O, i.e., for any ratio of the self­
excitation thresholds of the considered mode. This 
means, in particular, that the generation regime in 
which the predominent role is played by the mode with 
the higher self -excitation threshold turns out to be 
stable, in spite of the presence, within the limit~ of the 
line width, of spontaneous Raman scattering of the type 
of oscillations with a smaller (or even much smaller) 
self-excitation threshold. In the opposite case I Y_ 1 12 
< 0'-\ the stability conditions of the similar regime, 
according to (39), is determined by the ratio of the ex­
cess above the generation thresholds at the mode 11-1 
and the ratio of both thresholds. We see that the de­
scribed regime, which we shall call the "mode self..., 
capture" regime, is observed in a wide range of varia­
tion of system parameters and its degree of stability is 
larger the larger the excesS above the generation 
threshold. 

Thus, in the considered case of weak longitudinal 
filling of the resonator, it becomes possible to observe 
a large number of stable oscillation regimes obtained 
at fixed values of the system parameters and at various 
sets of the values of 'ilq. The realization of any particu­
lar regime will be determined by the initial conditions 
in the system. If the numb!'!r of generating components 
is I m I and the number of axial modes within the limit 
of the line width of the spontaneous Raman scattering is 
n, then the number of such regimes can be estimated at 

nl ml, i.e., this number can be quite large. For example, 
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at n = I ml = 10 it amounts to lOW. Because of this, 
such systems can find use as elements of optical 
memory, optical lOgical devices, etc. 

We note in conclusion that equations of the type (37) 
can be obtained also for weak longitudinal filling of the 
resonator by a two-level active medium under the con­
dition that the width of the resonance curve of each of 
the resonator modes is much smaller than the values of 
Til and T~\ where Tl and Til are the transverse and 
longitudinal relaxation times for the considered transi­
tion of the substance. In this case it is necessary to put 
K = 1 in (37). As applied to the case of a two-level 
medium, the conditions of weak longitudinal filling will 
take the form (12), where wl and h must be taken to 
mean respectively the frequency (wL) and the half­
width (Til) of the luminescence line. By direct calcula­
tions on the baSis of Eq. (37) with K = 1 we can verify 
that the mode self-capture regime is here likewise 
stable in a wide range of system parameters. Thus, the 
considered regime should be observed also in the case 
of a two-level weak longitudinal filling of the resonator, 
i.e., in the corresponding two-level quantum generator. 
It is clear also that a stable mode self-capture regime 
should be observed also in a Raman laser with a travel­
ing pump wave in the case of weak longitudinal filling of 
the resonator. The appearance of this regime is possi­
ble also in a homogeneously-filled Raman laser, if the 
excess above the generation threshold is large enough. 
In the latter case, the role of the required inhomo­
geneity of the active medium can be played by the longi­
tudinal distribution of the intensity of the exciting beam. 
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