
'IT condensate and scattering of pions by nuclei 
N. A. Kirichenko 
L. D. Landau Institute of Theoretical Physics, USSR Academy of Sciences 
(Submitted December 23, 1974) 
Zh. Eksp. Teor. Fiz. 68, 1997-2009 (June 1975) 

The possibility of observing 7T condensate in nuclei by means of 7T-meson experiments is considered. For this 
purpose the nuclear-matter density-modulation amplitude due to the 7T condensate is calculated as well as 
the pion polarization operator (with frequencies CIl i?; I). The contribution of N·-isobar pole to the indicated 
quantiti~s is consistently taken into account. It is shown that the main effect of the 7T condensate is density 
modulation of the nuclear matter. The amplitude for scattering of pions by nuclei is then calculated and 
the manifestiations of the 7T condensate in pion scattering are analyzed. 

PACS numbers: 21.65., 25.80. 

1. INTRODUCTION 

It is shown by A. B. Midgalll-3] that a 7T condensate is 
produced in nuclear matter starting with a certain 
density nc. It was found inl4] that in sufficiently heavy 
nuclei, at a short distance from the surface, a planar 
layered condensate structure is produced (the same as 
in an infinite medium). It was notedl2-4] that the 7T con­
densate leads to modulation of the density of the nuclear 
matter. From the results of experiments on electron 
scattering by nuclei follows the existence of a periodic 
structure of nuclear matter, and this seel;lls to confirm 
the assumed presence of the 1f condensate in the 
nuclei[4,5). Other explanations of this structure en­
counter certain difficulties(5). 

A program of research on the scattering" of pions by 
nuclei, using meson factories that provide intense 
meson beams, is in its initial stage of realization. 
Since this should increase appreciably the measurement 
accuracy, it is very important to investigate in greater 
detail the Singularities of the behavior of the pions in 
nuclei, particularly the influence of the 7T condensate on 
pion scattering and other observable properties (see 
alsol4,5) on this subject). 

In this article we calculate the density modulation of 
nuclear matter in the presence of a 7T condensate. We 
then calculate the pion polarization operator, which is 
subsequently used to find the pion-nucleus scattering 
amplitude. The expression obtained for the polarization 
operator is applicable also in the theory of pionic atoms, 
where it makes it possible to take into account effects 
connected with the condensate. 

At low energies, pion-nucleon scattering proceeds 
mainly via two channels, resonant and pole. Accordingly 
the polariation operator of the pions has two terms, , 
II = IlR + IIp . 

We present first expressions for II without allowance 
for the condensate field. As a rule, the contribution of 
the pole channel of the 7TN interaction to II (in the con­
sidered energy region) was calculatedl6-B) using ordi­
nary (nonrelati vistic) Green's functions of the nucleons 
in the medium (see, e.g.,(9)). However, inasmuch as the 
condition w « k is not satisfied for pions, where wand 
k are the frequency and momentum of the pion (w;:: 1), 
such a calculation is no longer valid. We calculate next 
the polarization operator in the presence of 7T conden­
sate. 

We shall show that whereas in vacuum the pole 
channel contributes mainly to"the P-wave scattering of 
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the pion by the nucleon (in an isotropically symmetrical 
medium the contribution of the S scattering for all 
pions is practically equal to zero(3)), the denSity modu­
lation produced by the 1f condensate in a medium 
causes the polarization operator to contain aD-wave 
admixture. Indeed, in a medium the frequency and 
momentum of the pion are not on the mass shell (q2 
= w 2 - k2;1e- m;), and after k is replaced by -iVa 
"splitting" m; begins to manifest itself in an inhomo­
geneous medium (n(r);rf. const) even in the lowest-order 
app:r0ximation. A D-wave admixture appears also in the 
resonant channel and is due to the scatter of the nucleon 
momentum up to the Fermi boundary. 

Finally, we conSider the manifestation of the 11" con­
densate in the scattering of pions by nuclei under the 
condition kR» 1, where R is the radius of the nucleus 
when the quasiclassical approximation can be used ' 
(with the exception of the pion-energy region near the 
resonance maximum). Owing to a number of unique 
effects, experiments on the scattering of pions by 
nuclei provide a good method of verifying whether the 
nuclei contain a layered structure due to the pion con­
densate. 

We shall show that the principal correction to the 
scattering amplitude appears at pion energies above 
~esonance at momentum transfers q ~ 2ko, where ko 
IS the momentum of the condensate field (cfP)), and 
examine qualitatively the behavior of the scattering am­
plitude in this angle region. For simplicity we consider 
henceforth a neutral pion field. We use pionic units 
throughout (li = c = m1f = 1). 

2. THE N* ISOBAR IN NUCLEAR MATTER 

It is known that when a pion moves in nuclear matter 
its frequency and momentum are not on the mass shell ' 
(Le.,qO = w2 _ k2 ,.. m;) (see, e.g.,l&-8,lO). This is 
particularly significant in the analysis of effects con­
nected with the 1f condensate, the frequency of which is 
w = 0 and the momentum ko"" PF. We therefore con­
sider briefly the corresponding behavior of the elastic 
resonant 7TN scattering amplitude. 

To determine the behavior of the scattering amplitude 
in vacuum off the mass shell, we can use the well known 
expression of scattering theory[ 11,12). 

f(q,q';(j)~f(O)(q,q';O)+4n\"1 j+(q;k)f(k;q') " (1) 
£...i w,,2-w'l-i,6 

" . 
Here f (0) is the scattering amplitude in the Born ap­
proximation, and the summation over k extends over 
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the intermediate states. At low energies, the N scat­
tering occurs principally in the P wave (the amplitude 
of the S-wave scattering is practically equal to zero). 
This means that 

j(q, q'; w)=qq'h(w, q). (2) 

Substituting this expression in (1) and summing over k 
with allowance for the fact that Wk = (1 + k2 )1/2 (cf. the 
Bethe-Salpeter[S] and Chew-Low[12] equations), we ob­
tain 

Im[h(w, q) ]-'''''const· (w'-i)"c8(w'-1). 

The function ®(w 2 - 1) appeared after circling around· 
the pole Wk = W + i~ on account of the condition wk ~ 1. 
Further calculations with concrete forms of the function 
h(w, q) were performed many times[B,12,13], The result 
is 

(3 ) 

where y(w) = Yo(w 2 - 1)3/2®(W - 1), and WR R; 2.4 is 
the frequency corresponding to the maximum of the 
resonance in the 7TN scattering. The parameters ao and 
Yo (ao;:;;' Yo) depend little on w and can be determined 
from comparison with the experimentally obtained scat­
tering amplitude[3,13]. As indicated in[2,S], the mass of 
the N'" isobar and the 7TNN* matrix in the medium 
differ little from the corresponding vacuum quantities. 
Thus, we can assume that 

(4) 
1 

Go(p) = .+. ( ) e-e. q w 

We sh~ll henceforth assume that Ep "" wR + Ep, and 
Ep = P !2m; y(w) was defined above, and the constant f* 
was taken in[S] (in the notation of that paper, f* 2 = 2 
x 47Ta ~ 1.6; cf. also[10]). Inasmuch as the characteris­
tic parameter of the variation of the 7TNN* vertex is a 
mass on the order of the nucleon mass, when w 
changes from w ~ 1 to w = 0 we can neglect the change 
of this vertex (m» 1)[3]. We analogously neglect the 
change of the mass of the isobar as w - O. 

Finally, owing to the existence in the medium of low­
lying excitations, the damping of the isobar y(w) will 
differ somewhat from its vacuum value. However, ex­
periments on pion scattering by nuclei show that, this 
difference can be neglected (at w ~ 1) at least with the 
exception of the region near the maximum of the reso­
nance. 

3. MODULATION OF NUCLEAR-MATTER DENSITY 

Assume that a 7T condensate was produced in nu­
clear matter. PhYSically this means that starting with a 
certain nucleon denSity nc it becomes energywise 
profitable for the system to acquire a periodic static 
pionic field of the type 

<po=a sin kor. (5) 

In an infinite system we have a2 = 4 I ,;?(ko)I/3X[2], and 
w(k) is given by 

iJj'(k)=l+k'+II(O, k) ",iJj'(ko) +a(k'-ko') " a>O 

(at k close to ko). Here rr(w, k) is the polarization op­
erator of the pions, and ko corresponds to the position 
of the minimum of the function w2(k). At a density n 
close to the critical nc (n > nc) we have 

iil'(ko) "'v (nc-n) <0. 
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In a finite system, the amplitude a decreases from its 
value in the volume to zero in a transition layer 
Ii ~ 1/1 w(ko) I [4]. 

The condensate field (6) leads to modulation of the 
density of the nuclear matter[2-5]. Appropriate calcula­
tions in the Thomas-Fermi approximation make it pos­
sible to obtain readily the amplitude of the modulation 
in the limit of small ko« 2PF.[14] Let us calculate the 
magnitude of the modulation without assuming that ko is 
small. 

We conSider denSities n close enough to critical. 
Then the amplitude a is small and we can seek the mag­
nitude of the modulation density in the form of an ex­
panSion in powers of a. The nucleon density is 

n(x)=-iG •• (x, x,), r=r" t=t,-O. 

In our approximation in terms of the amplitude a, the 
contribution to the mass operator of the nucleons is 
made by the diagrams 

I 
1 

ko I 
1 

(6) 

The first diagram corresponds to the pole channel of the 
7TN scattering, and the second to the resonant channel. 
The dashed, SOlid, and double lines denote the conden­
sate pion, the nUCleon, and the N* isobar, respectively. 

The first diagram leads to the expression 

6n. (x) = -.!... j'ko'a,'S ....'!!.L Go(p) Go (p+ko) Go(p+2ko) cos 2kor. 
. 2 (2n)' 

The second diagram leads to 
i d'p 

6n'(x)= - - j"ko'a'S --Go(p)G,,(p+ko)Go(p+2ko)cos 2kor. 
2 (2n)' 

In these relations f and f* are the 1TNN and 1TNN* coup­
ling constants, f = g/2m "" 1.[31 The Green's function of 
the nucleon Go(p) is given by[9,15] 

(7 ) 

Substituting Go(p) and G~(p) in on, we obtain after cal­
culating the obtained integrals 

n(x) =no(l +;' cos 2kor) , 

where ~2 = ~ + ~*2, with 

,_ 3 j'a'p.! [ I ko) ( ko) ] ;,---- <!J - -<!J-
- 4 EF2 2PF PF 

'" 3 j"a'ko' EF <!J ( ko ) 
{; = 4 -----;;- ----;; p;' 

The function ~(z) is equal to[2,15] 

1 1-z' I z+1 I <!J(z)=-+--ln -- , 
2 4z z-1 

(8) 

(9) 

and the momentum PF is connected with no by the rela­
tion no = PF/31T2. Allowance for the nucleon correlations 
reduces to multiplication of ~N by [1 + g-~(ko/2pF)r2, 
where g- is the spin-spin interaction constant of the 
nucleons (g- "" 1.6).[13,15] As a result, at a nuclear 
density no "" 0.39 we obtain, with the nucleon correla­
tions taken into account, ~2 "" 4a2. We note that the first 
and second diagrams of (6) make approximately numeri­
cal contributions to ~n. 

4. PION POLARIZATION OPERATOR WITHOUT 
ALLOWANCE FOR THE CONDENSATE 

We proceed now to calculate the polarization operator 
of the pions for the scattering problem (Le., at frequen-
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cies w ~ 1). We consider first the contribution of the 
pole channel of 1TN scattering to n. It should be noted 
first that expression (7) for the Green's function Go(P) 
is valid if the characteristic frequencies of the problem 
satisfy the condition w « k, w < EF. This condition is 
satisfied for most excitations of interest (since the 
velocity on the Fermi surface-the characteristic 
velocity-is vF« 1), and the use of expression (7) does 
not result in significant errors. On the other hand, in 
the pion-scattering problem the frequency and momentum 
satisfy the inverse relation w ~ k, w ~ 1 » EF. Accord­
ingly, to find the contribution of the pole channel to the 
polarization operator it is necessary to add in (7) one 
more term corresponding to the relativistic generaliza­
tion of Go(p) (other corrections lead to different re­
normalizations) : 

2m i-np 
G,(p)~ +2:rti6(e-ep ) "'---

(e+m)'-(e p+m)'+i6' B-e p+i6 

+_n_p__ 1 
e-ep-i6 e+e p+2m-i6' 

where the nucleons are assumed as before to be non­
relativistic, Ep = p~/2m. 

(7' ) 

As will be shown later on (see formula (10», owing 
to the introduced term we are now able (since the mass 
m has been cancelled out) to take into account, beSides 
k2/2m, the term w2/2m, which is no longer small. Ex­
pression (7') enables us to treat in a unified manner 
both the scattering problem and the Fermi-liquid ef­
fects, i.e., to obtain an interpolation expression for the 
polarization operator in different branches of the pion 
spectrum (the spin-sound; the solution corresponding to 
instability with respect to condensate formation; the 
pion spectrum in the scattering problem). Indeed, on 
the one hand, the parameters of the Green's function of 
the quasinucleon differ little from the parameters of the 
Green's function of the nucleon[3,15l, and on the other 
hand, to calculate the interaction of the pions with the 
nucleons in the nucleus at w;i:, 1 » E F we can use the 
gas approximation, introducing into G constants corre­
sponding to the nucleons in vacuum. Of course, the 
contribution of the antinucleon pole in the effect corre­
sponding to the condition for the applicability of the 
theory of the Fermi liquid need not be taken into account. 
Furthermore, it will be Significant only for pions of 
frequency w ~ 1. Allowance for the nucleon correlations, 
as shown in(15l, reduces to multiplication of each vertex 

.~ 
by a factor [1 +g-<I>I(w,k)r1. As w - Owe have 
<I> dk, w) - <I> (k/2PF ) ~ 1, and the constant is g- "'" 1.6. 
Thus, this correction is significant for vertices corre­
sponding to the interaction of nucleons with the conden­
sate. At w»kVF we have <l>1(k,w)~ (kVF/w)2« 1, 
and g- already seems to coincide with its vacuum 
value gvac"'" 0.8[3, 15l. Consequently, allowance for the 
nucleon correlations in vertices with w ~ 1 leads to 
very insignificant corrections. 

The contribution of the pole channel of the 1TN inter­
action to the polarization operator of the pions is de­
termined by the diagram 

IT;O):<=> 
or (q = (w, k» 

d' d'p 
n~')(q)=-ifk' J (2:)' G,(p)G,(p-q)=2fk' J (2;,;)' np 
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{ 1 + i } 
X e.-E p •• +oo+oo'/2m Ep -e._.+oo+oo'l2m 

~ -12k' mpp !!!'.. {a,qJ (a,) +a,qJ (a2)}, 
:rt' k 

where al,2 = (k2 - w2 ± 2mw)/2kPF, and the function 
<I>(a) is defined in (9). We have described the vacuum 
term due to the antinucleon pole in (7'). 

In the limit w» kVF ~ EF we have 

(10) 

I'k' 2 n(o/( )_ q 
p q,...., - moo'!. no! (10' ) 

where q2 = w2 - k~. Since the contribution of the nucleon 
correlations is small at w» kVF, expression (10') de­
scribes the pole channel of the polarization operator in 
this approximation. Cancellation of the quantity w in 
the numerator (10') is typical of charged pions only in 
a medium with Z '" N, and for 1T o mesons at arbitrary 
Z and N. In an isotopically asymmetrical medium no 
such cancellation takes place for charged ions, and the 
correction w2/2m turns out to be inSignificant (for 1T± 
mesons in an isotopically asymmetrical medium we 
have n(±)(-w) = n(±)(w) "" n±(w)[3 l). 

It was shown in[7l that in the gas approximation in 
the pion-nucleon interaction 

n=-4:rtnF(O) , (11) 

F(O) is the amplitude of zero-angle 1TN scattering in 
vacuum. If we substitute here the term F p, which de­
scribes the pole channel of the 1TN amplitude[ 13]: 

F =_~[ 2m + 2m 1 '" fm.'k'. 
p 16:rtm' m.'-2moo m.'+2moo 4:rtmfil' 

then we immediately obtain the relation (10') at q2 = m~ 
(Le., if the pion is on the mass shell). 

We now obtain the contribution of the resonant chan­
nel of the 1TN interaction to n(O): 

USing (4) and (7'), we obtain far from w = wR 

'" j"k'n. + j"k'n. 
oo-filR+il (fil) -oo-ooR+il (00) 

where y(w) is defined in (3). We have negiected the in­
fluence of the scatter of the nucleon velocity up to VF 
in the denominator of (12), and the corresponding cor­
rection in y (w), since EF « 1. The factor 2 is the re­
sult of summation over the spin indices. We note that 
(11) makes it possible in this case to obtain for n}i 
an expression that is suitable also off the mass shell 
(far from w = WR)' 

5. PION POLARIZATION OPERATOR IN THE 
PRESENCE OF 1r CONDENSATE 

We calculate first the contribution of the pole channel 
of the 1TNinteraction to n. In the approximation lowest 
in the condensate-field amplitude, the contribution to 
n p is made by the diagrams 
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or, in analytic form 

(t) 1 . J' d'p 6llp = -, j'a'ko'e-·k'k'Ve'" --{Go(p)Go(p+ko)Go(p+2ko) 
'1 (2n)' 

x [ (Go (p+q) +Go (p-q,» e-U '.,+ (Go{p+q,) +Go (p_q» em,,] 

+Go'{p) [Go (pHo) +Go(p-ko)] [Go(p+q) +Go{p-q) n, (14) 
(') 1 J d'p 6llp = --4 j'a'(2ko,k .. -ko'6 .. )e-'''k,'V.eft , -- {Go (p) Go{pHo) 

(2n)' 

X Go (p+q) Go (p+q-ko) e-'ik"+Go (p) Go (p-ko) Go (p+q) Go (p+q+ko) 

'e 2ik"+2Go (p) Go (p-ko) Go (p+q) Go (p+q-ko) }, 

where we put ql = (w, -k) (rather than q = (w, k». We 
have expressed IIIIp in the coordinate representation in 
accordance with diagrams (13) and then changed over in 
the obtained integral to the momentum variables. It is 
easily seen that 1I~1> describes principally scattering 
by density modulation (cf. the expression for /inN(x), 
whereas aIIp> does not reduce to interaction only with 
the modulation density due to the condensate. Diagrams 
containing no condensate field contribute in this approx­
imation to the phenomenological parameters of the 
theory (such as the nucleon mass, the residue of the 
Green's function, etc.). 

The integrals in /in p can be calculated in the w ~ 1 
limit. As a result we obtain, taking (10') into account, 
the following expression for the polarization operator: 

II - f k () k + 2/,a' mpF (Il (ko/2pF) 
P -- - mw2 iqa.n r qa. i mro2 1&2 [1 +g <D (ko/2pp') P (15) 

x (Hcos2kor) ([kxko])'. 

The subscript i runs here through the values 1, 2, and 
3, while a runs from 0 to 3 (CIa CIa = w2 - k 2). When the 
factors are arranged in order, it must be borne in mind 
that CIa = i8a and k = -i~. The expression for n(r) was 
obtained in Sec. 3 (in addition to /inN(r), one should in­
clude in n(r) also on* (r), for in addition to the diagrams 
(13) it is also necessary to take into account the diagram 

(16) 

which corresponds to the second term in (16». We have 
taken the nuclear correlations into account in (15) by 
multiplying by the square of the factor 
[1 + g-41(ko/2PF)r 1 • 

We proceed now to calculate the contribution made 
to II by the resonant channel of the 1TN interaction. To 
this end it is necessary to replace in all possible man­
ners the nucleon lines in (13) by the N* -isobar lines, 
bearing in mind that there are only vertices 

-Land $ 
and similar vertices with a condensate pion. Accord­
ingly, on R is determined by diagrams with only one 
and two N* -isobar lines. The analytic expressions for 
IIIIR will be similar to expression (14) for onp, in 
which one or two functions Go(P) are replaced by 
G~(p). 

We consider the case of pions with energies far from 
the resonant wR. Then the expression for /iIIR can be 
represented as an expansion in powers of the parame­
ters 

6F kVF __ 6,_ <t: 1 
(OR w' !w-wRI ' (17) 

the last parameter being connected with allowance for 
the scatter of the nucleon momenta up to the Fermi 
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boundary in the N*-isobar pole. As a result, the princi­
pal terms in lin R take the form 

, t I I 
I I I I 

~+k P+2ko~. p+2k P a p+ko a ( ) 
. ~ + tt +(-ttJ· 18 

p+tt p+~ 

It is easily seen that it is precisely these diagrams 
which determine the correction to the denSity in (12). 
Consequently, in the lowest-order approximation in the 
parameters (17), IIR can be expressed in the form 

t'kn{r)k /"kn{r)k 
llR"" + . 

. (O-(OR+i1 {(O) -(O-(OR+i1 «(0) 
(19) 

Here k = -i ~ and n(r) is given by (8). This means that 
in the approximation conSidered here the 1T condensate 
manifests itself only via the nuclear-matter denSity 
modulation it produces. 

The terms of next order in the parameters (17) are 
determined from the diagrams 

I i 

a) ¢- , ~etc., 
I 1 

~I 1+2ko ~Il 
b) p+ko p k P 

'I ' c) p+ a 

p+~ q p+q 

(20) 

We omit the intermediate calculations and present the 
results. 

The diagrams (20a) correspond to the expression 

j"k,A .. {r)k. + j"k,A .. {r)k. (21) 
(O-(OR+i1{(O) -(O-(OR+i1{(O) ' 

and the diagrams (20b) and (20c) correspond to 

f"kB.{r)k + f"k,k.C.(r)k,k. + (-(0). (22) 
(O-(OR+i1 {(O) (O-(OR+i1 «(0) 

Here 

The factor [1 + g- 41 r1 takes into account the nucleon 
correlations; in (21) and (22) we have k = -~. We did 
not correct the lTNN* vertex, since it has a complicated 
structure and is less sensitive to the medium[3l. It 
should be noted that the corrections (21) and (22) at 
I w - WR I » EF are of the same order as the correc­
tions in (15), so that far from W = wR they must be 
taken into account. 

As seen from the results, an admixture of the D­
wave type, connected with the distribution of the nucleon 
momenta up to the Fermi boundary, appears in the 
polarization spectrum of the pions, We note that whereas 
the correction (21) is connected only with a condensate, 
the correction (22) is connected also with the influence 
of the Fermi distribution on the isobar pole. At low 
energies these terms are of the same order, while near 
resonance the terms (22) alter the resonant-type struc­
ture determined by (19) more strongly. The parameter 
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EF II W - wR I ~ 1, and consequently the corrections 
from the diagrams (20b) and (20c) will be of the same 
order as the corrections (18) due to the density modula­
tion.) Finally, from (15), (19), (21), and (22) it follows 
that at k» ko, i.e., if the wavelength of the incident 
pion is small in comparison with the wavelength of the 
condensate, and consequently with the wavelength of the 
density modulation, the influence of the 1( condensate on 
the scattering reduces to effects of modulation of the 
density of matter (even when the corrections are taken 
into account using the parameters (17)). 

Thus, an optical potential with Kisslinger parametri­
zation (see, e.g.,Pe,171) describes satisfactorily the 
polarization operator of the pions in the presence of a 
1( condensate at high energies (k» ko) and at low ener­
gies (in the approximation lowest in (17)), with the ex­
ception of the region near W ~ wR. 

6. PION SCATTERING BY NUCLEI 

We consider now the main features of pion scattering 
by nuclei at energies far from resonance (I w - wR I 
> EF). As already noted, the principal manifestation of 
the 11" condensate in this region reduces to modulation 
of the density of nuclear matter, and we therefore con­
fine ourselves to expression (19) for the pion polariza­
tion operator. Since the layered structure of nuclear 
matter should become more strongly manifest in experi­
ments with oriented nuclei, we conSider Uiis case first. 

We put 

(23) 

The scattering problem for pions is formulated in the 
following manner: inside the nucleus we have 

~<p+(oo'-l)<p=rr(r, -iV)<p, (24) 

and outside the nucleus 

~<p+ (00'-1) <p=O, 

We introduce the function u(r): 

<p(r) =u(r)/[ Hn(r) h( (0) p, 

Then Eq. (24) can be rewritten in the form 

~u+[k'-V(r) ]u=o, 

where k2 = w2 - 1, and the effective potential 

V(r)= k,' n(r)h + MHn(r)hl''' 
Hn(r)h [Hn(r)hl''' 

(24') 

(25) . 

(26) 

is a periodic function inside the nucleus. Far from the 
maximum of the resonance we have V < k2 (since noh 
< 1). Then in the limit kR» 1 the scattering amplitude 
is determined by the expression 

'k. [ ( 1 +.; ) ] F(q; V)= ~n S e- iqp 1-exp Uk S V(r)dz d'p, (27) 

where q = k' - k, the z axis being chosen along the 
vector k. 

The potential V(r) can be represented in the form 

V(r) =V.(r)+~'V,(r), 

where the parameter ; 2, which determines the density 
modulation amplitude in (8), turns out to be ;2 i':J 0.08Yl 
It follows therefore that in (27) we can carry out an 
expansion, which is suitable for practically all nuclei, 
of the exponential in powers of ~: 
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F(q; V)=F(q; Vo)+liF(q), (28) 

The amplitude F(q; Yo) being determined in accordance 
with (27) from the potential Vo(r). We note that Vo(r) is 
given by 

n,(r)h(oo) 
Vo(r)=k'l+n,(r)h(oo) 

Substituting here h(w) from (23), we obtain immediately 
a well known expression for the shift of the resonant 
frequency in the medium pOl: 

00/ =OOR-f·2n,(r). 

To determine the amplitude of(q), we proceed in the 
following manner 0 The potential V l(r) is equal to (onl 
= -4k~nl) 

( Vo(r)+2ko') V,(r)=1 1- k' V.(r)cos 2kor."V,(r) cos 2kor, 

Accordingly, the amplitude IIF(q) turns out to be 

IlF(q)=- 4:~' Se-iQPe-'Xo'P)V, (r)cos 2kord'p dz, 

with the phase xo(p) equal to 

Integrating with respect to z in (30), we obtain ulti­
mately of(q) in the form of the sum 

(29) 

(30) 

IlF(q) = sr:.' (F(q-2k.; V+)-F(q-2ko; V_)+F(q+2k.; v+) (31) 

-F(q+2k.; V-)}, 

where V± = Vo ± 2k· ko, and the amplitude F(K, V±) cor­
responds to scattering by a spherically symmetrical 
(with respect to the coordinates) potential V ± and is de­
termined from formula (27). We note that actually 
q ± 2ko contains~ according to (27), not ko but kol 
= ko - (k ·ko)k/k . 

Let us examine briefly the singularities of the ampli­
tude (31). It can be shown that in the angle range satis­
fying the condition qR« (VeffR/k)2 the amplitude 
F(q; V) takes the form (a = VR/k» 1) 

F(q' V) "" ikR' (J. (qR) + J.(qR) ) +kR'''::''e-i~ (1-~) (32) 
, qR 0.' ~' ~ , 

where {3 = [(qR)2 +(/]1/". 

Since F(q; V) has (at kR» 1) a sharp maximum at 
q = 0, the function (31) should have extrema at 
q ~ ±2ko. We consider q close to 2ko. Then the function 
(31) can be rewritten in the form 

BF(q)=_l ~'kR2 o.,a,' {Sin(~+-~_)/2+i~ (1":2~) 
2i ~.' 2(0..!~.)nk,R 0.,' ~: 

~+-~-} r . ~+ +~- \. 
'cos-2- exp\. -'-2-J' 

(33) 

where (h ° = [(q - 2ko)2R2 + a! 0] 1/ 2, Cl±,0,2 = k- RV ±,0,2, 
n = k/k. the expression (33) is valid under the condition 
k . ko < Vo. As a function of the angle between k and ko, 
the function I\F(q) attains its maximum as k·ko - ° 
(i.e., k 1 ko). In this case 

(34) 

Since V" ~ V 0, the amplitude of this maximum as 
q - 2ko turns out to be ~Y2~2exp{k-1Rlm Vo}kR2. 
Were we to have 1m Vo = 0, then the width of this maxi­
mum would be determined by the condition I q - 2ko I 
< I Vo/kl and would amount to several degrees (up to 
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15°) regardless of the nuclear radius. Since 1m Vo~ 0, 
~he ed~es of this "flat top" can rise somewhat (\ 1m f3\ 
IS maxImal at q = 2ko and decreases with increasing 
\ q - 2ko\). 

Observation of these singularities of the angular dis­
tribution is facilitated by the fact that at such large 
angles (q ~ 2ko)the first term of (28) has already de­
creased greatly, whereas OF(q) is maximal and influ­
ences strongly the course of the cross section (for 
certain angles OF(q) is even larger than F o(q». 

At not too large k· ko ~ 0, the picture remains quali­
tatively the same. It is interesting to note that accord~ 
ing to (27), (31), and (32), were it possible to realize the 
case u+ « 1 and u_ « 1, the amplitude of OF(q) as a 
function of k' ko would reach a maximum also at 
2k ·ko = ± Vo (one of the'terms in (31) vanishes as 
u - 0, and the second remains on the order of the black 
body amplitude ~2Fb.b). Actually, it is always possible 
to satisfy the condition 2k ·ko = ±Re Vo. The correspond­
ing term in OF(q) passes through Re F = 0, and conse­
quently the scattering cross section has an additional 
energy resonance (with the exception of w ~ WR)' 
Finally, the amplitude of OF(q) decreases strongly (by 
a factor ko R) with decreasing angle between k and ko. 

Thus, by comparing the cross section for scattering 
by oriented nuclei at different angles k, it would be pos­
sible to observe the periodic structure that the 1T con­
densate produces in the nuclear matter. In addition, it 
would be similarly pOSSible, in principle, to observe 
also the corrections (15), (21), and (22) in the polariza­
tion operator. 

In experiments on non-oriented nuclei, an averaging 
over the directions of the vector ko takes place in (31) 
(see[Sl), and this leads to a weakening of the role of the 
corresponding correction to F(q) (for \ q \ ~ 2ko): a 
density distribution of the form 

will be observed. 

( sin 2kor ). 
n(r)=no 1+s'~ . 

Finally, we indicate two other possibilities of observ­
ing the 1T condensate in nuclei. 

As noted in[4 l, the 1T condensate leads to deformation 
of the nuclei, and the direction of the layers is con­
nected with the direction of the nuclear spin. Therefore, 
if the 1T condensate does not manifest itself in the 
density modulation of the nuclear matter, the deforma­
tion can be observed in the scattering of different parti­
cles and in other effects. 

Another possibility is provided by pionic atoms. In­
asmuch as the binding energy of the pion in these atoms 
is of the order of several dozen keV,PS] the condition 
€ » €F (w ~ 1) is satisfied as before. In this connection, 
if the condensate in the nucleus is of the form (12), then 
the expression obtained for the pion polarization opera­
tor (15), (19), (21), and (22) remains valid. It is easy to 
estimate that allowance for the condensate in this case 
introduces into the energy levels a correction amounting 
to several hundred electron volts. Since experiments 
with pionic atoms are carried out with very high accu­
racy (up to several electron volts[lSl), the effects con­
nected with the 1T condensate must be taken into account. 

As indicated in[14 l, there are grounds for the exist-
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ence in nuclear matter of a three-dimensional conden­
sate field in the form 

Ijl-sin kox+sin koy+sin koz. (35) 

It can be shown that to take this into account in the ex­
preSSions derived above for the nuclear-matter density 
modulation, for the polarization operator, and for the 
pion scattering amplitude, it suffices to present these 
quantities in the form of three independent terms for 
each field component (35) (which differ only in the direc-
tion of ko). . 

Finally, we note two important circumstances. 

1. According to the resonant diagram (6), the 1T con­
densate gives rise to a constant shift of the nucleon 
density 6.n ~ -0.4noa2 • The point is that the 1T conden­
sate is a superposition of nucleon-hole and isobar-hole 
pairs, so that some of the nucleons go over into the N" 
isobar that is bound into the condensate. 

2. It is indicated in[14] that it is possible to realize 
a condensate that does not lead to density modulation. 
Allowance for such a field reduces to discarding the 
terms proportional to cos 2ko' r from the obtained ex­
pressions. 

Note added in proof (I 2 May 1975). 

1. Relations (7'). (10), and (10') point to the importance of relativistic cor­
rections in np at w:::: I. In the exact calculation, it is necessal)' to take into account 
also other corrections that are not considred in the text. 

2. Since pion absorption is large in the region of interest to us, the main 
effects in the scattering are due to a narrow layer near the surface of the nucleus, 
where the role of the condensate is small but the diffuseness of the nuclear edge is 
appreciable. Therefore.all the results are only qualitative in character. The correc­
tion (34) amounts to -10%. 
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