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A general solution is obtained for the problem of finding the quasi-energy spectrum and wave functions of 
an atom in a magnetic field and in the field of a light wave of arbitrary polarization under conditions when 
the interaction with the wave field is of the same order of or larger than the Zeeman splitting of the atomic 
levels. The case of resonating 1/2-1/2 and 0-1 levels is analyzed in detail. The atomic parameters that 
characterize the magnetization and the emf in a beam of atoms interacting with the light (the inverse 
Faraday and Kerr effects) are calculated. General fOmiulas are obtained for the correlation and 
polarization parameters of the spontaneous emission excited by strong light; these formulas are the basis of 
the theory of the Hanle effect in a strong optical field. 

PACS numbers: 32.io.Dk 

1. INTRODUCTION 

Diligent research is being carried out of late on both 
theoretical and experimental nonlinear-optical phenom­
ena in atomic gases. In particular, interesting results 
were obtained concerning the polarization phenomena in 
a resonant atomic medium. Arutyunyan et al.(lJ ob­
tained the spectrum of quasistationary states of an 
atom in a partially polarized field that is at resonance 
with the transition frequency between the levels with 
angular momenta Yz and %, conSidered the variation of 
the polarization characteristics of radiation propagating 
in such a medium, and calculated the cross sections of 
certain four-photon processes. An experimental investi­
gation of these phenomena is the subject of[zJ. A num­
ber of results pertaining to this question were obtained 
by Rautian et alPJ and are contained in the lectures of 
Ter-Mikaelyan [4 J. 

In this paper we conSider the influence of an external 
magnetic field on the polarization phenomena that are 
produced when an elliptically-polarized ray passes 
through a resonant atomic medium, As is well known, 
in a linearly polarized light field with electric vector 
E directed along a constant magnetic field B, this 
direction is singled out and the projections of the angu­
lar momenta of the atomic states on this direction are 
conserved. Each pair of the Zeeman sublevels having 
the same magnetic quantum number forms a two-level 
system, different systems in the isolated atom do not 
interact with one another,- and transitions between them 
occur only as a result of interatomic collisions or in­
coherent radiative corrections[5J. A similar situation 
obtains also for the Circularly-polarized field propagat­
ing along B. The only difference is that the two-level 
systems are made up of states with magnetic quantum 
numbers that differ by unity. In all other cases there is 
no preferred direction, the magnetic quantum numbers 
are not conserved, and for a resonant optical field whose 
interaction with the atom is of the order of or larger 
than the Zeeman splitting it is necessary to solve the 
Schr'odinger equation for a system of n nondegenerate 
levels (n > 2). In this paper this solution is constructed 
by a general method proposed by one of us and Katsnel'­
son[8J. 

The entire exposition is in the language of the quasi­
energy states of a quantum system in a periodic external 
field[7J, in which it is possible to ascribe natural and il­
lustrati ve quantum numbers to each energy state of the 
atom in the field. The construction of the quasi energy 
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states and the determination of the quasienergy spec­
trum are carried out in Sec. 2. Section 3 is devoted to 
the calculation of the alternating components of the 
magnetic dipole and electric quadrupole moments of the 
atom in a strong optical field. These parameters are 
determined by the RF radiation of the medium into 
which the light beam is focused[81. In Sec. 4 are calcu­
lated the polarization and correlation characteristics of 
the spontaneous emission of the atom in the magnetic 
field when the excitation of the atom is produced by 
light of high intensity. The results are thus the main 
theory of the Hanle effect in a strong optical field. 

2. QUASIENERGY STATES OF THE ATOM 

The Schrodinger equation for an atom in a constant 
magnetic field B directed along the z axis and a mono­
chromatic optical field with electric vector E(t) 

= Re{Fe -iwt} is of the form l) 
. al/' 'at'= [Ho-f.tB-dE(t)]I/'(t). (1) 

Here Jl. and d are the magnetic and electric dipole mo­
ments of the atom, and Ho is the unperturbed Hamilton­
ian. The interaction of the atom with the optical field is 
described in the dipole approximation. 

Assume that the atom has two states with total angu­
lar momenta j and J (I J - j I :s 1) and energies 10 1 and 
Ez, so that Ez - El;:,j W (see Fig. 1). In this case, if the 
atom was in one of the states prior to turning on the 
light field, we can use the 2(J + j + 1)-level approxima­
tion and seek the solution of (1), following[81, in the form 

w(t)= L am (t) exp {-i(8,+612)t} InjmH L bM (t)exp{-i(e,-612)t} 
M (2) 

>< INIM), /)""8,-8,-00. 

The equations for am and bM take in the resonance 
approximation the form 

idm=( -i"(m- ~ +f.tomg,B)am-+ L (njmldF'INIM)b M , 

i6>1=( -if>1+ ~ + f.toMg,B)b M - T ~<NIMldFlnjm>am. 
(3 ) 

Here Jl.o is the Bohr magneton,- gl,z are the gyromag­
netic factors, and Ym and rM are the decay widths of 
the levels I njm) and I NJM ) . 

If there is no magnetic field and the decay widths can 
be neglected, then the solutions of (1) can contain sta­
tionary-state superpositions whose energies remain un­
changed in the resonance approximation. ConSider, for 
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example, the case J = j + 1. Then there exist solutions 
of the system (3) 

where the constants blel satisfy the system of algebraic 
equations 

~ (njmldF'INJM)b~')=O, m=-j, ... ,j. (4) 
M 

Since the number of equations is here 2j + 1 and the 
number of unknowns is 2j + 3, there always exist at 
least two sets of two constants bM satisfying Eqs. (4) 
at any polarization of the field. 

In the case of circular polarization, the existence of 
such solutions is obvious from Fig. 2 with j = 0, J = 1 
as an example: a right-polarized field does' not reso­
nate with the sublevels M = 1 and -1 of the upper level. 
In a field with linear polarization, if the quantization 
axis is chosen along the electric field intensity, the sta­
tionary sublevels in this case will be M = ±1. Nonethe­
less, the existence of unperturbed states at arbitrary 
field polarization is in some sense unexpected. 

At j = J + 1 there exists a nontrivial solution 

and there are in the general case two linearly independ­
ent sets of constants a~ satisfying an algebraic system 
of equations of the type (4). 

Of course, by making a definite choice of the polari­
zation we can obtain more than two independent solu­
tions corresponding to the stationary energies of the 
atom at I j - J I = 1, and also obtain nontrivial solutions 
at j = J. In a circularly-polarized field the solutions 
can in the latter case be easily constructed from physi­
cal considerations. Figure 3 shows the simplest exam­
ple j = J = 12: the levels I N12 - 7'2> and I n12 7'2> are 
not perturbed by a right-polarized field. 

For further transformation of the system (3), we use 
the Wigner-Eckart theorem 

<NIMldFlnjm)= ~ Cj~~.(-1)·<N/lldllnj)F_., 
• 

(njmldF'INIM)= ~ Cj~~.(N/lldllnj)·F;, 
• 

with the spherical projections of the vector F defined 
in the following manner: 

,F.=F" F±,=~2-'f'(F.±iFy).· 

Putting < NJ II d II nj > =0 d, we obtain 
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(5) 

To construct the general solution (5), we make up the 
vectors 

(T is the transpose symbol), after which Eq. (5) can be 
written in matrix form 

(6 ) 

where Q is a matrix made up of the coefficients of the 
system (5): 

Qmm·=(-iYm-6/2+f.1omg,B)6mm ·, QMM'= (-ir M+6/2+f.1.M g,B) 6MM ·, 

Q Q • d'~ ,M • 
mM= Mm =-2 .l...JCjmt~F1&' 

• 
We introduce 2(j + J + 1) linearly-independent 

normalized eigenvectors of this matrix: 

Qffa)=qaffa), a=1, 2, ... , 2(j+I+1). 

(7 ) 

(8) 

Some of the numbers <Ia may coincide. Neglecting the 
probabilities of the spontaneous decays of the levels, 
the matrix (7) is self-adjoint and the vectors f (ad sat­
isfy the completeness and orthogonality conditions: 

~j\l') )")' _ .• 
~ 1.1 /IJ' -u"",'. 

Using (8), we write the general solution of (6) in the 
form 

x (t) = ~ C.ff') exp (-iq.t) , 

where Ca are constants determined from the initial 
conditions. Substituting this formula in (2) we obtain 

1jJ(t) = ~ c. exp[-i(B,+q.H/2)t]lDa (t), 

i , 

11>.(t) = ~ j~) InjmHe-;·t ~ j<;) INIM). 
m=-j ¥=_J 

(9) 

(10) 

For example, if at the instant t = 0 the atom was in 
the state I njmo), then the constants Ca , on the basis of 
(9), are given by Ca = fmo(a)* . 

The quantities E 1 + 0/2 + <Ia determine the quasi­
energy spectrum of the atom in a periodic field, while 
<l>a are the corresponding quasienergy wave functions. 
These functions contain with large weights, 'owing to the 
proposed resonance, not only the zeroth but also the 
first quasienergetic harmoniCS, in accordance with the 
physical meaning of the quasi energetic solutions of the 
Schr'bdinger equation (cL[6,g]). This becomes spectro­
scopically manifest in the appearance of 2(j + J + 1) 
spectral states in the region of each of the unperturbed 
Zeeman multiplets, with the exception of the possible 
degeneracy cases, such as the ones referred to above . 

The components of the vector f(a) are the weights of 
the unperturbed atomic states in the a-th quasienergy 
state. In particular, the constant component of the z­
projection of the magnetic field of the atom in the state 
a is 

, , 
M,fa)=_f.1. (g, 1:: mlj~') I'+g, 1:: Mlf;'·)i'). (11) 

m=_j M=-J 
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We consider now several examples, assuming for sim-
plicity that Ym = rM = O. 

a) j = J = }/2. The secular equation for the matrix Q 
is given by 

o 

d 
2V3Fo 

__ d_F V6 -, 

o 

_ ~ +' flog,B _ q d* F' 
2 2 - VB -1 

d r 6 flog,B V6 rl "2 --2-- q 

__ d_ F 0 
2yir 0 

( 

d* 
VB- Fl* 

-~F* 
2Y3 0 

o 
=0, 

(12) 

where the rows and columns of the matrix are arranged 
in the order m = -}/2, ni = }/2, M = -}/2, M = >'2. In a 
linearly polarized field vector F parallel to B, two 
nOninteracting two-level systems appear, each of which 
is made up of states with identical magnetic quantum 
numbers. At m = M = }/2 we have 

floB t [( ,fl.B )' Idl' ]'1' q1.'=--4-(g,+g')±T 6+-2-(g,-g,) +-3- 1 , 

where I ,;, F . F* is the intensity of the wave; at 
In = M = -}/2, the roots differ from those presented 
above by reversal of the sign of B. 

If the wave has nonzero components F±1. then the 
magnetic quantum numbers are not conserved. For ex­
ample, for a wave propagating along the magnetic field 
we have Fo = 0 and the roots of Eq. (12) are 

q,,= I!.B (g,_g,)±~[[ 6+ fl.B (g,+g,)]'+~I(l+A)]'I'. 
. 4 2 2 3 

The eigenfunctions corresponding to these roots are, 
apart from the normalization, 

In'/,_'/,>+e-'·' __ --..:..dF:....-..,:,---IN'/,'/,>. 
'16 (M2+fl.g,B/2-ql,2) 

Here A = i(FxFY - FyF1)/1 is the degree of circular 
polarization of the wave[lO]: A = 1 and A = -1 corre­
spond to right- and left-hand circular polarization, 
while A = 0 corresponds to linear polarization. 

It should be noted that the incident field is assumed 
to be fully polarized, for in the case of partial polariza­
tion it is necessary to average over the realizations of 
the field of not the quasi energy spectrum, but of directly 
measurable quantities. This can give rise to correlation 
functions of second, third, etc. orders. Nonetheless, 
description of fully polarized radiation in terms of the 
Stokes parameters is quite convenient. We recall the 
corresponding definitions[ 10]: 

IF.I'-IF.I'=1l cos 2<p, F.F;+F.F:=1l sin 2<p; 

l is the degree of linear polarization, cp is the angle 
between the major axis of the polarization ellipse and 
the x axis, and Z2 + A2 = 1. 

The remaining roots and eigenfunctions of the matrix 
Q differ in the considered case from those given here 
by the substitutions 

B ..... -B, A ..... -A, F_, ..... F" 

In'/,-'/,> ..... In'/,'/,>, 1 N'/,'/,> ..... IN'/,-'/,>. 

b) j = 0, J = 1. The secular equation is in this case 
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- 6/2-q - d'F:l /2 - d*F; /2 - d'F//2 
dFt/2 0 6/2 - !log,B - q 0 

=0. 
- dFo/2 0 ()/2-q 0 
dF_l /2 0 0 ()/2 + flog,B -q 

The rows and columns of the matrix in (13) are in 
the sequence m = 0, M ~ -1, M = 0, M = 1. 

(13 ) 

The case of an external field that is linearly polar­
ized along the z axis is trivial. The electric field 
mixes only sublevels with zero magnetic quantum num­
bers: 

q,.,=±I/, (6'+ 1 dF. I') "'. 

The levels M = ±1 remain unperturbed. 

Of greater interest is the case when the wave propa­
gates along the magnetic field: Fo = O. One root of (13), 
q = 0/2, corresponds to the state M = 0, which is not 
perturbed now by the field. To find the remaining roots 
we transform (13) in the following manner ' 

Idl'1(1- A)/8 

6/2 - floK,B - q 
o 

Id I11(10+A)/81=o. (14) 

()/2 + flog,B - q 

We consider now some particular cases in which Eq. 
(14) admits of simple solutions. At B = 0 the second 
root q = 0/2 corresponds to the wave function 

e-t•t[IINl1>+e 2iO (HA) IN1-1>]. 

The two remaining roots q = ± }/2 (0 2 + \ d \21)1/2 corre­
spond to the wave functions 

2F,'1(6-2q) 1 nOO>+dl(HA) e-t.t[l 1 Nl1>+ (A-l) jNl-1>]. 

We note that from (14) we can obtain only the eigen­
values, and to find the eigenfunctions it is necessary to 
use the transformed matrix (13), 

At a circular polarization A = ±1, the field does not 
perturb the level \ Nl 'F 1 ), which corresponds to the 
usual Zeeman energy value 0/2 'F iLOg2B. Two other 
roots and the corresponding wave functions are 

q='/,[Aflog,B± «t'l+Aflog,B) '+ 1 dl'l) '/'], 

, (JJ=d'!JnOO>+(6+2q)F_ A e-'of IN1A>. 

One more energy value, which does not depend on the 
electric field intensity, is produced when 0/ iLog2B = A. 
In this case the actions of the sublevels M = n and 
M = -Ion the level \ nOO) cancel each other and the 
corresponding quasienergy coincides with the eigen­
value of the unperturbed atom Hamiltonian: q = -0/2. 
The corresponding wave function is of the form 

InOO> +~e-i.' [~IN1-J> -~IN11)]. 
2 l!og,B-6 l!og,B+6 

The other roots of the secular equation and the wave 
functions can also be easily obtained at this ratio be­
tween the magnetic field intensity, the polarization, and 
the frequency deviation: 

q='/,[6±;(4(flog,B) '+ 1 dl 'I) 'I,], 

dF_, INl1>] . 
2I!og,B-2q+6 

Figure 4 shows the quasienergies E = €1 + q + 6/2 
for the case Fo = 0 and A = }/2, numerically obtained as 
functions of the electromagnetic wave intensity, 
~ = iLog2B is the Zeeman splitting of the magnetic sub-
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FIG. 4. Quasienergy levels of atomic states with angular momenta 
0-1 for different frequency deviations at A = Yz. 

levels of the upper level in the absence of the wave, and 
v = (I d 12I)1/~. The solid curves show the zeroth quasi­
energy harmonics, the weights of which in the quasi­
energy wave function tends to unity when the alternating 
field is adiabatically turned off, while the' dashed curves 
show the first positive and negative harmoniCS, the 
weights of which tend in this case to zero. The position 
of the level M = 0 does not change when the field is 
turned on, and this level is not shown in the' figure. 

At ~ = A/2, the condition 15/ J.Log2 B = A is satisfied 
and the action of the magnetic sublevels M = ±1 on the 
level I nOO) is mutually cancelled out, as a result of 
which the position of this level remains unchanged when 
the fields are turned on, and the corresponding zeroth 
quasienergy harmonic coincides with the abscissa axiS. 
At 15 = A, exact degeneracy of the two levels takes 
place in a weak field, and therefore both levels are 
shown by solid lines. It would be possible to establish 
the quantum numbers of these levels by going to the 
weak-field limit and introducing their widths, for then 
the complex energies would not coincide. We shall not 
dwell here on this problem, however. 

3. ALTERNATING INVERSE FARADAY AND 
KERR EFFECTS 

A light wave propagating in a resonant medium alters 
coherently the dipole moments of the atoms of the 
medium. The frequency of these changes coincides ap­
proximately with the frequency of the light, and a small 
difference leads to the so-called self-modulation broad­
ening of the transmitted radiation[lll. No low-frequency 
component of the dipole moment appears in this case, 
since neither the ground nor the excited bound states of 
quantum systems with inversion centers have a con­
stant dipole moment (except for the hydrogen atom, 
owing to the random degeneracy of its energy spectrum). 

The medium behaves differently with respect to mag­
netization. As is well known, owing to the inverse Fara­
day effect, high-power radiation with nonzero degree of 
circular polarization produces in a med~um a constant 
magnetization in the direction of its propagation(l21 1 For 
gases under ordinary conditions, however, this magneti-
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zation, according to (11), cannot exceed several oersteds 
and is therefore of no great interest. 

In a resonant medium, on the other hand, an interest­
ing singularity appears in the inverse Faraday effect, 
owing to the appearance of an alternating component of 
the magnetization. Its source, as will be 'seen later on, 
is closely connected with the presence in the atoms of 
the medium of constant magnetic moments, and also 
with the interference of different quasi energy states 
when the atoms are coherently excited by the incident 
radiation. The frequency of the variation of the magneti­
zation coincides precisely with the frequency of the 
beats in the transitions between the interfering states. 

Obviously, this alternating magnetization leads to a 
magnetic-dipole RF emission[Bl, the frequency of which 
can be varied by the intensity, polarization, and fre­
quency of the optical wave, and also by the intensity of 
the external magnetic field in a sufficiently wide range. 

Similarly, if even one of the resonating atomic levels 
has an angular momentum 2:1, then this level has a non­
zero quadrupole electric moment. In a gas of such 
atoms, the optical radiation produces both a dc and ac 
emf-the inverse Kerr effect. We note that the dc emf 
produced, for example, in the case of ferromagnetic 
resonance in solids, was observed experimentally 
(see[13], where references to earlier research can also 
be found). 

We start the analysis with the inverse Faraday effect. 
If the state of the atoms of the medium is described by 
the density matrix Pact' of the quasienergy levelS, then 
the average value of the s-projection of the magnetic 
moment is 

M, (t) = ~>a"(<lI"1 /-1.1 <lI.>exp{i(q.·-q.) t}, 
(15) 

Substituting (10) in (15), we obtain 

M.(t) = -/-I,[g, (j(j+1) )"'P, .. (t) +g, (/(1+1)) 'I,PJ •• (t) I. (16) 

where the time-dependent polarization parameters P 
are defined as follows: 

PIL,(t)= .Ep ••. exp{i(q •. -qa)t}C'~~·'I.!··) 1/': (17) 
". 

where (I J.LJ.L') = (jmm') or (JMM'). 

It is possible to calculate in the same manner also 
the quadrupole moment of the atom. The quadrupole­
moment operator, as is well known, is of the form 

. 3Q, ( " -, 2, ) 
Q,,= 2/(2/-1) IJ.+I.I;-3 I'{jik.· 

where I is the total angular momentum operator and 
QI is the quadrupole Illoment, defined as the average 
value of the operator Qzz in a state MI = I (12: 1). In 
this case it is more convenient to calculate not the 
Cartesian but the spherical prOjections of the quadrupole 
moment Qps, p, s = 0, ±L The connection between the 
two coordinate systems can be easily established. For 
example 

Q~='/,(QII+Q-.-.) -Q;-t. Q.,= -'!,i(QII-Q"-._,) 

etc. Standard calculations yield 

Qp,={ i~1 Q,[ (-O'{jp,-.-{jP.jP;oo(t) 
2J-1 

+(-1)P+' 3(j+1) [5(2j+O!"'Q,C;:;';·W(jljl;j2)Pj2p+.(t)} (18) 
2J-1 

+{the same with the substitution l~J}. 
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As seen from (16)-(18), the frequency of the varia­
tion of the magnetic-dipole and electric-quadrupole 
moments of the atom is determined by the difference of 
the quasienergies. The frequency ~ 10 GHz is reached 
at a quasienergy splitting ~ 1 cm-\ which sets in even 
in relatively weak fields ~ 104 V / cm. It should be noted, 
however, that the thermal motion of the gas atoms gives 
rise to a Doppler distribution of the frequency devia­
tions from resonance in individual atoms, and the width 
of the Doppler distribution, which is usually much 
larger than the energy of the interaction with the wave 
field, will determine the splitting of the quasi energies . 
The formulas gi ven above are valid only for an atomary 
beam in the case of propagation of an electromagnetic 
wave. 

A Simple analysis based, for example, on the particu­
lar cases considered in Sec. 2, shows in particular that 
the alternating magnetization of the atoms is produced 
both in the absence of a magnetic field at a nonzero de­
gree of circular polarization of the radiation (as in the 
usual inverse Faraday effect[12]), and in a field that is 
linearly polarized but in the presence of a constant ex­
ternal magnetic field whose direction does not coincide 
with the wave-polarization direction. Certain numerical 
estimates for the intensity of the magnetic dipole radio 
emission of a laser focus are given in[8]. 

4. CORRELATION AND POLARIZATION 
CHARACTERISTICS OF SPONTANEOUS EMISSION 

We conSider spontaneous electromagnetic transitions 
of an atom from a quasienergy state a into a certain 
unperturbed state I vII!)' We assume first that the 
eigenvalue <h is not degenerate and the magnetic field 
differs from zero, so that the Zeeman sublevels I vIjJ.) 
have different energies, and the detector resolution is 
sufficient for the observation of the individual line com­
ponents. In this case the amplitude of the probability of 
registering a photon with momentum k and polarization 
es (s = ±1) is proportional to the matrix element 

where j is the current-density operator. The plane 
wave that enters here is conveniently represented in 
the form 

e,eib=_s 1:, i'[ 4n(Zl+1) Pi, (kr)C,~:,D,/(k) YAtt(r), 

where jl are spherical Bessel functions, D(k) is a 
finite-rotation matrix that rotates the coordinate system 
through the angles of the vector k that correspond to 
the Euler angles (rp, e, 0) relative to a fixed coordinate 
system with z axis directed along B; Yare spherical 
vectors [14]. 

Since interest attaches only to electric dipole transi­
tions, it is necessary to retain in the foregoing formula 
only the term with l = O. The operator j is then propor­
tional to the dipole-moment operator d. We assume for 
the sake of argument that the considered transition to 
the levels I vI) is allowed only from the levels I NJ ) . 
The polarization density matrix of the spontaneous 
emission is then, apart from normalization, 

p .. ' (a, fl; k) =88' 1:, (v!/-IldY:ot,1 <Da>( <D. idY,otlv!/-I>D;:" (k)D,,' (k) 
ft' 

=88' ~ I (lV/lldll,,!) i'C,':~",D,/(k)FL,(a, /-I); 
(19) 

L" 
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MAl'H' 

The angular distribution of the radiation is determined 
by the trace of this matrix. Leaving out the angle-inde­
pendent factors, we obtain 

W(k) =Foo+ (2n/5)'" 1:, F"Y,,(k). (20) 

Formula (19) makes it also possible to calculate the 
Stokes parameters h of the spontaneous radiation. In 
spherical unit vectors, the normalized density matrix 
of the radiation is expressed in terms of the Stokes 
parameters in the following manner: 

1 ( 1-~2 
poo' = 2" -\;a+i\;. 

-Sa-is, ) 
1+~2 . 

Using (19), we obtain 

(21 ) 

The quantity ;2 determines, in particular, the degree of 
circular polarization of the spontaneous emission [ 10]. 

We consider now the case of a weak magnetic field, 
when the Zeeman components I vIjJ.) are not resolved by 
the detector. It is now necessary to sum in the obtained 
formulas (19)-(21) over jJ., and this, as is readily seen, 
reduces to summation over jJ. of only the parameters 
FLT(a, jJ.). With the aid of known formulas we easily 
obtain 

FL,(a) == ~ FL,(a, /-I) = (-1)L[ (2£+1) (2/+1)j"'W(£1Jl; 1J)Pi.~' 

(22) 
p(a, _ '(l cJM' /("/ (a,. 

LT - ~ J!>fLT.'\I. r.J' • 

M,V' 

It is precisely these values of FlT that must be sub­
stituted in (20) and (21) when B is small. The parame-

ters prj ar~ t~e polarization moments of the atom[14j 
in the quasienergy state a in accordance with the previ­
ously-discussed physical meaning of the coefficients 
f (a) 
M' 

Finally, a possible case, most frequently encountered 
in experiment, is that of a weak pumping field, when the 
line components corresponding to emission at different 
quasienergy states are not resolved. The spontaneous­
emission polarization density matrix is then determined 
by the denSity matrix Pa a' of the quasi energy levels of 
the atoms: 

p,,' (k) =88' ~ (V!/-IldY:ot,1 <Da>p •• ,(<D., IdY,,,lv!/-I>D,~:, (k) D,,' (k), 
aa.'j.ltt' 

For the angular distribution and polarization of the 
radiation we obtain the same formulas (20)-(22), but the 
polarization parameters of the atom are determined now 
by the relation (17). 

In the case of equal population of the quasi energy 
states, at a random relative phase 

p,.,=/),.,/Z(J+j+1) (23) 

the radiation, as can be easily verified, is isotropic and 
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fully unpolarized. Formula (23) can occur in stationary 
regimes, when the level I nj) is a ground or metastable 
level, and the pumping acts for a prolonged period. 
During that time, the coherence present in the atomic 
ensemble is lost because of collision or incoherent radi­
ative processes. A necessary condition is also the mix­
ing of all the sublevels I njm) and I NJM ), without ex­
ception, by the fields Band E. For example, in the 
cases shown in Figs. 2 and 3, this condition is not satis­
field. 

At the present time, no spontaneous scattering of 
high-power electromagnetic radiation by atoms has been 
observed experimentally, since the employed lasers 
operate in the pulsed regime. Under these conditions, 
the spontaneous emission has too low an intensity to be 
registered[ 41. However, the formulas obtained in this 
section may prove to be useful also in the investigation 
of stimulated emission, since th~y make it possible to 
calculate the direction and polarization of the stimu:" 
lated scattering at arbitrary polarization of the incident 
radiation and at arbitrary orientation of this radiation 
relative to the external magnetic field. Namely, if the 
laser radiation is focused into a sphere, then the lowest 
threshold of the stimulated scattering will be in that 
direction in which the function W(k) [Eq. (20)] has a 
maximum value. The polarization of this radiation will 
be right-handed or left-handed, depending on the sign of 
;2. ' 

I)We use here a system of units in which c = h = 1. 
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