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The problem of a piezopolaron in an external magnetic field is considered in the adiabatic approximation. 
The magnetic field is assumed to be so strong that the magnetic length is much smaller than the size of the 
polaron state. This condition permits one to find the analytic form of the electron wave function and the 
deformation distribution. The polaron optical spectrum is obtained. The dispersion law for a polaron 
moving along the magnetic-field lines and the transverse mass are calculated. 

PACS numbers: 63.20., 71.85.C 

This paper deals with the spectrum of the piezopolaron 
in a strong magnetic field. The coupling constant is as
sumed to be so large that the adiabatic approximation is 
applicable and the phonon field can be regarded as clas
sical. As a result, the problem reduces to a solution of 
a system of differential equations. The magnetic field 
is assumed to be so strong that the magnetic length is 
much shorter than the longitudinal dimension of the po
laron state. This makes possible the use of the method 
developed in the theory of excitons in a strong magnetic 
field(1], and to reduce the problem to one-dimensional. 
The resultant equation, which describes the dependence 
of the electron wave function on the coordinate along the 
magnetic field, admits of an exact solution. It is possible 
as a result to calculate the wave function of the electron 
in the polaron well, and the spectrum. 

In contrast to the spectrum of the free electron in a 
magnetic field, the spectrum of an electron bound in a 
polaron well is not degenerate in the prOjection of the 
angular momentum on the direction of the magnetic field. 
This fact should lead to a fine structure of the cyclotron 
resonance. The very existence of the polaron state leads 
to a threshold for the absorption of an electromagnetic 
wave polarized along the magnetic field. 

The problem can be solved for the case of a polaron 
moving with a velocity lower than that of sound. This 
makes it possible to calculate the dispersion law for the 
motion of the polaron parallel to the magnetic field, and 
the angular frequency of this rotation around the mag
netic field. 

An isotropic model is studied, in which it is assumed 
that the piezoelectric fields are produced only by longi
tudinal strains, and the anisotropy of the elastic moduli, 
of the piezomoduli, and of the dielectric constant can be 
neglected. 

The problem of the piezopolaron with stronf coupling 
in a strong magnetic field was considered in[2 , where 
a variational calculation method was used. The polaron 
binding energy obtained in the present paRer agrees in 
order of magnitude with that obtained in [2 , and the lon
gitudinal mass differs by a large logarithmic factor. 

1. BASIC EQUATIONS OF THE PROBLEM 

The Lagrangian describing the isotropic model of a 
piezopolaron in a strong magnetic field H and a weak 
potential field U(r) is of the form[3] 

2= Sd3r{ in ('l"!.!.-'l'~) +..E..(!!:.)' -~ I [-in-.!..... 
2 at at 2 at. 2m ar, 

_ -=--A,(r) ] 'l' 1'_ 4n~e ul 'l' 1'-~(Vu)'-U(r) I 'l' I'}' (1.1) 
C 8 2 . 
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Here e and m * are the charge and effective mass of 
the electron, f3 is the piezomodulus, A is the elastic mod
ulus, E is the dielectric constant, p is the density of the 
crystal, and u is the elastic displacement, which is as
sumed in the adiabatic apprOXimation to be a c-number. 
The vector-potential gauge is assumed for the time being 
to be arbitrary but linear: 

eklj is a completely antisymmetrical unit tensor of 
third rank. 

(1.2) 

In the adiabatic approximation, the dependence of the 
elastic displacement and of the modulus of the wave 
function of the electron on the time is connected only 
with the motion of the polaron as a whole. Therefore, 
if we introduce the radius vector R(t) of the center of 
gravity of the polaron, then 

(1.3) 

where 

x=r-R(t). (1.4) 

Substitution of (1.3) in (1.1) yields 

2= Sd3X{R,J,+~ (R'~)' -~I [-in-.!.....--=--A,(X)]~I' 
2 ax, 2m ax, c 

_ 4n~e ul~I'- ~(Vu)'--=--a"R,R.I~I'-U(x+R) I~I'}, (1.5) 
8 2 C 

_ in ( _. aiji _ aiji') e I-I' 
j,=- -1jJ -+1jJ- --a"x.1jJ . 

2 ax, ax, c (1.6) 

The wave function and the elastic displacement de
termined with the aid of the Lagrangian (1.5) depend on 
Rand R as parameters. But before deriving the equa
tions, it is convenient to make one more canonical 
transformation 

~=exp (i ~. R,x,) 1jJ. (1.7) 

As a result 

{ P (. au)' 1 1 [ a ell' 2= Sd3x - R,- ---. -in---A,(x) 1jJ 
2 ax, 2m ax, c 

e I I" 4n~e I I' "( )' -~(a,,-a,.)x. 1jJ R'--e- u 1jJ -2 Vu 

} m·· e . 
-U(x+R) 11jJI' +-R'--a"R,R., 

. 2 c 
(1.8) 

where the condition for the normalization of the wave 
function is used. The external field U(r) is assumed to 
be too weak to influence the polaron structure. In this 
case the equations for 1/! and u take the form 

1 [ 8 e ]' 4n~e _. -in---A,(x) 1jJ+--u1jJ=E¢, 
2m ax, c 8 

(1.9) 
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.. i}'u 4n~e 
l.t'1u-pR,R,--. -=--I,pl', 

f)x,f)x, e 
(1.10) 

and the equation describing the motion of the polaron as 
a unit is 

(1.11) 

In the derivation of (1.9) and (1.11) we used the relation 

S xl,pI'dJx=O, (1.12) 

which is the consequence of (1.10) and expresses the 
fact that R is rigidly connected with the center of gravity 
of the polaron. In the expression for the polaron effective 
mass 

S uu au 
M,,=p --d'x 

ijx, ax, 
(1.13) 

the free-electron mass can be neglected. In order of 
magnitude, MZk is equal to that fraction of the crystal 
mass in the polaron volume which is proportional to the 
square of the strain (cf y1). In an external potential 
field, the polaron is acted upon by a force proportional 
to the gradient of the average potential 

U(R)= SU(R+x) 1,pI'dJxo (1.14) 

Using Eq. (1.10), we can represent the elastic dis
placement in the form of an integral of the square of the 
modulus of the wave function 

o 0 

r R' -'/, R' -'I, [( R')-' u(x)=-~(1----"-) (1----=---) S 1-----4- (x-x')' 
eA w2. w2 W 

R') -, ]-';, 
+(y-y')'+ (1- ~~ (z-z')' l,p(x') I'd'x'o (1.15) 

Here w = (;>,./p)l/2 is the speed of sound, the polaron velo
city vector R = HI! + H 1 has been resolved into compo
nents along and across the magnetic field, the z axis is 
directed along the magnetic field, and the x axis is di
rected along it L. 

The problem reduces now to solving the Schrodinger 
equation (1.9) with the potential (1.15) and to calculating 
the dependence of the polaron energy on its momentum 
and the angular-momentum projection along the z axis. 

2. INTERNAL STRUCTURE OF POLARON AND 
ITS OPTICAL PROPERTIES 

In a strong magnetic field the wave function 1/J can be 
expanded in the ratio of the electron binding energy t e 
in the polaron well to the cyclotron energy nQe (Qe 
== eH/m*c): 

",(x) =<Dnm (x,J/(z) +",(1) (x) + .. 0 , 

where 4>nm (xl) satisfies the equation 

1 [ i} e ]' (1 ) -. -ifi---A(x-,-) <D.m= n+- .fiQ.<Dnm , 
2m ax, c 2 

(2.1) 

(2.2) 

n is the Landau quantum number, and m is the quantum 
number in which the states of the free electron in the 
magnetic field are degenerate. Functions with different 
values of m are orthogonal and are normalized to unity. 

From the condition that Eq. (1.9) have a solution we 
obtain for the first approximation correction ljJ(l) the 
equation satisfied by f(z) 

907 

fi' d'j 4n~e 
---. +--u.j=8.J, 

2m dz' e 
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(2.3) 

where 
8.=E- (1l+'/2)hQ" 

u.(z)= S u(x)l<Dnm(x-,-)I'd'x-,- (2.4) 

(the subscript m will be omitted where there is no 
danger of misunderstanding), and also the condition that 
determines the choice l) of 4>nm (Xl): 

S u(x)cD~m·(x.L)<D.m(x-,-)d'x-,-=O. (2.5) 

The elastic displacement in (2.4) and (2.5) must be cal
culated with account taken of only the zeroth-approxima
tion term in the expansion (2.1). 

Further progress can be made only if the transverse 
velocity of the polaron is not too high: . . 

1 __ -'- ::;> 1--(1 -( R ' ) ( R' ) I' 
w2. w2 a2 ' 

(2.6) 

where Z == (2cfl./eH)l/2 is the magnetic length, and a is the 
longitudinal dimension of the polaron. It is important to 
note that the right-hand side of (2.6) is much smaller 
than unity, since 

1'la'-18"/tzQ,~1. (2.7) 

When (1.15) is substituted in (2.4), the significant re
gions in the integrals with respect to X 1 and Xl are 
IxU ~Ixli ~l,whereas Izi ~IZ'1 ~a.Thereforeifthe 
inequality (2.6) is satisfied, then it is easy to verify that 
the resultant integral is logarithmically large. To sepa
rate the logarithmically large contribution, it is conven
ient to use the integral of the Bessel function of imagin
ary argument and its expansion at small values of the 
argument ([51, pp. 746 and 975): 

o • 

(1- R",:)-'I' [(,1- R.L,: )-' (x-x')'+(y-y')'+(1- R,~,) -'(z-Z,),]-'I> 
~ ~ W 

""_ ~J ei(,-,o" In { Islexp C (1- R,:' )'" 
n 2 W' 

x [( 1- R:: r (x-x')'+(y-y')' f}dS, (2.8) 

where C is the Euler constant. Substituting (1.15) in (2.4) 
and USing the representation (2.8), we obtain 

~e ( R-,-' ) -'I, (I) 
u.(z)=-- 1-- [2Alj(z) I'+un (z)], 

el. w' 
(2.9) 

where 

;\=In [aIIO-RII'/w')"'], (2.10) 

u~1) (z) = ~ J l1(z') I'dz' J ei(,-,o"ds S d'x-,-d'x-,-' I <D. (x-,-) I' 

x IcDn(x-,-')I'ln{ 21 [(1- R-,-' )-' (X-X')'+(y-y')']-"'}. (2.11) 
alslexp C w' . 

The argument of the logarithm in (2.11) is of the order of 
unity, and therefore the second term in the square brack
ets of (2.9) is of the order of unity, whereas the first one 
contains a large logarithm. We expand f(z) in reciprocal 
powers of A: 

fez) =F(z) +1'''(z)+ .... (2.12) 

Neglecting U(llZ, we find that Eq. (2.3) admits of a unique 
solution that tends to zero as I z I _ 00 : 

( aD )'1'( R-,-,)'" 1 
F(z)= 2a'A 1--;;; ch(zla) ' (2.13) 
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where 

1 /i'e /i 
ao= K2 m·e2 =~ m.w (2.14) 

is the radius of the polaron in the absence of a magnetic 
field, K2 == 41T{32/EA, a = K2e2/dlw is the dimensionless 
coupling constant, and the longitudinal dimension of the 
polaron in a magnetic field is determined by 

a"" (2m·I~.1) "'Iii. (2.15) 

In contrast to the usual Schrodinger equation for a 
particle in a specified potential, the solution (2.13) 
exists for all values ,ff e < O. The quantity ,ffe must be 
determined from the normalization condition 

a. ( R1.' )'" - 1-- =1 aA w' . (2.16) 

The polaron states in this approximation turn out to be 
degenerate, just as the states of a free electron in a 
magnetic field. The degeneracy is lifted in the first
order approximation in A-I. The normalization condition, 
accurate to first-order approximation terms,- is 

. . 

:~ (1- ;: )'" +. (1- ~~. r'" J F(z)g(z)dz=l, (2.17) 

where g(z) = (1_~I/w2)l/2(f(I) +f(l)*). This function 
satisfies the following linear inhomogeneous equation 
that is obtained from (2.3): 

d'g 12 ( R1.' )-',. ,1 4 (1) -+.- 1-- AF g--g=--u F 
~ ~ ~ ~. n • 

(2.18) 

The solution of this equation is 
4' , 

g(z)=-;;;; [G,(z) f G,(z')U1')(z')F(Z')dZ'-G,(Z)J G,(z')u"'(z')F(z')dZ'] ' 

(2.19) 
where 

G,=dFldz, G,=GG, (2.20) 

are the solutions of the homogeneous equation and 

dG/dz=1/G,'. (2.21) 

after which the integration with respect to s is also car
ried out with the aid of the tabulated integral ([5], p. 366): 

s (nas)' ch(nas/2) 6 j 1:'d1: n 
-2- sh'(nasl2) ds=-;;; 0 sh'1: =-;;, (2.24) 

s( nas)'1 (nalsl)Ch(nas/2)d_ 2 S~(31:'ln1: 1:') -, - n -- s-- ---+-- d1: 
2 2 sh'(nasl2) na 0 sh'1: sh'1: 

2 { d } n (11 2:00 

In k ) =- -[2'-·r(1+v)~(v)1,~, =- --ln2-C- -, . 
na dv a 6 k-

"=2 

As a result we have 

Fgdz=_o '1 __ 1. --in2n- '\'1 ,--A """ S a( R')(l1 ~ink ) 
aA2 w'l. 6 ~ k2 lUI , 

(2.25) 
II=~ 

where 

{ [ ( it') -, 
An:,:"'=SI<Dnm(X1.)I'I<Dn'm'(X1.')I'in I 1-----;;" (x-x')' 

+ (y-y')'] -',,}d'X1.d'X1." (2.26) 

Substitution of (2.25) in (2.17) leads to the following 
expression for the electron energy: 

/i'c\' R.L' -, :2 11 
8,=- 2m'ao' (1--;;-) [1--:\(ti- in2n 

~ ink _ '\'1 __ A mm)] 
.l...J k2 nn . 
h=:!. 

(2.27) 

Owing to the dependence of A~m on the state of the elec
tron, the degeneracy is lifted. The electron wave func
tions can be calculated only in the limiting case 

R.L'lw'«1. (2.28) 

Then m is an integer characterizing the projection of 
the angular momentum of the electron on the z axis2). 
But even in this case ~m cannot be calculated in final 
form for arbitrary n and m. By way of example we pre
sent its value at n = 0, when 

<Dom (X1.) =(nlml !l')-"'(xjl)'m' exp (imfjO-x.L'/2l') 

(here cp is the azimuthal angle of the vector Xl): 

Iml (I l+k)1 
With the aid of (2.19)- (2.21) we obtain after simple trans- A 00""" = ~~o ;Iml!' 2- 'ml -'-'[lj:(lml+kH)-in21->t(lml+l),(2.29) 
formations " 

S Fgdx= -~ S [F'(O)G,(z) 
ao 

, F'(z')-F'(O) 
+GI(Z)! G,'(z') dZ'] u" ) (z)F(z)dz. 

We now use the explicit expression (2.13) with allowance 
for (2.16) 

F'(z)-F'(O) 

G,'(z) 
-a'ch'(z/a),. 

ch'(zia) S' G(z)=-2a'---+6a' ch'(z'/a)dz'; 
sh(z/a) 0 

as a result we get 

S 2a' S ' (I) (Z ,z ) Fgdz=--;;;: FUn -.:;-th~-1 dz. (2.22) 

It is necessary to substitute in the resultant integral 
the expression (2.11), in which f(z') is replaced by F(z'). 
The integrals with respect to z and z' reduce to tabu
lated integrals ([5], p. 519): 

S '. dz' 
e-'" ch'(z'/a) sh(nas/2) , 

S e'" ( --=- th"":" _ 1) dz = _ a (nas/2) ' ch (nasl2) 
a a ch'(z/a) sh'(nas/2) ' (2.23) 
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where I/I(k) is the logarithmic derivative of the r function. 
With increasing Iml, the absolute value of A~m increases 
but its sign remains negative. 

The optical properties of the polaron are determined 
by the solutions of (1.9) at fixed u(x). In the case when the 
electromagnetic wave is polarized perpendicular to the 
constant magnetic field, ordinary cyclotron resonance 
takes place. The dependence of u(x) on the initial state 
of the electron leads to a fine structure of the cyclotron 
resonance. The frequency of the transition n, m _ n + 1, 
m' (m' = m + 1 under the condition (2.28)) is 

mm' /i'A ( R.c' ) -I m'm 
W"n+' =Q,+-.-, 1--, (Annmm-An+' n). 

m ao w~ 

(2.30) 

In addition, transitions without a change of the Landau 
quantum number are possible. The frequency of such a 
transition is 

(2.31) 

H the electric field in the electromagnetic wave is 
parallel to the constant magnetic field, then the possible 
solutions are determined by the solutions of the one-di
mensional Schrlldinger equation (2.3) with fixed potential 
un (z). The ground state in this potential is the state of 
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the electron producing the potential well, i.e., the poten
tial Un (z) itself. If we dis card uri') (z), then the equation 
has an exact solution, and the first excited state 
f ~ tanh (z/a) lies already at the boundary of the continu
ous spectrum. The potential u~') contains a long-range 
part that leads to the appearance of an infinite number 
of new bound states. 3 ) However ~ the binding energy of 
such states is of the order of n 1m *ag and lies beyond 
the limits of the accuracy of the present calculation. 
Thus, the existence of the polaron leads to the frequency 
threshold 

CfJ~ft"A'/2m'ao'. 

3. MOTION OF POLARON AS A UNIT. 
THE DISPERSION LAW 

(2.32) 

The polaron equation of motion (1.11) can be written 
in the form 

d af; 
&M"R"~-7iR' 

,I 

(3.1) 

d , e, au 
&M.cR.c~7[R.cXH1-JR' (3.2) 

where the longitudinal and transverse masses of the 
polaron are defined by the relations 

(3.3) 

To calculate them it is convenient to use the Fourier 
representation for the elastic displacement. We then 
obtain with the aid of (2.23) 

.1J = ~~('[( 1 _ j{,' )k' _, (I _ il.~ ')' 1-', --'-.1-']-' 
Jl 8 m~w2.\ ~ \ IC".: , w'2 , \x , tu 

1 \"1 <1) (. ) I' lk, x'd' I' 1<1, k/'ld 3k (3.4) 
x. "xl. e ~ ~ Xc. oh'(rrak:l/:!)' 

The main contribution to the longitudinal mass is made 
by the region of integration kl ~ (1-R~/w2r'/2a-'. The 
exponential in the integral with respect to Xl can be set 
equal to unity, and with the aid of (2.24) we obtain 

1 h'.\ R.c' - ';, 'R,,'-' 
JJ:i~3m'a/w,(I~--;;::;-) (1---;;::;-) (3.5) 

A logarithmically large contribution to the transverse 
mass is made by the region (1- R~I/w2r'/2a-'« kl 

« r'. In the integral with respect to Xl' the exponential 
can again be set equal to unity. As a result we have 

(3.6) 

In the case when U = 0, Eqs. (3.1) and (3.2) are solved 
practically in the same way as the equations of motion 
of a free electron in a magnetic field. It follows from 
(3.2) that 

(3.7) 

i.e., the polaron rotates about an axis parallel to the 
magnetic field, with angular frequency 

(3.8) 

The projection of the angular momentum on the magnetic 
field direction 

ftL,""[R x M.cR.c]. (3.9) 
is an integral of the motion. Expression (3.9) is obtained 
from the Lagrangian (1.1) if one neglects the contribution 
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of the electron in comparison with the contribution of the 
phonon field. The quantity Lz is connected with the square 
of the transverse velocity by the relation 

(3.10) 

From (3.1) with allowance for (3.5) we obtain the fol
lowing expression for the kinetic energy of the longitudi
nal motion of the polaron: 

(3.11) 

where 

In the calculation of the projection of the polaron mo
mentum on the magnetic-field direction we can neglect 
the electron momentum. Then 

(3.12) 

The dispersion law for the longitudinal motion is ob
tained by eliminating RII from (3.11) and (3.12). It is 
meaningless to write out the complete formula, since 
it is too cumbersome. It is easy to verify that it satis
fies the relation Mill ap = RII' In the limiting cases 

[ff,;~P'/2}I"o if R".,;;:w or p.,;;:j\lI"ow, 

'" - , ., P 'f " (3 13) e,,,-Pw+ I,M"ow In-,-" 1 w-rt:,,";;:w or P;;;>M"ow. • 
M"olv-

To calculate the total energy of the polaron it is neces
sary to use for the Hamiltonian an expression obtained 
from (1.1) by taking into account the transformations 
(1.4) and (1.7): 

:Jfj~ S{f'- (R'!;-)'+~(\Il)'+~1 [-ift~--=-A,(X)]1jl I' 
:2 OXI 2 2m, dx! c 

(3.14) 

(3.15) 

The integral of the current density for the bound state 
is equal to zero, and the last term in (3.14) can be ne
glected. As a result, the polaron energy reckoned from 
the bottom of the Landau band for the free electron is 
given by 

(3.16) 

where 

S ( au )' 2n~e S =p R,- d'x--- ulljll'd'x. 
fix, E 

(3.17) 

The last integral is easy to calculate: 

S IlI~'12d3x~-1:.. (1- R.c' )-'i'~S dz 
eA w' 2a' ch' (zla) 

=_~,!:..,A' (1- iu')-' 
3 eA ao w' ' 

(3.18) 

and the result can be represented in the form 

1 fl' ( a) , [1 ( ill' ) 'j, ] 8~---- In- +M.cR..' 1-- 1-- +8". (3.19) 
6 m'ao' I 2 w' 

The first term is the binding energy of the polaron at 
rest, calculated in the lowest order in A-\ and the sec
ond term is the energy of its transverse motion. Both 
terms are of the order of A 2 , whereas the last terms are 
of order A. Nonetheless, expression (3.23) is not an ex
aggeration of the accuracy, since the corrections of or-
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der A to the first two terms contain Rf, only under the 
logarithm sign, and make no contribution to the energy 
of the longitudinal motion. 

4. LIMITS OF APPLICABILITY OF THE THEORY 

The limits of applicability of the results are bounded 
by two principal conditions. The first is that the adia
batic approximation be applicable, and the second is 
that the magnetic field be strong. 

In the adiabatic approximation, the elastic displace
ment can be regarded as a c-number, Le., we can neg
lect the amplitude of the zero-point oscillations in com
parison with the characteristic elastic displacement. 
The same condition can be formulated as stating that 
the phonon energy nwq with characteristic wavelen~th 
q-l be small in comparison with the polaron energy 6], 
or that the speed of sound be small in comparison with 
the uncertainty of the electron velocity fl/m *a, which 
corresponds to the original meaning of the term "adia
batic." In this case a somewhat more stringent require
ment must be satisfied: the phonon energy flwq must be 
small compared with the energy characterizing the fine 
structure of the polaron state (for simplicity, the esti
mates were made only for the case when the ratio R2/W2 
is not too close to unity): 

Iiwq.g;;IiAlm·ao'. (4.1) 

The spectrum of the phonons making up the well is char
acterized by the wave vectors qll ~ a-\ a-I < qi < r\ 
which is obvious, for example, from a calculation of the 
longitudinal and transverse masses. The most essential 
in the condition (4.1) are phonons with q ~ rl. Then this 
condition, with allowance for (2.7), reduces to 

aD 1 
a~--~1. 

l A 
(4.2) 

From (3.5) and (3.6) it follows that 

m m' (4.3) 
Ai; - a'A'~ M1- - a'A" 

and thus neglect of the electron mass in comparison with 
the polaron mass is necessary. 

When determining the internal structure of the polaron, 
no account was taken of the time dependence of RI. This is 
permissible if the angular frequency (2 of the polaron is 
small in comparison with the characteristic polaron fre-
quencies 
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Q.g;;IiAlm·ao'. (4.4) 

This inequality is a consequence of (4.2), and is therefore 
automatically satisfied. 

It must be noted that a polaron state appears in each 
Landau band. However, for large Landau quantum num
bers n the results may turn out to be inapplicable, since 
the radius of the state of the electron turns out to be 
already not l but nl, and the right side of the inequality 
(4.2) ceases to be valid. 

Satisfaction of the condition (4.2) can be expected in 
the strongest piezoelectrics. Thus, in Te, where 
a ~ 5(K2 ~ 0.3; E ~ 40; w ~ 3 X 105 cm/sec), and in 
fields on the order of 50 kOe, there should apparently 
exist piezopolaron states close to those described in this 
paper. 

In conclusion, I thank A. G. Aronov and V. L. Gure
vich for a discussion of the work. I am particularly 
grateful to G. E. Volovik, whose criticism and advice 
have greatly influenced the content of the paper. 

i)It is easy to show with the aid of the approximation (2.8) that the 
z-dependence drops out of this condition. 

2)The off-diagonal element of (2.5) are in this case not equal to zero 
but proportional to R I2/w2. Their effect can be neglected, since the 
degeneracy is lifted by diagonal elements that do not contain the 
small quantity (2.28). 

3)This remark does not pertain to the case when Un is defined in self
consistent fashion. 
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