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1. In theoretical consideration of the scattering of 
slow electrons by atoms, the greatest difficulties arise 
out of the need for accolJ,nt of the exchange between the 
incident and atomic electrons and the polarization of the 
atom by the Coulomb field of the incident electron. 
Many approximate methods have been advanced for solu­
tion of the problem of electron-atom collisionsYl How­
ever, they all possess a Significant disadvantage-the 
difficulties of calculation in all these methods increase 
sharply with increase in the number of electrons. 

In the present paper, the apparatus of the quantum 
theory of many bodies is employed to study the scatter­
ing of slow electronsY] The self-energy part ~ of the 
Single-particle Green's function is identical with the 
optical potential of standard scattering theory[3] and the 
scattering phase shifts are expressed directly in terms 
of ~. A method is proposed for calculation of ~ in the 
Simplified random phase approximation with exchange 
(SRP AE), in which the basic diagrams entering into the 
random phase approximation with exchange (RPAE) are 
taken into account. The advantage of such a method of 
calculation of the scattering phases lies in the absence 
of any hypothesis of adiabaticity, and also of free 
parameters. Also of merit is the SimpliCity of calcula­
tion, which allows us to take into account the scattering 
phases of the slow electrons on practically any atom 
with filled or half-filled subshells. 

The total and differential elastic scattering cross 
sections of electrons with energies up to 30 eV by He, 
Ar, and Xe atoms are obtained in the SRPAE. The re­
sults of the calculation agree well with the experimental 
data. 

2. We consider the scattering of a slow electron by 
a neutral atom with Z electrons. In what follows, we 
neglect the recoil effects and place the atomic nucleus 
at the coordinate origin; r is the coordinate of the in­
cident electron, rj the coordinates of the atomic elec­
trons. We shall assume that before the collision the 
atom was in the ground, nondegenerate state. We o.enote 
the Hamiltonian of the atom by HA: 

H A 4Jl,,=W.4Jl., (1 ) 

Wn and ~n will be conSidered known. The energy of the 
ground state and the wave function are denoted by W 0 

and ~o, respectively. 

The scattering of the electron by the atom is de­
scribed by the equationll) 

V,' Z ii 1 . ] 
[ ----+ '"'--+HA 'I'=(E+Wo)'I' 

2 r Lllrj-rl 
)=l 

(2) 

(E is the energy of the incident electron). We can ex­
pand the wave function lit in the complete set of func­
tions ~n, and all the information about the elastic scat-
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tering is contained in the term of the expansion with 
n = 0: 

'I' e1 = 'I' 04110. (3 ) 

Our goal is to find an equivalent potential Vopt such 
that lito can be obtained from the Single-particle equa­
tion 

(_II, V ;+ Vo.,) 'I' o=E'I' 0. 

It is convenient to represent Vopt in the following 
form: 

(4) 

(5) 

The optical potential in the zeroth approximation V<~pt 
should be so chosen that the scattering problem in 
the field V<~pt has a suffiCiently simple solution and the 
difference Vopt - V<3bt = V<~pt can at the same time be 
regarded as a small perturbation. As V<~pt we take the 
Hartree-Fock potential of the interaction of the elec­
tron with the atom. For this choice of V<o~t we take the 
Pauli principle into account, i.e., exchange of the inci­
dent electron with the atomic electrons from the very 
outset. We shall regard the wave functions l/!, which 
are the solution of the equation 

(-II,V;+Vo~!)It=EIt, (6) 

as known, and choose them as the basis for finding 
V<~~t. We represent them in the form 

~ )'; I" ( ) PEl (r) y () (7) 11'= Ll (2rt 'i e' '.Y'm e., <po (2E) '!.r 1m e, <p , 
1m 

where e k, cP k and e, cp are the spherical angles of the 
directions of the momentum vector of the incident elec­
tron and its radius vector. The function PE t{r) is the 
solution of the equation 

( 1 d' 1(1+1) <0) ) (8) 
-2dr'+~+V0P1 (r) PE,(r)=EPEI(r), 

is normalized to a 0 function of the energy, and satis­
fies the boundary conditions 

PEl (0) =0, PEl (r) = (2"'/rtE''') '" sin[ (2E) "'r-rt1l2+lliO)], (9) 

where O~O) ( E) are the scattering phases in the Hartree­
Fock approximation. 

In the Born approximation for the potential V<~~t' 
the correction to the phase OZ( E) is determined by the 
expression 

(10) 

The criterion for the applicability of the Born approxi­
mation is the condition 

(11) 

3. Bell and Squires[31 have shown that the self-energy 
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part of r; of the single-particle Green's function G is 
identical with the optical potential Vopt. Actually, the 
propagation of an additional particle described by the, 
Green's function is determined by its interaction with 
the atomic electrons. The self energy part is an 
averaged potential, nonlocal, dependent on the energy 
and, in general, complex, formed by all the particles of 
the system. 

Similar to (5), we divide r; into two parts: 

}:~}:HF+}:(!) (12) 

where r;HF is the self-energy part, found in the 
Hartree-Fock approximation. Then expression (10) can 
be written in the following form: 

116, (E) ~-n S P., (r) }:«'PE , (r) dr. (13 ) 

The matrix element of r;(l) is equal to 

<kl}:«' (w) Ik>~ .E S dw, dw, (kk,i Vlk(k,) 
.,.,., (2n)' w-w,-E.,+i6(1-Z".,) 

(k,k,1 f (w, w" w,) i kk,) 

[w-w,-E"+ib(l-2,,.,) 1 [w-w,-w,-E.,-h6(t-211.,) l' (14) 

Here < k l , k3 \ V \ k2k4) are the Coulomb matrix elements: 

<k,k, I VI k,k,) ~ J '1'.: (r.) 'f.; (r,) V (I r( -r,l) <p •• (',) <P •• (r,) dr, dr" (15) 

r ( W, WI, W 2) is the amplitude of the effective interac­
tion.[2j The index k denotes the set of four quantum 
numbers n, l, m and s. 

Summation over k includes integration over the con­
tinuous spectrum (k> F) and summation over the oc­
cupied states (k:5 F); nk is the Fermi step: nk = 0, 
k > F; nk = 1, k:5 F. 

Up to this point, we have made no assumptions as to 
r, and expression (14) for the matrix element of L(I) is 
exact. It is known from the theory of the electron gas 
which processes make a fundamental contribution to L. 
in the limiting cases of high and low electron densi­
ties.l 4 ] Estimates show[5] that in medium and heavy 
atoms, one should use the high-density approximation. 
Calculations of the cross section of photoionization, the 
polarizability of the atoms, the constants C 6 and C 8 of 
atomic interaction at large distances, etc.,[5,6J have 
shown that the application of this approximation in the 
atom gives excellent results. In the high-density ap­
proximation, the largest contribution is made by the in­
finite series of so-called" lace" diagrams which de­
scribe the virtual excitations of one, two, three, etc. 
pa~ticle-hole pairs .[4] In the use of this approximation, 
WhiCh has come to be known as the random-phase ap­
proximation (RPA), it is also necessary to take into 
account the corresponding exchange terms in the atom 
inasmuch as the Hartree-Fock approximation and not ' 
the Hartree approximation is chosen as the zeroth ap­
proximation. 

Summation of the graphs by the random-phase 
method with exchange (RPAE) leads to an equation for 
the amplitude of the interaction:[5] 

(k(k,: f(w) I k,k,)~(k(k,1 UI k,k . .> 
+ (.E -.E ) (k(k,~r(w) Ik,k,>(U:IUik,k,) , 

'.""F ',>" W E,,+E •• +,6(1-2n,,) (16) 

Le., the matrix of effective interaction in the RPAE 
approximation depends only on the transferred energy 
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, (17) 

With account of (16), we integrate (14) over W2 and, 
taking the matrix element r;(I) on the mass surface, 
Le., for W = Ek, where Ek is the energy of the incident 
electron, we obtain for the scattering phase shift in the 
RPAE approximation 

/1I.),RPAE (E ) =-in ~ 1 
, • ~ (21+1) (~l.+ 1) 

(18) 

The reduced matrix elements < II Vl ,II), < II UllI) , and 
( II rl II> are determined in accord withl6J. ' 

In the lowest-order RPAE 

<k,k,llr,(w) Ilk,k,)",,<k,k,IIUdlk,k.) 

and we can integrate over W in (18): 

!16 0 (E )~-n ~ __ 1 __ _ 
'.' i.:..J(21+1)(21.+1) 

( ~ + ~) (k,k,IIV,lIk,k,)<k,k,IIU,lIkk,) . 
i.:..J i.:..J E.-E"-E,,+E,,+;fi(l-Z,, • .l 

It,k~>f' 1I.,h~';;;;;F (19) 

Equation (19) is shown graphically in Fig. 1. Here the 
solid lines with arrows to the right correspond to the 
propagation of the particle (k > F), and those with 
arrows to the left to the hole (k:5 F); the wavy lines 
correspond to Coulomb interaction. 

4. In order that we may use the apparatus of many­
body theory to study the scattering of electrons by an 
atom, the wave functions of the incident and atomic 
electrons should form a complete orthonormalized set. 
The wave functions found in the Hartree-Fock approxi­
mation satisfy this condition, and the wave functions of 
the excited states, which we denote by rpN+1, describe 
the motion ofthe electron in the field ofthe neutral atom. 
In the use of such wave functions in perturbation theory 
in the interelectronic interaction, difficulties arise that 
are connected with the logarithmic divergence of the 
diagonal (in the hole state) Coulomb matrix elements 
< Ei II Vl II E'i) with l = 0. In order to avoid these diffi­
culties, we determine the wave function of the particle 
in the field of a singly charged ion: 

( _ \" -~ + ~ S i<p,(r') I:dr') <p/(r) 
2 r i.:..J Ir-r 1 

j';;;;'F (20) 

It has been shown[51 that the use of the functions 

rp~(r) is equivalent to summation of the graphs of the 
RPAE method that are diagonal in the hole state and 
that are directed forward in time-see Fig. 2. Here the 
double line corresponds to propagation of the electron in 
the field of the ion. We note that the graphs of Fig. 2 
are Goldstone graphs and it is impossible to rearrange 
the order of interaction in time in them (time increases 
from left to right). 

FIG. 1 
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Allowance for the contribution of multielectron cor-
relations to the scattering phase shift of the electrons 
in the lowest order of the RPAE approximation by use 
of the functions cpN+1 for the incident electron and the 
function cpN for the virtual excited states of the atomic 
electrons will be called the simplified random phase 
approximation with exchange, SRPAE. In the SRPAE 
approximation, diagrams with "time reversal," which 
are taken into account in the RAE, do not appear. 

5. We calculated the elastic scattering of electrons 
with energies up to 30 e V, He, Ar, and Xe atoms. The 
scattering phase shifts were calculated for the first 
five partial waves. The contribution of the monopole, 
dipole and quadrupole components of the Coulomb inter­
action of the incident electron with the atoms has been 
taken into consideration. The behavior of the s-, p- and 
d phases of scattering of the electron by the Xe atom, 
calculated both in the Hartree-Fock approximation and 
with account of multielectron correlations in the SRPAE, 
is shown in Fig. 3. The greatest contribution to the 
scattering phase shift in the SRPAE is made by the 
virtual dipole excitations 1S2 - 1s 1 EP in He, 3p6 
- 3p 5Ed in Ar, and 5p6_ 5p 5Ed in Xe. In scattering 
by Ar, the principal contribution to ~ ~ is made by the 
virtual excitations of the 3p 6 subshell, while 3s2 is un­
important. Similarly, in elastic scattering of electrons 
by Xe, the principal contribution to ~~ is made by the 
virtual excitations of the 5p6 subshell, while the contri­
bution of the excitations of the 5s2 and 4d 10 subshells is 
comparatively small. The fact that the shift in the 
scattering phases is determined essentially by the 
virtual dipole transition from the upper filled subshell 
is connected with the circumstance that just this transi­
tion makes the largest contribution to the dipole static 
polarizability, [6] in terms of which the polarization po­
tential is expressed at large distancesP] 

The contribution of the "time backward" diagrams 
is comparatively small and amounts to 10-15% of ~Q. 

The scattering phases, calculated both the in the 
Hartree-Fock approximation and also with the account 
of multielectron correlations in the SRPAE, satisfy the 
Levinson theorem, i.e., 00, 01 and 152 tend to 11,0 and 
0, respectively, as E - 0 in the case of scattering from 
He, to 311, 211 and 0 for scattering from Ar and to 511, 
411 and 211 for scattering from Xe. This behavior of the 
phases indicates the absence in these two approxima­
tions of discrete levels of bound states of the negative 
He, Ar or Xe ion. The behavior of the d phases in Ar 
and Xe is very interesting; with increase in the energy 
of the incident electron, these phases increase and in­
tersect 11/2 and 511/2, respectively. This behavior of 
the d phases indicates the existence of shape resonance 
in elastic scattering of electrons from Ar and Xe. 

FIG. 2 
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The phases calculated in the SRPAE are in excellent 
agreement with those calculated by other authors in the 
scattering from He, but there is some difference in 
scattering from Ar, which is especially noticeable at 
low energies of the incident electron. No calculations 
of the scattering phases from Xe are known to us. 

Knowing the phase 00 at small energy and the dipole 
static polarizability Cl!d(O) of the atom, we can find the 
scattering length a from the well-known approximate 
relation[7]: 

lio---ak _ nct,(O)k' 2 3 ( ct,(O)k') 
3 --ak ct,(O)ln --- . 

3 16 (21) 

The values of the scattering length obtained by this 
formula (the Cl!d( 0) were taken from[6]) for electrons 
scattered by He, Ar and Xe atoms are given in the 
Table, where they are compared with the experimental 
data. It is seen that the results of the calculation of the 
scattering length in the Hartree- Fock approximation 
are in poor agreement with the experimental data, and 
that for Ar and Xe the value of a even has the wrong 
sign, while, after taking account of multielectron cor­
relations in the SRPAE, the agreement with experiment 
is very good. 

USing the adiabatic approximation, we can estimate 
how great the difference is between the scattering 
phases calculated in the SRP AE and those found in the 
RPAE. Since the prinCipal contribution to the phase 
shift is made by the dipole transition from the highest 
subshell occupied, we can assume that 

where Cl!~RPAE is the static dipole polarizability of the 
atom, found with use of the function cpN(LS). 

It was shown earlier[8] that the difference between 
Cl!~RPAE(O) and Cl!~PAE(O) amounts to no more than 15% 
for the Ar and Xe atoms. Just such a contribution is 
made by the diagrams with "time reversal", which are 
inc1uded in the RPAE and not taken into account in the 
SRPAE. In Figs. 4-6, we have the total elastic scatter­
ing cross sections of electrons on He, Ar and Xe atoms 
both in the Hartree-Fock approximation and with ac­
count of multielectron correlations in the SRPAE. The 
results of our calculations are compared with the ex­
perimental data and calculations of other authors. It is 
seen that the total elastic scattering cross sections of 
electrons from He, found in the Hartree-Fock approxi­
mation and in the SRPAE, are in excellent agreement 
with the calculations of other authors and with the ex­
perimental data. 

The total elastic scattering cross section of electrons 
from Ar, calculated in the Hartree-Fock approximation, 
differs strongly from the calculation in the SRPAE and 
from the experimental data. Only after account of 
multielectron correlations can one describe the Ram­
sauer minimum. Calculations of the total elastic scat-

Scattering Lengths of Electrons from 
He, Ar and Xe Atoms 

Method of determination I He I AT I Xe 

Level shift ["J 1.12 -1.40 -5.7 
Mobility of electrons 1.19 -1.31 -5.35 
in the gas [uJ 

Hartree-Fock 1.35 0.85 0.40 
SRPAE 1,28 -1.34 -3.6" 
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tering cross section by the method of polarized orbits[9j 
agree well with out calculation in the SRPAE. 

In the Hartree-Fock approximation, we cannot de­
scribe the experimentally determined total elastic scat­
tering cross section of electrons from Xe. After 
account of the multielectron correlations in the SRPAE, 
the, agreement with experiment is very good. 

Shape resonances (broad maxima) are seen in the 
total elastic scattering cross sections of electrons from 
Ar and Xe in the regions of 1 Ry and 0.5 Ry, respec­
tively, due to resonance in the d wave. After account of 
the multielectron correlations in the SRPAE, the reso­
nance becomes narrower and shifts in the direction of 
lower energies. The differential elastic scattering 
cross section of electrons from the atom is much more 
sensitive to the approximation used than is the total 
cross section. Figure 7 gives the .results of our calcula­
tion of the differential elastic scattering cross section 
of electrons from He, which are compared with the cal­
culations of others and with experimental data. It is 
seen that the calculation in the SRPAE is in better 
agreement with experiment than that in the Hartree­
Fock approximation, and is also in agreement with the 
calculation of other authors. 

A calculation of the differential elastic scattering 
cross section of electrons from Ar is shown in Fig. 8. 
For an incident electron energy of 0.49 Ry, the differen­
tial elastic scattering cross section in the Hartree-Fock 
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FIG. 3. s-, p- and d-phases of the scattering of electrons by Xe. 
FIG. 4. Total scattering cross section of electrons by He. Dashed 

curve-Hartree-Fock, solid curve-SRPAE, dash-dot curve-method of 
polarized orbits, [8] 0 -experiment of [12]; "'-experiment of [13]. 

FIG. 5. Total scattering cross section of electrons by Ar. Dashed 
curve-Hartree-Fock, solid curve-SRP AE, dash-dot-method of polar­
ized orbits, [9] O-experiment of [12]. 

FIG. 6. Total scattering cross section of electrons by Xe. Dashed 
curve-Hartree-Fock, solid curve-SRP AE, o-experiment of ['3]. 
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approximation has only a single minimum at an angle 
~ 1200 

, while in the SRPAE there are two minima at 
~40° and ~115°, as is confirmed by experiment. 

The agreement with the data of Thompson is satis­
factory. At a very low energy of the incident electron 
(E = 0.04Ry), the differential elastic scattering cross 
section calculated in the Hartree-Fock approximation 
differs from the experimental cross section by an order 
of magnitude. The difference between experiment and 
the differential cross section calculated by the method 
of polarized orbits is very great. The calculation in the 
SRPAE is in excellent agreement with the experimental 
data. The difference between the data of Thompson and 
the experimental data is connected with the overestima­
tion of the effect of polarization of the atom at low ener­
gies of the incident electron. 

The results of our calculation of the differential 
elastic scattering cross section of electrons with energy 
0.09 Ry from the Xe atom are shown in Fig. 9. The cal­
culation in the SRPAE is in excellent agreement with the 
experimental data. 

All the above allows us to conclude that the account 
of multielectron correlations in the SRPAE makes it 
possible to describe successfully the data of measure­
ments of the total and differential elastic scattering 
cross sections of low-energy electrons from He, Ar, 
and Xe atoms. 

FIG. 7. Differential scattering cross 
section da/dn of electrons with energy 
E = 0.16 Ry from He. Dashed curve­
Hartree-Fock, solid curve-SRPAE, 
dash-dot-method of polarized orbits, 
[8] o-experiment [14]. 
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FIG. 8. Differential scattering cross section da/dn of electrons a) 
E = 0.49 Ry, b) E = 0.04 Ry from Ar. Dashed curve (xl/IO)-Hartree­
Fock, solid curve-SRPAE, dash-dot-method of polarized orbits, [9] 
'o-experiment [13]. 

FIG. 9. Differential scattering cross section da/dn of electrons with 
energy E = 0.09 Ry from Xe. Dashed curve-Hartree-Fock, solid curve­
SRPAE,O-experiment [13]. 
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