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We propose a method for solving the problem of the motion of a particle in a uniform electromagnetic 
field, which uses a representation of dynamical quantities by Bose operators. We show the usefulness of the 
method by deriving the nonlinear Heisenberg-Euler Lagrangian and the Landau level radiation width as 
examples. 

PACS numbers: 03.50.C 

L. D. Landau considered 45 years ago the quantum 
mechanical problem of the motion of an electron in a 
uniform magnetic field.[ll He reduced it to the linear 
oscillator problem, using the analogy between the com­
mutator of the generalized momenta 

[TI.,TI.l=ieH (1 ) 

and the commutator [q, p J = i. One could say that Lan­
dau applied the oscillator representation of the general­
ized momenta 

TI.=(a+a+)l'eH!2, TI,=-i(a-a+)l'eHI2, (2) 

to diagonalize the square of the transverse momentum 

TI.L'=TI.'+TI.'=eH (a+a+aa+). (3 ) 

An important property of these relations is that they 
remain valid in the relativistic theory. Because of this 
the calculation of a variety of phYSical effects can be 
appreciably simplified. We demonstrate this by the 
example of two problems of which the solutions have 
been known for some time but which have remained of 
interest up to the present. 

1. QUANTAL NON·LlNEARITY IN 
ELECTRODYNAMICS 

It is well known that electrodynamics becomes a non­
linear theory due to the phenomenon of pair creation. 
This manifests itself in that the action function of the 
electromagnetic field W acquires a correction[21 

W'=-iSp In G, (4) 

which contains G which is the propagator of a particle 
imbedded in an external electromagnetic field. We as­
sume that the field is constant and uniform, and we use 
a system of coordinates in which the field strengths E 
and H are parallel to the z-axis. For the transverse 
components of the generalized momenta the Landau 
representation (2) then remains valid, and for the longi­
tudinal ones its analogue 

(b+, b are, like a+, a, Bose creation and annihilation 
operators). Thus 

(5) 

W'=-iSpln [_1_] =-iSp f ds exp[ -s(!l'-TI')] (6) 
!l'-TI' 0 s 

~ds 

=-i S-· -r'··Spexp[seE(bb+b+b+)-seH(a+a+aa+)]. 
" . s 

The trace is taken over all quantum numbers of the 
particle, and the Hamiltonian depends explicitly only on 
the number eigenvalues a+a and b'b. The summation 
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over the other quantum numbers thus reduces to multi­
plying by the degree of degeneracy of the Landau levels. 
For the transverse components this equals 
eHLxLy/21T p1 We recall its derivation: the energy is 
independent of the magnitude of the momentum Px which 
leads to a degree of degeneracy LxAPx/21T. The total 
change in momentum is caused by the Lorentz force and 
equals eHLy. Similarly the degree of degeneracy of the 
longitudinal components equals Lz Apz /21T. The change 
in pz is caused by the electrical field Apz = eET, 
which leads to the formula eELzT/21T. 

The action thus turns out to be proportional to the 
4-dimensional volume, as should be the case in a con­
stant and uniform field. The coefficient of the voiume 
is the required correction to the Lagrangian 

eHeESoods ) P'=-i~- -e-"'spexp[seE(bb+b+b+)-seH(a+a+aa+)L (7 
2n 2n 0 s 

where tr indicates the trace over the explicitly appear­
ing variables only. As these are separated we can find 
each trace separately. Thus 

spexp[-seH(a+a+aa+)]= L:exp[-seH(2n+1l]=I/,sh (seH). (8) 

To evaluate the second trace we use the formula 

bb+b+b+=iU( b+b+bb+) U-', U=exp['/,in (b+b+ -bb) ], (9) 

which reduces it to the preceding one 
sp exp [seE( bb+b+b+) ] =sp U exp [iseE (b+b+bb+) ] U- I=i/2 sin (seE). 

(10) 
Hence 

(11) 

It is necessary to regularize this expression, subtract­
ing the first terms of the Taylor series:[ 41. 

p,=_1_~S!!...[~ seE -1-~(E'-H')]r"" (12) 
16n' s' sh seH sin seE 6 

o 

For spinor particles the changes in the calculation 
are small: firstly, by virtue of the Fermi statistics the 
sign in Eq. (4) is changed; secondly, when quad rating the 
propagator a factor 12 appears: 

WSP'=+iSPln~TI =tSPln_+1 TI =-2' SpIn , ~ 0)' . (13) 
m-l m 1 m - 1 

The square (yrr)2 = rr2 + eO'iJ.IIF iJ.1I/2 contains a spin term 
which commutes with rr2. The trace over the spin com­
ponents can thus be split off as a factor which for the 
magnetic part equals 

(14) 
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and for the electrical part 2 cos seE. We thus get the 
Heisenberg-Euler Lagrangian[4] 

9: ,= __ 1_f ~[~~-1+~(E'-H')le-''''' 15) 
sp 8n'. J s' th seH tg seE 3 . ( 

In the case of weak fields the expression within the 
square brackets equals _(es)4(E4 + H4 + 5E2H2)/45 and 
after evaluating the integral we get the well known ex­
pression 

9:'" =~ (E'-H')'+7(EH)' 
sp 8n' 45m' 

(16) 

A similar fourth order correction, caused by the 
contribution of scalar particles, follows from Eq. (12) 
and equals 

9:")=~ 7 (E'-H') '+4 (EH) , (17) 
sc 1Bn' 3601L' . 

Expressions (12) and (15) contflin poles at s = n1T/eE, 
which produce an imaginary part of the Lagrangian and 
lead to the instability of the vacuum with respect to 
pair formation (see, e.g.,[3J). 

2. SYNCHROTRON RADIATION 

Synchrotron radiation (or magnetic bremsstrahlung) 
is nothing but the radiative decay of a Landau level. The 
most straightforward method to evaluate it is therefore 
to calculate the mass operator of a particle in a mag­
netic field (see[5]). Unfortunately in the cited papers a 
calculational technique was used which complicated the 
issue without justification. The Landau representation 
reduces the problem to a trivial one. 

As there is no electrical field the longitudinal mo­
mentum components remain unchanged. We replace 
them by their eigenvalues 

II,,= (IIo, II,) = (e, 0), (18) 

which were chosen in this way to exclude spiral motion; 
IIx and IIy are, as before, given by Eqs. (2). 

The mass operator has the form 

e' d'k ~ 
!!Jl = -. - J- J ds(2II-k)exp[is(II-k)'- islL'] (2II-k). (19) (19) 

(2n)' k'. 

We take the exponential through to the right; only the 
operators IIx , II y change then, as they are just the ones 
which do not commute with the index. We have 

II, ..... II,(s) = (IIr-k,) cos 2 seH- (IIy-ky) sin 2seH+kr, 

II, ..... II,(s) = (II,-k,) cos 2seH+ (IIr-k,) sin 2seH+k,. 

We restrict ourselves to evaluating the leading 
terms in k/ €. This gives 

4e' d'k ~ 
!!Jl=-- J-- JdsII.II(s)exP[is(II-k)'-iSIL']. 

(2n)' k' • 

II· II(s) =II'+ II.L'(1-cos 2seH) +ieH sin 2seH. 

(20) 

(21) 

(22) 

On the mass shell II2 = JJ.2, IIf = €2 - JJ.2. Moreover, we 
shall assume that eH <: JJ.2 « €~. In that case 

4e'lL' J d'k JW (e' ) !!Jl== -- -- ds 1+2-sin'seH exp[is(II-k)'-;SIL']. 
(2n)' k' 0 IL' (23) 

The matrix elements of the operator !!Jl have the sim­
plest form in the system of coherent states I (3 ), de­
fined by the equation a I (3 ) = (31 (3). In that base (see 
Appendix) 

<~ 1 exp[is(II-k) '- i8IL'] 1 ~>=exp( _2isek.+2iNk). (24) 

while 
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Thus 

INI= (e'-IL')'/' sin seH. 
eH 

4e'IL' d'k m (e' ) 
!!Jl,,= (2n),J"k'f ds 1+2-;.;;sin'seH exp[2i(Nk-S8k.)]. 

(25) 

(26) 

By virtue of the optical theorem the imaginary part of 
the mass operator is connected with the decay probabil­
ity 

1 
W. = --Im!!Jl", 

e 

which enables us to write 

(27) 

4e'IL'J dk mJ (8' ) W.= --- --- ds l+-sin'seH cos (2Nk-2sew). (28) 
e 2w(2n)' • IL' 

We can easily find the integral over the angles of the 
emitted photons: 

J dQ cos (2Nk-28SW) = ~[sin(2w8S+2Nw)-'8in(2wes-.2Nw)]. (29) 
Nw 

The argument of the second sine equals 

2wes 1---- 1-- "" wes -+---[ sin seH ( IL') 'f.] [IL' (SeH)'] 
seH 8 2 E2 3 ' 

(30) 

and in the first one we can put N;;:; €s. (The possibility 
of expanding in powers of seH is connected with the fact 
that the parametric integral is produced in the region 
seH ~ JJ./ € « 1.) 

The spectral distribution of the radiation is given by 
the formula 

e' (IL)' fm ds [ 8' ] [ ( It' dW=-- - dw - 1+2-(seH)' sinwe.s-
4n2 B 0 S J.12 8 2 (31) 

S'e'H') ] + --3 - - sin 4wes 

or 

a; (It)' ["Jx (X') n] dW =-;- -;- dw J -;- (1+2x') sin ~ x +"3 - 2" ' (32) 
• 

where ~ = WJ..L 3/ eH€2. This formula is the basic result 
of the cited paper by Schwinger.[5] The mass operator 
was found in that paper by a considerably more com­
plicated method. Retaining terms .x:w we get correc­
tions of the order X = eHd JJ. 3 which are quantum 
mechanical in character. 

The achieved simplification is caused mainly by the 
application of the coherent representation of states 
which, in turn, is connected with the introduction of the 
Landau boson operators. Finally, the differential form 
of the optical theorem turned out to be convenient. 

APPENDIX 

We introduce the shift operator for the transverse 
components of the generalized momentum 

D+('l) II.LD('l) =II.L -kl.' 

In explicit form it is 

D(I") =exp(I")a+-I")'a). '1= (-kr-iky) /,/2eH. 

In that case 

exp[ is (II -k) '-islt'] =exp [is (II,,-k,,) '-islt']D+ (I") exp (-isIIl.') D (I") 
=exp[is(IIII-kll) '-islL']exp (-isII.L')D+ (I").)D (I") = 

=exp[is(k ll'-2k Il II II ) ]D+ (I").)D('l) , 

where 1'/ s = 1) e2iseH . 

The shift operators are multiplied, USing the Baker­
Hausdorff formula 
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eXe Y =eX+Y exp '/2 [X, YJ, 

provided [X, Y) is a c-number. We get 

D+(1].)D(1])=D(u)exp(i 1m 1]:1]), U=1]-1] •. 

Finally, the matrix element of the shift operator 
equals, in the coherent base, 

<~ 1 D(u) 1 ~)=<~! exp{ua+)exp (-u'a) exp (-I u 1'/2) I~) 
=exp(~·u-~u·-luI212). 

Retaining only the linear terms in the exponent we find 

<~ 1 exp [is (II-k) '-isJ!'] 1 ~)=exp (-2iskoe+2iNk). 

The vector N has only the transverse components 
. I I 

N = B (sin 2seH; 1- cos 2seH; 0). 
'i2eH 

Bearing in mind that \ ,8"\2 = (13\ a +a \ J3) = (lOll - J.L2 
- eH)/2eH, we get 

(e'-J!')'/' 
INI = sinseH. 

eH 
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