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A model proposed earlier [11 for the ferromagnetic state of band electrons is investigated in detail. It is 
shown that the ferromagnetic ordering of electrons in a system that is unstable against electron-hole pairing 
arises by way of a second-order phase transition, for arbitrarily small coupling constants, if there exists an 
excess concentration of electrons or holes. The model is used to explain the magnetic properties of certain 
narrow-band semiconductors and also of some metals of the iron group. 
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I. INTRODUCTION 

The idea of ferromagnetic ordering of the band elec­
trons in systems with a one-electron spectrum that is 
unstable against electron-hole (excitonic) pairing was put 
forward earlier. In the present article this model is 
considered in more detail. 

The known models of the ferromagnetic state of band 
electrons, obtained from "first" prinCiples (of the type 
of the Stoner model [2J ), lead to a criterion for the ap­
pearance of magnetic order, namely, that the potential 
energy of the interaction of the electrons should become 
of the order of their kinetic energy. The model we are 
conSidering leads to ferromagnetism even for arbitrarily 
small electron-electron interaction, provided that the 
one-electron spectrum satisfies certain requirements. 
Namely, the substance in the initial phase is a semi­
metal with electron and hole Fermi surfaces that almost 
coincide on translation by a certain vector P [3J, or it is 
a metal with narrow forbidden bands, when, for certain 
values of the vector P, the condition E(k) = -E(k + P) is 
fulfilled [4J, or it is metal with planar parts of the Fermi 
surface [5J, or, finally, it is a semiconductor for which 
the exciton binding energy is greater than the width of 
the forbidden band [6 J. 

In all the cases enumerated, the system is unstable 
against the formation of excitons (electron-hole pairing) 
in a Singlet or a triplet state. If a singlet instability de­
velops first the substance goes over into an insulating 
state with a charge-density wave, i.e., structural trans­
formations occur at the phase-transition point, and, 
possibly, ferroelectric properties arise. But if a triplet 
instability develops first, an antiferromagnet with a 
spin -density wave is formed [7J • 

It can be shown [IJ that the simultaneous existence of 
Singlet (~s) and triplet (~t) order parameters is not only 
accompanied by the appearance of charge- and spin­
density waves but also lifts the degeneracy in the spin of 
the electron and hole bands. If the number of electrons 
is not equal to the number of holes (the chemical poten­
tial J1. lies above (or below) the insulating gap formed), 
the number of carriers in the bands with oppositely 
oriented spins will be different. The total spin of such a 
system is not equal to zero, but is proportional to the 
difference in the concentrations of electrons and holes. 
Consequently, ferromagnetism appears, which we shall 
call excitonic in contrast to Stoner ferromagnetism [2J. 

Thus, the problem of excitonic ferromagnetism re­
duces to ascertaining the range of values of the coupling 
constants in which coexistence of triplet and singlet 
pairings in the presence of a difference in the electron 
and hole concentrations is energetically favorable. 
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Below, for definiteness, this question will be studied 
using the example of an isotropic semi-metal with almost 
coincident electron and hole Fermi surfaces. 

The reason that a ferromagnetic state appears in 
such systems even when the interaction is weak is as 
follows. For Singlet pairing alone or triplet pairing 
alone, the non-coincidence of the electron and hole 
Fermi surfaces leads to a decrease of the dielectric gap 
~ (cf. (30», and, consequently, to a free-energy loss 
(31) on account of the appearance of free carriers above 
the gap at T = O. When the spin degeneracy is lifted in 
the ferromagnetic state there occurs a redistribution of 
these carriers over the spin sub-bands, leading to an in­
crease of ~ (cf. (39». In this case the kinetic-energy 
loss, which arises on account of the redistribution of the 
carriers above the gap (cf. (42» and which makes a 
ferromagnetic state impossible in the case of weak in­
teraction and a spherical Fermi surface [2 J , is compen­
sated by the energy gain (41) resulting from the states 
below the gap. As the coupling constant increases, 
dielectric pairing and a ferromagnetic state are possible 
for electron and hole Fermi surfaces that are less and 
less similar in shape and size, i.e., a larger and larger 
fraction of the electrons will make a contribution to the 
magnetization. Thus, the Bloch-Stoner model, in which 
the electrons are completely spin-polarized, is the 
limiting case, for sufficiently strong interaction, of the 
model considered in the present work. It may be hoped, 
therefore, that the nature of the appearance of ferro­
magnetism in our model with weak interaction has an 
extremely general character. 

II. MODEL HAMILTONIAN 

The one-particle spectrum of the electrons of an iso­
tropic semi -metal is described by the Hamiltonian 

~,= .E C2~2 + ~,) (a,.+(k)a .. (k)-a,.+(k)a,.(k». (1) 
k. 

Here Ilk is the electron quasi-momentum, 1 and 2 are 
the indices of the electron and hole bands respectively, 
m is the effective mass, which for simplicity we assume 
to be the same for electrons and holes, Eg is the width of 
the forbidden band, which is negative (Eg <:: 0) for a semi­
metal, and a1a(k), a2a(k) are the Fermi annihilation 
operators for an electron with spin a/2 = ± % in bands 
1 and 2. Terms of the type a~a2 describing interband 
transitions are not taken into account. It is known [8J 

that allowance for interband transitions in the problem 
of an excitonic insulator leads to a change in the charac­
ter of the phase transformation. The phase transition to 
the excitonic-insulator state becomes a first-order tran­
sition. 
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In the Hamiltonian Jtint of the electron-electron and 
electron-phonon interactions we retain only the terms 
responsible for the excitonic instability: 

H,",= ~ {V,(q)a,a+(k+q)a,,+(k'-q)a,,(k')a,.(k) 
k.k',q; 

a,' 
+ V,[a,a + (k+q)a,,+ (k' -q) a,,(k')a,a (k) +a,a + (k+q)a,,+ (k' 

-q)a,.(k')a,.(k) + C .c. ]} + ~g(b++b) (a,a + (k)a,. (k) + C.c. ), 
k,. 

where a and fl are, as before, the spin indices, taking 

(2) 

the two values ±1, and b is the Bose annihilation operator 
for the phonon of the unstable mode. Generally speaking, 
the interaction Hamiltonian ought to contain terms of the 
type a~a~ala2' which, as is shown in the paper by Guse'inov 
and Keldysh [9J, determine the character of the phase 
transformation (as do the interband transitions). 

Finally, the free phonon mode is described by the 
Hamiltonian 

J'eph=tzw.( b'b+ II,), 

where Wo is the bare phonon frequency. 

(3 ) 

Thus, the total Hamiltonian of the system under in­
vestigation has, for a given number of electrons, the form 

J'e=J'e.+J'e,",+J'eph (4) 

If the chemical potential p. is fixed, we must add to 
the Hamiltonian Jf"the term 

-~l~ {a .. + (k) a,. (k) +a,. + (k)a,. (I<;)}. 
k,. 

The subsequent treatment of the problem will be car­
ried out in the high-density approximation, when the 
inequalities 

I e, I ~e2x/e, 11, (5) 

are fulfilled, where e is the electron charge, E is the 
dielectric permittivity of the lattice, and K is the inverse 
screening length. In this case the potentials V 1 (q) and 
V 2(q) can be replaced in (2) and (4) by constants gl and g2 
that do not depend on the momentum. This replacement 
is possible for the potential V 1 because it is screened, 
while the potential V 2 is short-range by its very defini­
tion. Its matrix element are calculated between Bloch 
functions of different bands, and the latter are practically 
orthogonal to each other. Below we shall assume that the 
coupling constants gl and g2 are real. We can ensure that 
they are real in the case of simple bands (degenerate 
only with respect to spin) by means of a gauge trans­
formation. 

III. SELF·CONSISTENT SYSTEM OF EQUATIONS 
FOR THE ORDER PARAMETERS 

1. Definitions 

The problem of excitonic ferromagnetism, describable 
by the Hamiltonian (4), is conveniently analyzed by 
means of the diagram technique for time-dependent 
Green functions [lOJ. The Green function is defined by the 
equality 

G.,(r, r'; t)=-i(T¢.(r, t)¢,+(r', 0». (6) 

Here I/! a(r, t) and 1jJ'a(r, t) are operators annihilating 
and creating an electron with spin a/2 at the point r, in 
the Heisenberg picture. In the Schrooinger picture, these 
operators can be expressed in terms of the creation and 
annihilation operators afa(k) and aia(k) for band elec-
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trons with quasi-momentum Ilk. In the two-band model 
(1), we obtain 

"'a(r)'" ~ {cp,k(r)a,a(k)+cp,.(r)a,.(k)}, 

(7) 

k 

where rplk(r) and rp2k(r) are the Bloch functions, with 
quasimomentum Ilk, of an electron in the electron and 
hole bands respectively. We now introduce the matrix 
elements of the exact Green function (6), calculated in 
the Bloch-function basis, 

(8) 

where i, j are the band indices, taking the values 1 and 
2. In the diagrams the exact Green function will be de­
picted by a thick line. The free Green functions GiO)(k, t) 
and G~O)(k, t) corresponding to the Hamiltonian (1) are 
diagonal in the band and spin indices; they are depicted 
by a thin solid line. 

The temporal Fourier components of these functions 
have the usual form: 

(9) 

(10) 

The electron-electron Coulomb interaction contained in 
Jf"int will be depicted by a dashed line, and the interaction 
of the electrons via the phonons by a wavy line, to which 
corresponds the free phonon Green function 

D=w.1 (w'-w.') , (11) 

With the aid of the Green function (6) we can find the 
mean values of anyone-particle operator [10J. In the 
following we shall be interested in the mean values of 
the total magnetization M, the local magnetic moment 
(spin-density wave) M(R), and the local charge density 
Q(R). The matrices of the corresponding operators have 
the form 

~I=mo." M(R) =mo.,6(r-R), 
(12) 

Q (R) =ef6 (r-R), 

where m is the Bohr magneton, o(r) is the Dirac delta­
function, (1 afl is a ve2tor whose components are the 
Pauli matrices, and I is the unit matrix. USing the ex­
pression for the Green function (6) in terms of its ma­
trix elements (8) 

G.,(r,r';t)= ~ G,t'(k,t)CPik(r)'P"(r'), 
i,i,k 

with the aid of (12) we obtain 

M=-im ~ Sp aG" (k, -0), 

'.k 

i,i,k 

Q (R) =-ie ~ cp .. (R) <Pi' (R) Sp Gli(k, -0). 
i,i,t. 

In these formulas the trace is calculated only over the 
spin indices. It can be seen from the expressions (13) 
that if all the anomalous Green functions (functions with 
non-coincident spin or band indices) are equal to zero, 
there is no magnetization or spin-density wave, and the 
charge-density wave has the period and symmetry of the 
lattice. When there are nonzero anomalous Green func­
tions, additional terms of the type rpl(R)rp:(R), associated 
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with the interference of Bloch waves from different 
bands, appear in the formulas (13). 

In the case under consideration in which the extrema 
of the conduction and valence bands coincide, the pres­
ence of such terms leads to the result that the point 
symmetry group of the waves formed may differ from the 
point group of the lattice. This occurs if the functions 
(/J lk(R) and (/J2k(R) belong to inequivalent irreducible 
representations. In the general case when the extrema 
are displaced relative to each other by a vector P, a 
new period, determined by this vector, also arises. 

2. Properties of the Self-Consistent Potential 

In order to find the anomalous Green functions in the 
high-density case (5), it is sufficient in the corresponding 
equations to retain only the direct and exchange dia­
grams containing interband Green functions G~{3 with 
. .J. h' 1J 1 ., J. T 1S corresponds to the Hartree-Fock approxima-
tion. 

One can immediately convince oneself that the simul­
taneous existence of interband anomalous functions of 
the ~singlet" type GtjO!(i F j) and "triplet" type G 
Gij' O!(i F j) leads automatically to the existence of in­

traband anomalous Green functions Gcr' - o!. Indeed, as 
shown in [lJ, the equation for the function G~'- O! in the 
Hartree - Fock approximation has the following form 

9z 92 
..... -....... ",....- ...... 

« (It '" a' a -a a « I" -«' -(Z' -cx + __ l_~_+ __ 4_'_ 
f 1212 11 1212 f 

p,i~ GTP. 
J 1. 

1 
19z 

ct a: 1« -u 
+ --~--t t 2 1 

or, in analytic form, 

,.,ij ~~~ 
a «"' -a 

+ --_. 
, 2 

G~'-o (k, w)=-iG,(O) (k, (0) { E [g,G,,--(k', 00') 
11. ••• ' 

+g,G,,"O(k', 00') j+ (:, -g,) E [G12"(k', 00') 
1r.',II)',P 

+G2I" (k', 00') j} G,~'-" (k, (0) -iG'<') (k, (0) 

x E [g,G,~'-o (k', w')+g,G;;-" (k', 00') jG;;o.-- (k, (0). 

Jr.',.' 

(14) 

(15) 

Therefore, in accordance with formula (13), the mag­
netization M (either Mx or My) is not equal to zero, e.g., 

M.--i E G,,""(k, -iO), 
i,k,a 

and, consequently, ferromagnetism arises. 

It is necessary to draw attention to one more circum­
stance following from Eq. (15). Because of the presence 
in this equation of Hartree terms and terms containing 
the coupling constant g2, it is not gauge-invariant. The 
phase of the left-hand side of Eq. (15) does not depend on 
the relative phase shift between the basis wave-functions 
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of the conduction and valence bands, while the right-hand 
side changes its phase under such a transformation. It 
is easy to convince oneself that Eq. (15) is consistent in 
only two cases: when there is a purely real or a purely 
imaginary phase factor associated with the interband 
Green function. 

As already noted above, we use the Hartree-Fock ap­
proximation, which only takes into account diagrams 
containing interband anomalous Green functions. This 
is equivalent to the statement that only the off-diagonal 
(in the band indices) components of the self-consistent 
Hartree-Fock potential V are nonzero. Inasmuch as the 
initial Hamiltonian (2) is invariant under the operation 
of rotation, and the spin-orbit interaction is not taken 
into account, the self-consistent one-particle potential V 
should depend only on the scalar product of the spin 
operator a with some axial vector. In this case the 
structure of V is uniquely determined and, in the space 
of the band indices, the potential V has the form of the 
matrix: 

V= ( 0 ~J+(A,(J») 
~:I+(A,(J)' 0 . 

(16) 

In this formula the triplet (t.t) and Singlet (t. s ) order 
parameters are either both real or both purely imagin­
ary, as is obvious from what was said about the gauge­
noninvariance (of the second kind) of Eq. (15). 

It follows from the expressions (16) and (1) that in the 
self-consistent potential V the one-particle excitation 
spectrum w(k) has the form 

w(k) =±{(1t'k'/2m+e,/2)'+ 1L'1,±AdT" (17) 

and consists of four branches, distinguished by the band 
indices (the sign ± in front of the square root in (17» and 
by the projection of the spin on the vector ~t (the sign ± 

under the square root). Fig. 1 illustrates the spectra 
described by formula (17) for the cases: a) spectrum of 
the unchanged phase (t. s = t.t = 0), b) spectrum of an ex­
citonic insulator (either ~s = 0, t.t F 0 or t.t = 0, t.s F 0), 
and c) spectrum of an excitonic ferromagnet t.s F 0, 
t.t F 0). 

3. Self-Consistency Equations 

It follows from the structure of the self-consistent 
potential V (16) that, with no loss of generality, the di 
direction of the vector ~t can be chosen arbitrarily. It 
is convenient to point it along the z axis. Then the sys­
tem of equations for the Green functions is simplified, 
since it does not contain anomalous Green functions with 
different spin indices. In this representation, the dia­
grammatic Hartree-Fock equations have the form 

p';,j G P~'j Q 
J It J I" 

: 9z 
~ = ~ + ~l!-.!. + ~ .!.....! 
lIt 1 1 1 2 1 
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9, /92~ 
a OC 1x,-~" oc c;c a ex / ce IX\ ex a 

+ --,-_\.- + --.-_._-, 
1 1 1 2 2 1 1 1 2 1 2 1 

J 1 

'" '" -= 

p,i~J Qlf3 

a cr; a ct: 
+ ----

2 1 2 2 1 

g, 
"..- -, /--.... 

cc a la a' a oc: ex «Ia a' a t;C + --1--.- + __ 1 __ • __ . 
22211122'211 

In analytic form, the system of equations (18) can be 
written as: 

GlI""(k, w)=G:O) (k, w) +GiO) (k, w) (h.±h,) G,,"" (k, w), 

G,,"a(k, w) =G:O) (k, w) (h,±h,)G"a"(k, w), 

(18) 

(19) 

where the sign ± in the brackets coincides with the sign 
of the spin index QI. The self-consistency equations have 
the form 

h.=-ig. J ~: E [G,,"(k, w +iO)+G,~"-' (k, w+iO) I. 
k 

J dw ~ -,-, 
h,=-ig, ~ 4..J [G"lI(k, w'hO)-G,,' (k,w+iO)]. 

(20) 

k 

Here gs and gt are the singlet and triplet coupling con­
stants, defined by the expressions 

g.=g,+g2+4 (:: -g.), 
(21) 

Eqs. (19) and the self-consistency conditions (20) are 
valid in the case of real order parameters ~s and ~t. 
The case of imaginary order parameters, being ener­
getically less favorable, will not be considered. It can 
be seen from (18) that the constant gim = gl - g2, which 
is smaller than either gs or gt for either sign of g2 and 
gl > 0, corresponds to this case. 

We now find the functions Gga from the system (19). 
Substituting them into the self-consistency conditions 
(20), we obtain equations for the order parameters ~s 
and Clt. After integration over the frequency wand sum­
mation over k (with truncation of the sum at large k) in 
(20), these equations take the form 

[g.N(O)]-'h.=(h.H,)ln[ til ] 
fJ+ l'fJ'-(h.+h,)' 

+(h.-h,)ln [ til ] 
fJ+l'fJ'-(h.-h,)' 

[g,N(O)]-'h,=(h.+h,)ln[ til ] 
fJ+ l'fJ'-(h.+h,)' 

(22) 

+(h.-h,)ln[ til ], 
fJ+'IfJ'-(h.-h,)' 

where N(O) = mkF /21T1l2 is the density of states at the 
Fermi level, likF = .jm I Egi is the Fermi momentum, 
w is the characteristic energy cutoff, and Il > 01). Eqs. 
(22) are written for the case when ICl s ± Cltl < Il. In the 
opposite case, e.g., when I~s - Cltl < Il < I~s + ~tl, in 
Eqs. (22) it is necessary to replace the quantity 
Il +.j 11 2 (~s + ~t)2 in the logarithm by I~s + ~tl. But if 
Il < I~.s ± ~t\, the analogous replacement is also per­
formed in the logarithm containing I~s - ~tl. 
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In the absence of doping (Il = 0) the following solutions 
of the. system of equations (22) correspond to the mini­
mum energy: 

h,=O, h.=h"""til exp[ -1/g,N(O) I (23) 

or 

(24) 

The solution (23) produces a singlet gap ~sO and only a 
charge-density wave, and the solution (24) produces a 
triplet gap CltO and only a spin-density wave. 

Using the relations (23) and (24), by means of 
straightforward transformations we can bring Eqs. (22) 
to the form, for I~+I, I~-I < IJ.: 

h_ln 6+h_In y=h+ In(fJ+l'fJ'-.:l.c'); 

for I~+I < IJ. < I~-I: 
.:l..ln o+.:l._ln y=.:l..-ln(fJ+V~I'-.:l._'). 

.:I._In 6+.:1.+ Iny=.:I.+ In\.:l.+I; 

for I~+I, I~·I > IJ.: 
.:l." In 6+.:l._ln y=.:l._ln\.'LI. 

cL lnl'i+.:l._ln y=.:l._lnl,L\. 

Here we have introduced the notation: 

0= (.:l.,o/.:l.,,)'\ y= (h.o.:l.,,) ". .:l.. _=.:l..±.:l.,. 

(25) 

(26) 

(27) 

The parameters ~+ and ~_ have the meaning of the 
energy gaps for states of electrons with positive and 
negative spin projections on the z axis, respectively. 

Since we wish to study Eqs. (25), (26), (27) for a given 
number of electrons, we shall need an expression con­
necting the chemical potential Il and the excess-electron 
concentration N, which is determined by the level of 
doping. It is easy to show L11J that this relationship looks 
like: 

(~I'-.:l._')·+(fJ2_.:l._')"·=2n, ~1>1.:l.·\, I.:l.-I, 

(fJ'-.:l._')·h=2n, \.:l.-I<fJ<I.:l._I, 
(28) 

where N = 4N(0)n, and n is the concentration expressed 
in energy units. In addition, we shall need the formula 
for the energy change oE per unit volume that occurs in 
the phase transition of the semi-metal to an excitonic­
insulator or ferromagnetic state. By direct averaging of 
the Hamiltonian (4), we find 

6E=-N (0) (.1-'+h_') /2-2fJn+2n'}. 

IV. PARAMAGNETIC SUSCEPTIBILITY OF THE 
EXCITONIC INSULATOR 

(29) 

It is not difficult to see that Eqs. (25), (26) and (27) 
are symmetric with respect to replacement of ~sO by 
L'.tO (with a simultaneous change of the sign in ~_). It is 
therefore sufficient to consider only the case ~sO :::: ~tO, 
and the formulas for the case ~tO > ~sO will be analog­
ous to those obtained below when, in the latter, the in­
dices s ~ t are interchanged and the sign in Cl_ is 
changed. 

For ~sO :::: ~tO one of the solutions of Eqs. (25) and 
(28) is known [11]. It describes a metal-excitonic insula­
tor phase transition accompanied by structural distor­
tion. In the excitonic-insulator phase we have 

h+'=h_'=h/=~" (h. 0 -2n). (30) 

The energy gain in the formation of this phase is equal to 
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6E,,=-N(O) (Ll •• -2n)'. (31) 

We can determine the spin susceptibility of the ex­
citonic insulator. For this we must write down self­
consistency equations of the type (25) in an external 
magnetic field H acting on the electron spins, and then 
pass to the limit H - O. Adding to the Hamiltonian (4) 
the Zeeman term 

~z=-tnH E {a':+l (k)al.+l (k) -a';-l (k) al.-l (k)}, (32) 
I.' 

it is straightforward to obtain, in place of (25) and (28), 
the following self-consistency and electrical-neutrality 
equations: 

where 

Ll+ In 6+Ll_In 1=Ll- In(lJ.-+ 1'1J.-'-Ll_') , 
Ll_ In 6+Ll+ In 1=Ll+ In(lJ.+ + l' IJ.+ '-Ll+') , 

l' IJ.-'-Ll_'+ l' IJ.+ '-Ll+'=2n, 

(33) 

Such a form for the equations in an external field is as­
sociated with the fact that, effectively, the magnetic field 
simply leads to the moving-apart of the Fermi surfaces 
of electrons with opposite spins. It must be noted that 
Eqs. (33) are valid only if /~±I < 11 •• The magnetic mo­
ment M is directed along the field H and, according to 
(14), is equal to 

M=2mN(O) fJ'1J.-'-Ll_'-l'lJ.+'-Ll+'}. (34) 

Solving Eq. (33) to terms linear in H and using (30) and 
(34), we obtain the following expression for the suscepti­
bility of a doped excitonic insulator: 

M {1'n'+Ll.' 
X=li=4m'N(O) --n-

+ Ll.' } 
n(nIn6-Ll •• +2n) . 

(35) 

The first term in this formula corresponds to the 
susceptibility of the free carriers, and the second is 
associated with the fact that the external field induces a 
triplet gap. This term increases with increasing ~tO' 
becoming infinite when the equality 

Ll .. =Ll .. exp{2-Ll •• ln}. (36) 

is fulfilled. Thus, an excitonic insulator in a Singlet 
state becomes unstable with respect to triplet pairing ~t 
when ~tO exceeds the value given by the equality (36), 
and a spontaneous magnetic moment arises in the sys­
tem. An analogous picture arises when ~to > ~sO' 
Then, when the inequality 

(37) 

is fulfilled, the triplet state of the excitonic insulator 
turns out to be unstable against the formation of a small 
Singlet order parameter ~s. Thus, in the (~sO' ~to)­
plane there exists a region in which excitonic ferro­
magnetism appears. In Fig. 2 this region lies above the 
solid line defined by the relations (36) and (37). 

As regards an undoped excitonic insulator (n = 0) in a 
weak magnetic field H (mH < 16+1, /6-/), the self-consis­
tency equations for it do not depend on H, and coincide 
with (27). Therefore, at T = 0 an undoped excitonic in­
sulator has susceptibility X = 0 and is always stable. 
The case with n = 0 is considered in more detail in [1J , 

where it is shown that the coexistence in it of a triplet 
(6t) and a singlet (6E,i) order parameter cannot be real­
ized even as metastable coexistence. 

956 Sov. Phys.-JETP, Vol. 41, No.5 

FIG. 2 

V. SOLUTIONS OF THE EQUATIONS IN THE 
CASE OF AN EXCITONIC FERROMAGNET 

Unlike the nonmagnetic solution (30), a solution of the 
equations for the order parameters in the general case 
/~+/ f; /6-1 cannot be obtained in the entire region of 
coupling constants gs(~sO) and gt(6to). Therefore, we 
shall consider the behavior of the ferromagnetic solution 
only in the vicinity of characteristic values of ~sO and 
~to' namely, near the line (34) where weak ferromagne­
tism first appears in the (~sO' ~tO)-plane, on the line 
where 6+ = 11 and where the transition from weak to 
strong ferromagnetism occurs, and on the diagonal 
6 s 0 = ~to· 

1. Weak Ferromagnetism /~/, /.1-' < 11 

As can be seen from the expression (35) for the sus­
ceptibility of the dielectric phase, when the triplet con­
stant ~tO exceeds the value given by the equality (36) the 
system is unstable against the appearance of a small 
triplet parameter 6t. Therefore, we shall seek the solu­
tion of Eqs. (25) near the line on which the ferromagnetic 
phase originates, to terms of fourth order in ~t. This 
makes it possible to calculate the energy gain associated 
with the formation of the excitonic ferromagnet, relative 
to the energy (31) of the nonmagnetic excitonic phase. 
The necessity of taking fourth-order terms into account 
is due to the fact that it follows from the Landau expan­
sion [12J for the free energy near a second-order phase 
transition point that the energy gain on formation of the 
new phase is proportional to the fourth power of the 
equilibrium value of the order parameter. 

The solution proceeds as follows. When the condition 
(28) is taken into account, the initial system of equations 
can be represented in the form 

( f+f-) (f+) 2Ll.In6=Ll.In 7 -Ll,In ~ , 

( f+) (f+f-) 2Ll,In6=Ll.In --c -Ll,In l' ' (38) 

f±=n±n-'Ll,Ll,+n-' [ (Ll,'+n') (Ll.'+n') P. 

Expanding the first equation up to terms ~ ~t, we obtain 
the relationship between the singlet (~s) and triplet (~t) 
gaps: 

Ll .-n Ll .'-4n' 
Ll.',.,Ll •• (Ll •• -2n)+-· -Ll,'--1'2' 3 Ll,'. (39) 

n Ll,on 

It follows from Eq. (39) that the appearance in the sys­
tem of triplet pairing against the background of the 
Singlet pairing 6 s induces an increase of the latter as 
compared with the situation in which triplet pairing is 
absent, i.e., as compared with the non-magnetic phase 
(see (30)). In order to calculate the equilibrium value of 
the parameter ~V it is necessary to use an expansion of 
the second equation of the system (38) to fifth order in 
~t. As a result, we obtain 

Llt'=6Ll •• n3 (Ll •• -2n)-'[ (Ll •• -2n)n-'-2In 6]. (40) 
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As we should expect, the order parameter ~t is nonzero 
inside the region (36) of instability of the excitonic­
insulator phase. If we now write the expression for the 
energy in the presence of a small triplet parameter ~t, 
then, to terms of order ~t, we obtain from (29) and (39): 

BE,=-N (0) {(~ • .-2n) 2+M,'~~o!n-3 (~.o-2n)'}. (41) 

Thus, it turns out that, first, the energy of the excitonic 
ferromagnet is lower than the energy (31) of the non­
magnetic phase, and, secondly, the expression (41) for the 
energy starts from terms of fourth order in ~t, in agree­
ment with the Landau theory of second-order phase tran­
sitions. 

To conclude this Section it must also be noted that, in 
the transition to the ferromagnetic state in a system with 
a given number of particles, the chemical potential /-L 
increases relative to its value /-Lo in the excitonic-insula­
tor phase: 

(42) 

In the quadratic approximation in ~t, this exactly cancels 
the energy gain produced by the increase in ~s (39) and 
the appearance of ~t. Obviously, complete cancellation 
does not occur if an electron reservoir of arbitrarily 
small capacity is introduced into the electrical-neutral­
ity equation and terms quadratic in ~t appear in the en­
ergy. This indicates clearly the posslbility of a first­
order phase transition in systems with a reservoir [13]. 

2. Transition from Weak to Strong Ferromagnetism 

This transition occurs when the triplet coupling con­
stant ~t(p and with it the triplet gap ~t, become so large 
that the chemical potential /-L moves out of one of the 
spin sub-bands (i.e., I~.I 2: /-L). The line of such a tran­
sition in the (~sO, ~tO)-plane is determined parametric­
ally by the system of equations (26), if in these we put 
/-L = 1t.+1 and make use of the electrical-neutrality condi­
tion (28). 

It is convenient to introduce the notation 

(43) 

or 

S.=n ~xp 'r. cl,=n e"p{-cd, 

which automatically ensure conservation of the number 
of particles on the line t., = /-L. By means of (26), the 
equation t.+ = /-L can be represented in the parametric 
form 

In {cl.o/2n} = In ch q;+exp {-cp} In {I +ch -'cp}, 

In {-",./2n} =In eh q;-exp {cp} In {I +ch-'cp}. 
(44) 

This dependence is illustrated by the dashed line in Fig. 
2. On this line the energy gain of the purely excitonic 
phase is known (see (31)). The corresponding expression 
(29) for the energy of the ferromagnetic phase can be 
written in the form 

BE,=-4N(0)n'(ch '1'-1). (45) 

The case of small values of cp corresponds to the 
region near the point ~SO "" t.tO "" 2n. Then, according 
to (44), we have t.sO "" 2n(1 + cpln2). Consequently 
(cp « 1), 

&Eex=-N(O) (2n)'q;'/2, 

BE,=-N(O) (2n)'Ijl'/ln2, 
(46) 

i.e., the ferromagnetic phase is favored relative to the 
purely excitonic phase (loEfl > loEexl). 
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In an analogous way we can also convince ourselves 
that this statement is valid for large values of cp, Le., 
when the condition t.sO » n is fulfilled. Omitting the 
tedious intermediate calculations, we only give the re­
sult: 

BE,"=6E,+n'N(0) exp {-31jl} /6, 

or, in the original notation, 

(BE,"-BEf)/{iE,"=n3/24~.,,3. 

3. Solution on the Diagonal 

(47) 

For ~sO = ~tO, Le., on the diagonal in the (t. sO' ~tO)­
plane (the dashed-dotted line in Fig. 2), the solution can 
be obtained exactly. On the diagonal, In 0 = 0, and there­
fore it can be seen immediately that Eqs. (25) cannot 
give a ferromagnetic solution. It remains to study Eqs. 
(26). Taking into account the electrical-neutrality condi­
tion (28), we obtain 

0=~_[In(2n+1'4n'-~_2) -In ~,o], 

There exist two types of solutions of these equations: 

and 

~_2=~,o(~,o-4n), ~+=~.o. 

In the first case, (49), the energy gain is 

6E,=N(0) [~;o -4n'1/2. 

In the second case, (50), we have 

6E,=N(0) [(~.o-2n)'-4nzl. 

A solution of the first type «49), (51)) exists for 

(48) 

(49) 

(50) 

(51) 

(52) 

t.sO > 2n and, as is easily seen, is more favorable than 
the nonmagnetic solution (30), (31) for 2n < ~sO < 6n. 
The solution of the second type «50), (52)) exists for 
~sO > 4n and, starting from this value, is favorable both 
in comparison with the nonmagnetic solution (30), (31) 
and in comparison with the solution of the first type 
«49), (51)). Thus, as we should expect, everywhere along 
the diagonal 0 = 1 the most favorable phase is that of a 
strong excitonic ferromagnet. 

All the solutions of the ferromagnetic type obtained in 
this paper require that the number of particles be (at 
least approximately) constanL If we study the other 
situation, with a fixed chemical potential, it can be shown 
that a ferromagnetic state will not arise. This is simply 
understood from the following arguments. Eqs. (25) 
have nontrivial solutions when /-L < t.sO' But in this case, 
for /-L = const and T = 0, the nontrivial solution (23), (24) 
of the system (27) immediately becomes possible, and 
this is certainly energetically more favorable, and is not 
ferromagnetic. 

VI. DISCUSSION 

We have shown that the transition to the excitonic­
ferromagnetic state from the excitonic-diamagnetic 
(t.sO > ~tO) and excitonic -antiferromagnetic (~tO > t.sO) 
states occurs by way of the second-order phase transi­
tion, for arbitrarily small coupling constants, provided 
that relations of the type (37) between these coupling 
constants are fulfilled. In conditions of thermodynamic 
equilibrium this transition exists only when the semi­
metal is doped, Le., when there exists a small relative 
displacement of the electron and hole Fermi surfaces, 
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and the difference in the electron and hole concentrations 
is fixed. Incidentally, it is evident, because of the pres­
ence of a reservoir, that chromium is not ferromagnetic 
even though it is an antiferromagnet with unequal con­
centrations of electrons and holes and is well described 
by the excitonic-insulator model [13]. 

Near the phase-transition point from the excitonic 
insulator to the ferromagnetic state, according to the 
equations (18) for the Green functions and the formulas 
(14) for the magnetization waves and charge waves, the 
following effects should arise. If the parent phase con­
tained a charge-density wave (~sO > ~tO), then, as the 
magnetization M increases, a spin-density wave (the 
antiferromagnetic component of the magnetization den­
sity) will be formed in the system. If the parent phase 
was antiferromagnetic, then, in the ferromagnetic state, 
as the ferromagnetic component of M increases, a 
charge-density wave will build up in it, and, conse­
quently, structural distortions will arise. 

Thus, in the model we are discussing for excitonic 
ferromagnetism, there exists a coupling, via the uniform 
component of the magnetization, between the deformation 
of the lattice (the charge-density wave) and the spin­
density wave. Effectively, there is a coupling between 
the phonons and magnons which does not contain a rela­
tivistically small parameter. Therefore, external fields 
should substantially alter the state of an excitonic insula­
tor inclined toward ferromagnetism. Application of a 
uniform external magnetic field will induce magneto­
striction effects. A constant external electric field in 
the case of allowed band-band transitions will induce a 
singlet gap ~s and, even in the excitonic-antiferromag­
netic state, will induce spin-splitting of the bands, i.e., 
spin polarization. The role of an external uniaxial 
deformation can turn out to be equally important. 

From this standpOint we can interpret the results of 
the work of Strakhov [14J, who discovered ferromagnetic 
properties in powders and mechanically strongly­
stressed crystals of the narrow-band semiconductor 
PbS. He noted that unstressed PbS samples were ordin­
ary diamagnets, whereas in the stressed or crushed 
state they were ferromagnetic, and associated this with 
the well-known [15J property of PbS of gOing over from 
the symmetric cubic phase to an orthorhombic phase 
under mechanical stresses. For an excitonic insulator 
in an antiferromagnetic phase, such behavior under 
deformation is entirely natural. The formation of a 
charge-density wave as a result of a forced structural 
transition leads to the result that this wave, together 
with the antiferromagnetic spin-density wave, induces a 
magnetic moment as predicted by Eq. (15). The fact that 
lead sulfide in the cubic phase is an excitonic insulator 
is indicated by the experiments on the determination of 
the optical width of the forbidden band in it [16]. It is 
found that the optical width of the forbidden band in­
creases as the level of doping decreases, i.e., it behaves 
as required by the relation (30). 

In the work of Ivanov-Omskil and co-workers [17], 
magnetic-susceptibility anomalies have been observed 
in HgTe compounds at low temperatures. The paramag­
netic component of the susceptibility increased on de­
crease of the external magnetic field. This phenomenon 
is easily understood if we assume that at these tempera­
tures the substance becomes an excitonic ferromagnet 
with a small magnetic moment. 

As other examples of ferromagnetic compounds con-
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structed from nonmagnetic elements we can cite 
ZrZn2 [18J, Se 3In [19] and the trichalcogenides of 
molybdenum with added Al and Ga [20T. These latter 
compounds are also superconductors with anomalously 
large values of the upper critical field Hc2 for the com­
paratively low critical temperatures Tcs' From the re­
cent data of [21], for the compound Pb1.oM05.1S6 these 
values are: Tcs = 14.4 K, Hc2(0) ~ 600 kOe. Such high 
values of Hc2(0) can be understood only by assuming the 
existence of planar sections on the Fermi surface. As 
follows from the theory developed above, under certain 
conditions this can lead to the appearance of conduction­
electron ferromagnetism. 

For the rare-earth metals [22], as the temperature is 
lowered there occurs first a transition to the antiferro­
magnetic phase, and then a structural transition arises 
at the ferromagnetic Curie point. From a theoretical 
point of view, this behavior can be described in the 
framework of the two-band model; the f-electrons can 
be regarded Simply as a reservoir of spins which are 
aligned under the magnetization of the conduction elec­
trons. 

To conclude we shall make a few comments concern­
ing the ferromagnetism in iron. It is known that the 
body-centered cubic modification of Fe is ferromagnetic. 
In this phase, according to the neutron-scattering data 
of [23J, the spin-density distribution in the unit cell, 
although periodic with the period of the bcc structure, is 
alternating in sign, viz., a large positive spin density is 
concentrated at the lattice sites, and a negative spin 
density in the middle of the cube edges. 

The absence of structural distortions in the ferro­
magnetic phase can be understood if we assume that the 
"excitonic" instability in iron is due to the interaction of 
two bands of the same symmetry, overlapping in momen­
tum space. Then, as already noted at the end of Sec. III, 
subsection 1, the symmetry of the spin- and charge-den­
sity waves that arise coincides with the symmetry of the 
original lattice. Therefore, changes in the structure do 
not occur at the ferromagnetic transition point, although 
gaps appear, corresponding to the triplet and singlet 
order parameters. There are experimental indications 
of the formation of energy gaps on part of the Fermi 
surface in the ferromagnetic phase of iron [24]. On the 
basis of this, the authors propose that there is a possible 
analogy between the mechanism of the formation of the 
gap in Fe and the corresponding situation in Cr [13]. This 
picture agrees qualitatively with the model that we have 
considered, although it is difficult to expect quantitative 
agreement, inasmuch as the ferromagnetic interaction 
in iron is not weak. 

1)The system of equations (22) differs from the system given in ['), be­
cause of a calculational error committed there; this error, however, 
had no effect on the qualitative conclusions drawn in [']. 
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