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A general type of spatially one-dimensional solutions of the Landau-Lifshitz equations is investigated with 
two angular degrees of freedom of the magnetic-moment vector taken into account. It is shown that besides 
the well known solutions corresponding to the Bloch or Neel domain structures, a number of solutions exist 
corresponding to domain structures with two angular variables. The qualitative analysis of the problem, 
confirmed by numerical calculations, indicates the existence in the spatially one-dimensional case of domain 
structure with a change of the plane of rotation of the magnetic-moment vector. It is shown that among 
the solutions of the Landau-Lifshitz equations are contained solutions corresponding to isolated magnetic 
domains with several nodal lines and a change of the plane of rotation of the magnetic-moment vector 
which is localized in space. In a zero external field such solutions correspond to domain walls, and also 
simple waves of magnetization characterizable by two angular degrees of freedom are related to these 
solutions. 

PACS numbers: 75.60.F 

1. In connection with the investigation of domain the magnetic-moment vector occurs in the plane of the 
structures and, in particular, domain walls on the basis domain wall (i.e., in the plane ((! = 1T/2, if the direction 
of the Landau-Lifshitz equations?] the model of a planar of the unit magnetic-moment vector is defined by the 
Bloch (or Nllel) domain wall is widely used, where accord- angles e and ((! of the spherical coordinate system with 
ing to this model the magnetic-moment vector, which is axis directed along the axis of anisotropy). In contrast 
undergoing rotation, remains, upon a change of the spa- to a domain of the Bloch type, the found solution is 
tial variable, in a plane which is parallel (or perpendicu- characterized by the presence of two regions of inverted 
lar) to the plane of the domain wall. magnetization. The projection of the corresponding in­

However, although the spatially one-dimensional so­
lutions corresponding to such a model are important, 
yet they are only particular solutions of the Landau-Lif­
shitz equations. A more general type of solutions is as­
sociated with those distributions of the magnetization for 
which a plane of rotation of the magnetic-moment vector, 
which remains constant in space, does not exist. In other 
words, such solutions are characterized by two angular 
degrees of freedom-in contrast to the Bloch or Nllel so­
lutions, which correspond to a single degree of freedom 
for the magnetic-moment vector. 

The relative difference between the energies of Bloch 
and Nllel domain walls, for which the angle between the 
constant planes of rotation of the magnetic-moment vec­
tor is equal to 1T /2, is determined by the characteristic 
parameter of the magnetic medium 

e=2nM.'/K, (1.1) 

where Ms is the saturation magnetization, K denotes the 
uniaxial anisotropy energy, and is small if the parameter 
E « 1. One can conjecture that for magnetic media with 
a low saturation magnetization and a high energy of ani­
sotropy, the realization of domain structures with two 
angular degrees of freedom is pOSSible, one of which 
determines the change of the plane of rotation of the mag­
netic-moment vector. 

Below it is shown on the basis of an analysis of the 
Landau-Lifshitz equations that, in the spatially one-di­
mensional case (all quantities depend on only the vari­
able x) a sequence of solutions, corresponding to mag­
netic domains with two degrees of freedom, exists in 
the presence of an external magnetic field. The distribu­
tion in space of the projection mz of the magnetic-mo­
ment vector on the direction of the external field hz is 
shown in Fig. 1 a for one of these solutions. For com­
parison the distribution of mz for a magnetic domain 
with one angular degree of freedom, namely, a domain 
of the Bloch type, is depicted by the dotted line on the 
same figure, In the last case mx == 0 and the 'rotation of 
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tegral curve on the (e, ((!) plane, depicted in Fig. 1 b, 
shows that asymptotically as x _ ± 00 the magnetic-mo­
ment vector reaches equilibrium positions corresponding 
to uniform magnetization along the external field, under­
going rotations in the "Bloch" planes .p = 1T/2 and ((! 

= 31T/2. Such behavior of the solutions guarantees the 
vanishing of the internal fields of demagnetization in 
the region of establishment of uniform magnetization. 

We note that, in spite of the existence of a solution 
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FIG. I. a-The distribution of mz in space for a domain with two 
angular degrees of freedom (hz = 0.01; € = 0.1); b-the projection of the 
integral curve of an isolated domain on the plane (8, <,0); c-the distribu­
tion of the torque f.l in space for an isolated domain. 

FIG. 2. a-The spatial distribution of mz for a domain wall with two 
angular degrees of freedom (hz = 0; € = 0.1); b-the projection of the 
integral curve of the domain wall on the plane (8, \0); c-the distribution 
of the torque J1 in space for a domain wall. 
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corresponding to a domain wall of the N~el type with one 
degree of freedom, solutions of the Landau-Lifshitz equa­
tions do not exist corresponding to magnetic domains with 
two angular degrees of freedom, in which the magnetic­
moment vector would be found in the "Neel" planes 
cp = 0, rp = 'IT upon attainment of the region of uniform 
magnetization. From an examination of Fig. 1 b it fol­
lows that if the external domain walls are distributed in 
Bloch planes, then the internal domain wallS, yielding a 
layer with a magnetic moment directed along the external 
field, are located in planes rp < 1T/2 + 1T/4 and rp> 31T/2 
- 1T/4, which are separated fro;" the N~el plane q; = 1T. 
Such an arrangement of the internal domain walls leads 
to demagnetization fields that are small in comparison 
with a Neel domain wall. Finally, the distribution of the 
torque Il = sin2fJ (d</>/dx) for a magnetic domain with two 
angular degrees of freedom is shown in Fig. 1 c. The 
magnitude of the torque is such that, at any rate, ilL; E. 

One of the solutions of the Landau-Lifshitz equations 
in the absence of an external field, corresponding to a 
domain wall with two angular degrees of freedom, is de­
picted in Fig. 2. Notably, the distribution in space of the 
component mz of the magnetic moment is shown in Fig. 
2 a. For comparison, the distribution of mz in a domain 
wall of the Bloch type is indicated by the dotted curve on 
the same figure. In contrast to a Bloch wall, in the solu­
tion cited above with two angular degrees of freedom 
there are, as is clear from Fig. 2 b, two "external" do­
main boundaries of Bloch type and an "internal" do­
main boundary of the Neel type. The spatial distribution 
of the torque Il = sin2fJ (drp/dx) in the domain wall is de­
picted in Fig. 2 c. We note that the torque tends to zero 
asx_±oo. 

It should be pointed out that the exis tence of magnetic 
domains and domain walls with two angular degrees of 
freedom, such as those described above, is an exact and 
rigorous consequence of the Landau-Lifshitz equations. 
In what follows the existence of other types of solutions 
(in particular, periodic solutions) with two angular de­
grees of freedom will be indicated. However, the latter 
are of direct physical interest only to the extent of their 
proximity to detached solutions (i.e., to solutions of the 
domain or domain-wall type). 

In [2] it is mentioned that a systematic transition from 
a stationary domain structure of the Bloch type to the 
corresponding simple, magnetic-moment wave (i.e., to 
a wave propagating with constant velocity and without a 
change of shape) leads in the general case to distribu­
tions of the magnetiC moment which depend on two angu­
lar degrees of freedom. However, for simple waves pro­
pagating in the plane orthogonal to the axis of anisotropy, 
only a particular, exact solution, corresponding to a sim­
ple wave with one angular degree of freedom, is obtained 
in [2]. In this case, although the pOSition of the plane of ro­
tation of the magnetic moment is constant in space, yet it 
is determined by the velocity of the simple wave and coin­
cides with the position of the Bloch plane only in the limit 
when the velocity is equal to zero. 

The analysis of the Landau- Lifshitz equations set 
forth below allows one to reach a number of conclusions 
about the properties of simple waves of magnetization 
allowing for two angular degrees of freedom. Such a pos­
sibility is due to the fact that, for a nondissipative mag­
netic medium the Landau-Lifshitz equations admit the 
existence of a first integral even in the case of simple 
waves. 
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In the absence of an external field, the velocity of a 
simple wave corresponding to a moving domain wall with 
two angular degrees of freedom is related to the asymp­
totic positions rp ± == rp (± 00 ) of the plane of rotation of the 
magnetic moment by the same equation which was also 
found in[2], notably 

, e'Cos'<P±sin'q:± 
u~ = 

1 +e cos' <p± 
(1.2) 

Here u denotes the velocity of the simple wave in units 
of the characteristic velocity, which is equal to 
2yv'AKjMs , where y is the gyromagnetic ratio, A is the 
exchange energy constant, and the angles rp ± are either 
equal or differ by 1T. It is obvious that the continuous 
spectrum (1.2) of the velocities is bounded from above 
by the value umax = .;r:tE - 1, just as in the case of 
simple waves of magnetization with a single angular 
degree of freedom, when rp+ = cp- = rp(x) == const. We note 
that the agreement of the velocity spectrum for simple 
waves of magnetization with one and two angular degrees 
of freedom is intrinsically related to the nondissipative 
nature of the magnetic medium and does not take place 
when attenuation and external fields are taken into con­
sideration. 

In our opinion, the investigation of general spatially 
one-dimensional solutions of the Landau-Lifshitz equa­
tions allowing for two angular degrees of freedom, indi­
cating the possibility of the existence of new, unusual 
types of domain structures and the simple waves asso­
ciated with them, is of obvious physical interest. 

The investigations[:t-S] carried out in recent years of 
magnetic comains in rare-earth iron-garnets of compli­
cated composition, for which the parameter E S 0.1, 
showed that the structure of the domain wall may be of 
a simple Bloch type as well as a complex type, represent­
ed by (upon displacement along the wall) a periodic struc­
ture of Bloch and Neel segments, separated by transi­
tion layers. Although such complicated domain walls are 
spatially non-one-dimensional structures with two angu­
lar degrees of freedom, it should be noted that a number 
of characteristic properties such as, how the plane of ro­
tation of the magnetic-moment vector is turned or the 
existence of a periodic structure of Bloch and N~el do­
main walls already arises in connection with the analysis 
of the general, one-dimensional solutions of the Landau­
Lifshitz equations. One can advance the hypothesis that 
the general type of spatially one-dimensional solutions 
of the Landau-Lifshitz equations allowing for two angu­
lar degrees of freedom appears to be useful in connec­
tion with the analysis of the properties of such compli­
cated domain structures. 

2. In the spatially one-dimensional case, the Landau­
Lifshitz equations for a magnetic, nondissipative medium 
with uniaxial anisotropy can be written in the form 

d't} (~Z) UIJ, -- 1 + --+ g cos' 'I' sin t} cos t}-h,sint} +-' - =0, 
dx' sin' t} sin il 

d~ dt} - + v sin t} - + g sin' t} cos 'I' sin '1'=0, 
dx dx 

d<p 
~=-sin't}, 

dx 

(2.1) 

Here fJ and rp are the angular variables of the magnetic­
moment vector, which depend on x - ut in the case of a 
simple, wave-type solution; hz = HzMs /2K where Hz is 
the external magnetic field, parallel to the axis of ani­
sotropy; finally the spatial variable is expressed in units 
of the characteristic thickness of the Bloch doma;n wall, 
which is equal to (A/K)l12. 
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An important property of the system of equations (2.1) 
is the existence of the first integral 

dt}' J.I.' 
(-) +-.--(1+ecos'q»sin't}+2h,cost}=~, (2.2) 

dx sm't} . 

which does not explicitly depend on the velocity of the 
simple wave, and the obvious inequality related to it 

dt} , fL' 
(-) =~---+(Hecos'cp)sin'tt-2h,cost};;.0. (2.3) 
. dx sin't}, 

The Landau-Lifshitz equations (2.1) correspond to a 
nondissipative dynamical system with two angular de­
grees of freedom, and the four-dimensional phase space 
(de/dx; q; JJ., cp) or (de/dx, e; dcp/dx, cp) is the corres­
ponding phase space. However, owing to the existence of 
the first integral (2.2) an analysis of the behavior of the 
integral curves in the three-dimensional space (e, cp, JJ.) 
or (e, cp, dcp/dx) is useful in connection with the investi­
gation of the solutions of Eqs. (2.1). 

In fact, in the space (e, CP, il) the inequality (2.3) 
singles out the inside of the cylinder associated with 

as a closed system in which all integral curves with a 
given value of the first integral £' are located. 

For u = 0 the system of Eqs. (2.1) possesses the fol­
lowing states of equilibrium (de/dx == JJ. = 0): 

tt=o, q>=nn; t}=o, '1'= (2nH) nl2 (2.4) 

where n is an integer, corresponding to uniform magneti­
zation along the external field. Here the value of the con­
stant first integral is £' = + 2hz . Therefore, for £' = + 2hz 
all the solutions of the detached type, corresponding to 
isolated magnetic domains, will be located inside the 
boundary surface P (e, cp, JJ.; 2hz ), which is defined by 
the equation 

dt} )" fL' . ( ) ( - ""P'=2h,--.-,-' +(1+ecos'cp)sm't}-2h,cost}=0, 2.5 
dx sm it 

However, solutions of other types (for example, cor­
responding to a periodic domain structure with inter­
change of Bloch and Neel domain walls) will also be lo­
cated inside the boundary surface (2.5), whose structure 
is depicted in Fig. 3. 

Since P == de /dx -I 0 inside the allowed region defined 
by the inequality (2.3), and P vanishes only on the bound­
ary surface p(e, cp, IJ.;£') = 0, it follows that upon an in­
crease of the spatial variable any integral curve in the 
space (e, cp, JJ.) must inevitably be carried out to the 
boundary surface P = 0 and after contact with it again 
departs into the depths of the allowed region. 

It may happen that the integral curve, which emerges 
from the equilibrium position corresponding to uniform 
magnetization as x __ 00 again enters (as x _ +00) the 
same equilibrium position after making a finite number 
of contacts with the boundary surface P = O. Such de­
tached curves correspond to isolated magnetic domains, 
characterized in the general case by two angular de­
grees of freedom. Integral curves corresponding to iso­
lated magnetic domains with a single angular degree of 
freedom are located in the intersection of the allowed 
region P ~ 0 by the plane JJ. = O. Notably, isolated Bloch 
domains and Neel domains correspond, respectively, to 
motion along the rays cp = (2n + 1)1T/2 and cp = n1T for 
0,s(},s1T. 

In order to realize the possibility of the existence of 
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isolated comains with two angular degrees of freedom, 
it is necessary that the equilibrium positions (2.4) be 
the source of a set of emerging (for x __ 00 ) and in­
coming (for x - +00 ) integral curves. In this connection 
only those integral curves, which correspond to il F 0 
in the neighborhood of the singular point (IJ. = 0, e = 0) 
lead to distributions of the magnetic moment with two 
angular degrees of freedom. In order to investigate the 
asymptotic behavior of the solutions near the singular 
pOint, let us change from the space (e, cp, JJ.) to th.e 
space (e, cp, dCP/dx). For e« 1 and the constant fIrst 
integral£' = + 2hz , by using expression (2.2) we find 
that 

P"" :: = ± [Hh,+e cos' q>- (~:)' r tI. (2.6) 

In this connection the second of the equations in the sys­
tem (2.1) leads to the equation 

d'QJ '( dq> ) '] 'f, dq> . -' + 2 (sign P) [ 1 +h.+e cos' '1'- - - + E cos qo sm q>=O, (2.7) 
dx' ' dx dx 

Analysis of this equation showed that, in the vicinity of 
the equilibrium positions e = 0, cp = (2n + 1)1T/2, where n 
is an integer, the incoming and outgoing integral curves 
are located in the detached planes 

dqoldx=±[ (Hh,+e)'!'- (1+h,) '''J [q>- (2n+l}n/2J. (2.8) 

In the space (e, cp, dcp/dx) the "incoming" and "outgoing" 
curves themselves are determined by the intersection 
of the detached planes (2.8) with the one-parameter fam­
ily of surfaces 

. n . 
cp= (2n+l)"2 + CtI', 1+h, )'" a=l- ---

- (l+h,+e . 
(2.9) 

where C is the only free parameter in the problem. In 
the space (e, cp, JJ.) the detached planes (2.8) correspond 
to the detached surfaces 

fL=±[ (Hh,+e) '1,- (1+h,) 'I'Jtt'[ rp- (2n+1) n/2J. (2.10) 

The origin of the solutions, corresponding to isolated 
domains with two angular degrees of freedom, results 
from the fact that after a finite number of contacts with 
the boundary surface the integral curve emerging (as 
x __ 00 ) from the singular point may again pass into the 
singular point (as x _ +00). The actual realization of 
such an event is possible only at a definite-characteris­
tic-value of the parameter C. Therefore, out of the con­
tinuous set of values of the parameter C the detached 
solutions correspond to a denumerable set, which may 
be ordered according to the number of contacts of the 
integral curve with the boundary surface between emer­
gence and entrance to the singular point. If hz = O,.then 
a second position of equilibrium (} = 1T appears, WhICh 
leads to the possibility of the existence of domain walls 
separating the regions of uniform magnetization (} = 0 
for x __ 00 and e = 1T for x _ +"". For hz = 0 the system 
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(2.1) is invariant under the substitution e _ 11 - e; there­
fore, the asymptotic behavior near e = 11 can be obtained 
by putting hz = 0 in Eqs. (2.8), (2.9), and (2.10) and by 
replacing e by 11 - e. The determination of solutions of 
the domain-boundary type with two degrees of freedom, 
possessing nodal lines, is completely analogous to the 
problem of isolated domains in an external field. 

and cp by the boundary surface (Fig. 3). The position of 
the layer with respect to the plane ,J. = 0 is determined 
by the sign of Jlo. Therefore, in this case the quantity 
J-l preserves its sign for all x 2: Xo and cannot vanish. 

If the condition ,1l5 < € is satisfied at a certain point 
Xo of space, then for all x 2: Xo the integral curve will be 
contained inside the layer (+,h + Jl~, - ,IE: + /lg) of space 

The analogy between the analysis of the detached so- (e, CP, Jl), which is bounded in e and cP by the boundary 
lutions expounded above and the well known, so-called surface (Fig. 3) and symmetrically situated relative to 
"billiards problems" [6] should be noted. In particular, the plane Jl = O. In this case a change in the sign of J-l 
for an arbitrarily chosen value of the parameter C, one is possible for x > xo, and also entrance of the integral 
would expect with a probability close to unity that the curve into the singular point (/l = 0, e = 0) corresponding 
integral curve emerging from the singular point as to uniform magnetization along the external field. There-
x __ 00 will undergo a certain motion inside the boun- fore, the inequality Jl2 < € is valid for the detached so-
dary surface even for an unlimited increase in the num- lutions corresponding to isolated domains. 
ber of contacts and, consequently, it does not return to 3. A number of numerical integrations of the system 
the singular point as x - +"'. This type of solutions cor- (2 1) were carried out in order to confirm the results 
res.pon?s to a transition from .the region of uniform mag-. e~pounded above of the qualitative analysis of the solu­
nehzatlon along the external held (for x - _00) to a domam tions of the Landau-Lifshitz equations allowing for two 
structure characteri~ed by two angular degrees of free- angular degrees of freedom. 
dom (for x - +"'). Fmally, for the same valueJf' = +2hz 
of the constant first integral, solutions are possible for The dependence cp = cp(e), obtained as the result of 
which the integral curves do not reach the singular numberical integration for values of the parameters 
point either as x __ 00 or as x _ +00, notWithstanding € = 0.1 and hz = 0.01, is presented in Fig. 4. The point 
the unlimited number of contacts with the boundary sur- associated with the values eo = 0.785, CPo = 0.785, and 
face. A domain structure, characterized by two angular Jlo = 0.526, located on the boundary surface p(e, cp, J1.;Jf') 
degrees of freedom and occupying all of space, corres- = 0 associated with the value Jf' = +2hz of the constant 
ponds to this type of solutions. first integral, was taken as the initial point of integration. 

Let us turn our attention to the fact that the existence 
of the three types of solutions enumerated above for a 
given value of the constant first integral is due to taking 
account of two angular degrees of freedom in the Landau­
Lifshitz equations. 

The existence of two degenerate solutions with one 
angular degree of freedom, corresponding to the domain 
structures of Bloch and Neel, indicates that under cer­
tain conditions the last of the above enumerated types of 
solutions with two degrees of freedom corresponds to 
spatially periodiC stratification of the medium's magneti­
zation into mutually alternating Bloch and Neel domains 
which are almost isolated. In this connection the change 
in the plane of rotation of the magnetic-moment vector 
takes place near the singular point, i.e., in the region 
with an almost uniform distribution of the magnetization 
along the external field. 

It was shown in [7] that one more first integral ;.J. 

== f-lo = const arises as € - 0, and the system of Landau­
Lifshitz equations is completely integrable for € = O. For 
€ f 0, by multiplying the second of Eqs. (2.1) by 
Jl= sin2e (dcp/dx) and integrating the obtained relation­
ship along an integral curve passing through a certain 
point (eo, CPo, Jlo), which is located inside the boundary 
surface, we find that . 

11'-f1o'=-2e S d'f sin 'f cos 'f sin' tr('f). (2.11) 

One can show that the absolute magnitude of the integral 
on the right hand side of Eq. (2.11) does not exceed 
unity, and consequently the following inequalitites are 
valid: 

(2.12) 

If it is known that the condition f-l~ > E is satisfied at 
a certain point Xo of space, then for all x 2: Xo the integral 
curve will be contained inside the layer (± "Jl~ + E, 

± ,fJlg - €) of the space (e, cp, f-l), which is bounded in e 
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In this case the inequality Jl~ > € is satisfied, and the 
motion of the magnetic-moment vector associated with 
an increase of the spatial variable corresponds to a nu­
tation around the value e = 11/2 and a precession around 
the axis of anisotropy. 

The dependence Jl = Jl(x), reflecting the oscillations 
of f-l around the initial value f-lo with a characteristic amp­
litude satisfying the inequalities (2.12), is depicted in 
Fig. 5. For f-l~ > € and € ~ 1 both the qualitative analysis 
and the numerical calculation indicate that the solutions 
of the de~enerate problem which we previously inves­
tigated, [7 when € _ 0, are a good approximation to the 
exact problem. 

Numerical calculations were performed on an elec­
tronic computer to verify the conclusion reached above 
about the existence of isolated magnetic domains with 
tv.o angular degrees of freedom. A method of determining 
detached integral curves for dynamical systems with two 
degrees of freedom, possessing a first integral, [a] formed 
the basis of the calculations. As a result of the calcula­
tions a solution is found, corresponding to three con­
tacts by the detached integral curve with the boundary 
surface (2.5), and the eigenvalue of the parameter for 
the problem turns out to be 

I 

J \~ 
0.7;5~ 

0.765 11/2 2,,-

'~ 0.55 . 

0.~5~_ 

o 1 z 

FIG. 4 FIG. 5 
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O.10<C<O.11. 

The spatial variation of the projection of the magnetic 
moment on the direction of the external field in such an 
isolated domain is depicted by the solid line on Fig. 1 a. 
In contrast to an isolated domain of the Bloch type, the 
found distribution of the magnetic moment is character­
ized by the presence of two regions of inverted magnet­
ization, separated by a layer which is magnetized almost 
precisely along the external field. The ring (or hollow 
bubble) isolated domains with cylindrical geometry, ob­
served in orthoferrites and rare-earth iron-garnets, [9,10] 

are the analog of such an isolated domain. 

The solutions of the domain-wall type for hz = 0 and 
E = 0.1, depicted in Fig. 2, correspond to an eigenvalue 
of the parameter 0.030 < C < 0.035. 

On the basis of qualitative and numerical analysis of 
the problem, one can conclude that solutions of the 
Landau-Lifshitz equations of the domain-wall type with­
out nodal lines and isolated domains with one nodal line 
do not exist, except for degenerate solutions with a 
single angular degree of freedom (solutions of the Bloch 
and Neel types). 

In conclusion we note that investigations of spatially 
one-dimensional solutions of the Landau-Lifshitz equa­
tions allowing for two angular degrees of freedom indi­
cate the possibility of the existence of a whole series of 
new types of domain structures, characterized by a 
change in the position of the plane of rotation of the mag­
netic-moment vector in space, and such investigations 
are of interest in connection with investigations of new 
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types of domain structures and domain walls in magnetic 
materials with high anisotropy energies and low satura­
tion magnetizations, and also in connection with investi­
gations of the effects of constant and high-frequency 
fields on domain structure. 
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