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Fermi's idea regarding statistical acceleration of charged particles is employed in the case of systematic 
acceleration of phonons in a turbulent medium. The sound-field Hamiltonian with the corresponding 
canonical variables is determined. The Hamiltonian of the interaction between the sound field and the 
turbulence is calculated and the probabilities for transition of phonons from a given element of wave vector 
space are found. The obtained expressions permit an estimate of the shift (increase) of the frequency of 
sound propagating in a turbulent stream. The energy spread of phonons, which results in broadening of the 
spectral line, is also found. The frequency shift is not appreciable against the background of the spectral 
line broadening) but in principle it can probably be observed. 

PACS numbers: 52.35.J 

1. INTRODUCTION 

Even back in 1949 E. Fermi, dealing with the prob­
lem of the origin of cosmic rays, advanced the idea 
of statistical acceleration of charged particles moving 
among random magnetic fieldsYl Fermi's idea was 
further developed and extended, in particular, to the 
case of acceleration of neutral particles (photons, 
neutrinos) as they move in a plasma. 

To our knowledge, no such analysis was carried out 
in acoustics, although the concept of the phonon or 
quantum of elastic perturbation can be extended, under 
certain conditions, not only to solids but also to gases 
and liquids. The action of various perturbing factors 
can cause the number of phonons in a given state to 
change with time; the phonons can arrive at and depart 
from a given element of momentum space. The transi­
tion probability will be determined by the perturbing 
factors. It may turn out that as a result of the action of 
external random perturbations the phonon distribution 
function, and consequently also the average phonon 
energy, will change with time in monotonic fashion. In 
particular, the average energy can increase. In this 
case we can speak of phonon acceleration. 

It is obvious that the major part of the phonon-accele­
ration problem consists of calculating the probability of 
their transition from a given element of momentum 
space. To determine this probability it is necessary to 
determine the phonon creation and annihilation operators, 
for which purpose it is necessary to determine cor­
rectly the Hamiltonian of the sound field with the corres­
ponding canonical variables. From this Hamiltonian 
there should follow the equations of motion of the 
medium. 

In our problem we disregard dissipation and the non­
linearity of the sound field. The factor that disturbs the 
phonon motion will henceforth be taken to be a field of 
turbulent pulsations. 

2. DETERMINATION OF THE HAMILTONIAN 

If we neglect the thermal-conductivity and dissipation 
processes and assume that the liquid is.barotro.pic, 
then the equations of continuity and motion retam the 
total energy of the medium: 

de=Sdx(}pv'+e(p»). (2.1) 

902 Sov. Phys.·JETP, Vol. 41, No.5 

We use here the following standard notation: p is the 
density of the medium, v is the vibrational velocity in 
Eulerian coordinates, E(p) is the density of the internal 
energy of the medium. The sound field is determined by 
the change of the denSity p from its equilibrium value 
po. This field is potential, and v is a gradient of a cer­
tain scalar function, V = '<\7<fJ. 

The hydrodynamic equations for the case in question 
can be written in the form of functional derivatives of .Ji": 

(2.2) 

Thus, the pair p and <fJ is canonically conjugate. For the 
sound field p plays the role of the canonical coordinate 
and <fJ that ~f the canonical momentum.!) We shall hence­
forth neglect the nonlinearity of the sound field. The 
Hamiltonian of the sound field takes in the considered 
approximation the form 

deo = ~ S dx (po(v<P)' + :>,) . (2.3) 

Here c2 is the square of the adiabatic velocity of sound. 

We take the Fourier transforms of the canonical 
variables 

2 )'1' {<p, p} = ~ h, {<r., p.}cos kx, 

• 
where V is the normalization volume. Then 

1 n ( 1 '" 1 c' .) :160 =- J -ook<r,''''-;;---P'', 
2- 2' -po 

• 

(2.4) 

(2.5) 

i.e., in momentum space the canonical variables are the 
Fourier components <fJk and Pk, with <fJk the canonical 
momentum and Pk the canonical coordinate. 

In the case of quantization <fJk and Pk are operators 
for which we can write corresponding commutation re­
lations. The matrix elements of the operator Jt" 0 will 
take a diagonal form if 

p,= (lipo/2V c') 'I'''/'(a,+ak) , 
(2.6) 

<p,=-i (lic'/2po V) 'I'W-' I, (a,-a. '), 

where w = ck is the frequency of the k-th mode of the 
sound field, and the nonzero matrix elements of the 
operators ak and al, which have the meaning of phonon 
creation and annihilation operators, are equal to 

I I "., (nla.'ln+1)=(n+1)'!'e'o,. (2.7) (n-1 a, n) =n"e-'·, 
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3. TRANSITION PROBABILITIES 

Since the sound wave propagates in a turbulent 
medium with velocity pulsations u, we have v '" vq; 
+ u and div u '" O. In this case the equations of motion 
retain the Hamiltonian in which these pulsations are 
taken into account: 

, I I 
lif~)'e"+ }: lif,\:':)~lif,,~ S dx (I'll \(V'poll\ (f +:2 pu' + ~- pou' ). (3.1) 

We can immediately leave out the last term of (3.1), 
since allowance for it will mean only a shift of the 
energy- reference level. 

Of the remaining three terms of the interaction 
Hamiltonian, we can retain only the first. Indeed, in 
the calculation of the matrix elements of the interac­
tion operators, and then of the transition probabilities, 
the corresponding expressions acquire 0 functions 
due to the mismatches in the frequency and in the wave 
vectors. For the transition probability per unit time, 
corresponding to the operator 

de,(,:~ 0= S dxp,u v 'f, 
we obtain 

IV (lif:~'( ) -0 (k-x) 0 (UJ-Q). 

Here k is the wave vector of the corresponding state of 
the sound field, K '" 2rr/l,l is a certain scale of the turbu­
lent-pulsation field, and n is the pulsation frequency cor­
responding to this scale. It is obvious that in order of 
magnitude we have n - (u~)1/2rl. In order for W(£,(2») 
to be different from zero we must have k '" K and W'" n , 
i.e., the relation (u~) « c2 must be satisfied. But (u~) 
- c2; this causes matrix element of the operator 
£'lrit which is of interest to us to vanish. 

We can analogously disregard the matrix elements 
of the term 

which differ from zero if the length A of the propagating 
monochromatic sound wave is much larger than the 
characteristic scales 1 in the turbulent pulsations. In­
deed, from the expression 

W(Jf,'.:~) -b(k-x,±x,)o(UJ-Q,±Q,) 

it follows that in order of magnitude we have w - (u~)1I2rl, 
whence c - (U~)1I2 Arl. But even if this condition is 
satisfied, the influence oL;f i~t is manifest only in the 
fact that the natural frequency of the corresponding 
mode is shifted by an amount proportional (u2). 

Thus, retaining in the interaction Hamiltonian the 
most essential term 

(1) S :)"(3,,,, = dxpu v cr, (3.2) 

and using relations (2.4) and (2.6), we can easily show 
that all the possible interaction processes are described 
by the corresponding diagrams (Fig. 1). The diagrams 
that describe the simultaneous creation and annihilation 
of a phonon pair are obViously forbidden under the as­
sumptions made above. 

.~ K~K)..-<K 
k k k-x k-ll 
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We have in mind a second-quantization description 
of the wave system. It follows therefore from the defini­
tion of the S matrix that the quantity 

S(I)~ -~S( dt'df},,,,(t') 
n (3.3) 

describes in first-order approximation the probability 
amplitude for the creation or vanishing of elementary 
field excitation during a time t. The standard calcula­
tion procedure enables us to find the probability of the 
transition of a phonon from an initial state, as a result 
of interaction with turbulent pulsation of scale (K, n); 
these probabilities are given by the expressions 

(3.4) 

It is assumed here that 

u(x,t)~L, u(x,Q)cxpi(xx-Qt), 
(3.5) 

-." 
the argument of the 0 function is Aw '" n - c . /c, and ~ 
is a unit vector defined by the condition tlr '" (k + /C)/ 
Ik ± KI. 

4. KINETIC EQUATION 

The time variation of the phonon distribution function 
is due to the fact that the phonons arrive at a given 
momentum-space element and leave it with a certain 
probability. We can write an equation for the change 
of the distribution function of the number of phonons fk 
with time. It must be borne in mind that the phonon goes 
over into the state k from states k + K, and vice versa 
with corresponding probability. 

Summing over all possible values of K and n, we ob­
tain 

(4.1) 

Equation (4.1) becomes particularly simple if the con­
dition 1 KI «k is satisfied. Then we get from (4.1) by an 
elementary series expansion 

If we are interested in the time variation of the 
mean value of a certain function Ak, with 

S dk 
(A.>~ --.-i.A., 

(21t)' 

then we easily obtain from (4.2), by integrating by 
parts, 

a < a a ) - (A.>= -D;;-A. . 
at ak; ak, (4.3) 

It must be borne in mind in the foregoing analysis 
that we always stipulated the requirement that the 
turbulent pulsation velocities be small, (U2)1/2 « c. In 
addition, it was assumed that the nonlinear effects 
connected with the finite amplitudes of the sound 
waves are negligibly small. It was also assumed that 
the field of the turbulent pulsations is specified and the 
sound waves do not perturb it. Only in this case can 
the components Dij be regarded as constant. The equa­
tion (4.1) obtained under these assumptions is quite 
general and remains effective also at long durations of 
the process, when the transitional methods (e.g., the 
method of geometriC acoustics) cannot be used. 
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5. CALCULATION OF PHONON ACCELERATION 
IN A TURBULENT MEDIUM 

We apply the results to the case of sound propaga­
tion in an isotropic turbulent stream. We change over 
to a continuous distribution, and furthermore take into 
account the fact that in this case, from (3.5), under the 
condition div u = 0, we can use in the expression (3.4) 
for the transition probability the tensor 

'( X'Xl)E(x,Q) B;;=u,(x,Q)Uj(x,Q)=41t /l,;--,- --,-. 
x x 

Here E(K, 0) is the energy density of the turbulent 
pulsations, and satisfies the relation 

'/,(u')= J dxdQE(x,Q). 

Straightforward but cumbersome calculations 
yield for the components Dij 

(5.1) 

D I1 = ~,(O' f dx dQxE(x, Q) Sdcos 0 cos'(O) (1-cos' O)/l (C6S 8 - ~) 
G. ex 

It f Q' =,(0' dxdQ-E(x,Q), D,,=O, D2i=0. 
e x 

Here cos e is reckoned from the phonon propagation 
velocity. 

(5.2) 

Noting that the components Dij of interest to us are 
proportional to the square of w, that the phonon propa­
gation direction coincides with K, and that c = (c, 0,0) , 
we obtain 

~(~)=I ~D}'~) = <e~Dti)= 2~ f dxdQ Q2 E(x,Q)«O). 
vt \ ak, ok, akj e x (5.3) 

Hence 

These formulas solve our problem. Speaking in clas­
sicallanguage. They describe a monotonic shift (in­
crease) of the frequency with time as a function of the 
stream parameters. We note that the assumption 
K «k, which leads to (5.3) and (5.4), is not a prinCipal 
one and is made only because it is desired to simplify 
the computational part of the problem. If we do not 
make this assumption, then the expression for the 
average energy change can be obtained directly from 
(4.1). Multiplying (4.1) by w, integrating this expression 
with respect to K, and changing the integration variable 
k, we can reduce this expression to the form 

Using the law of energy conservation in each individual 
collision, w - w'f = ±O, we obtain 

(5.6) 

The physical meaning of this expression is quite clear, 
if it is recognized that W + and W _ are the probabilities of 
the phonon acqu~ring or losing an energy O. 

Substituting here the values of W± from (3.4) and 
changing over to a continuous distribution, we obtain 

If / ,,/ «k, then here B± = nfBiknk± R:l niBiknk = B, 
w+ - w_ = 20 and consequently 
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a J dxdQ 21t 2 S -;-«0)= --Q-2QB«(j)=--- dxdQQ'n,B;.n,<(O). 
ut (21t)' e2 (2,,)'e' ' 

Since 

n,B,jnj=4It'(1-cos' 8)E(x, Q)/x', 

it follows that 

a 21t 
- «0)= -" S dx dQQ2E(x, Q) fd cos O( i-cos' 8)b(Q-ex cos 0) «0) at c-

21t S Q' "", dxdQ-E(x,Q)«O). 
c % 

This expression is exactly equal to (5.3). 

Naturally, if the velocity pulsations of the turbulent 
medium are independent of the time, i.e., u(x, t) = u(x), 
no statistical acceleration occurs. Then, indeed, it 
follows from the definition of the correlation tensor 
Bik(X; t) = Bik(X) that 0 = O. In this case the integral 
in (5.5) vanishes and a(w)/at = 0, i.e., (w) = const. 

Obviously, the correlation tensor can be represented 
in the form 

B,,(x; t)=B,,(x; t*O)+B,,(x; t=O). 

This notation corresponds to a representation of the 
spectral energy denSity in the form 

E(x, Q)=E(x, Q=O)+E(x, Q*O)=E(x)b(Q)+E(x, Q*O). (5.7) 

If there exists in the medium a regular flux ur that 
carries away the isotropic turbulence without changing 
its state, then we can obviously write 

E(x, Q)=E(x)Il(Q-u'x)+E(x)/l(Q)+E(%, n*o). (5.8) 

In this case 

B .. (x; t)=B .. (x-u't; t=O) +B" (x; t=O)+B,,(x; t*O). (5.9) 

In real conditions the last two terms are very fre­
quently omitted, and one confines oneself to the hy­
potheSiS of "frozen" turbulence. Then the calculation 
of the coefficient of interest to us leads to the expression 

(0' S D" = -~e' dxx' dQ dq; d cos 0 cos' 0 sin' 8E (x) /l (e% cos O-Q) 

X /l (Q-u'x (cos 0 cos O,+sin 0 sin 0, sin q; sin q;,+sin 0 sin q; sin 0, cos '1',» 

= ;:' S dxxE(x) J d<pdcosOcos'Osin'O 

XIl[coSO(i- ~' COSO,)- u; sinOsin8,cos(q;-q;,)]. 

We have introduced here spherical coordinates; the 
running angle e is measured from the direction of c 
and the angle between the vectors ur and c is equal to 
e1 = const. 

It is easily seen that, accurate to terms of order 
(ur / C)2 « 1, the argument under the a-function sign 
vanishes when 

(
It u' ) cos 8=cos - - -sin 8, cos (<p-<p,) 
2 e 

From this we obtain 

00' (U' )2 D I1 =-, -sinO, fdxxE(x). 
4c3 t: I 

(5.10) 

In the general case, taking (5.9) into account, the 
solution of (5.3) takes the form 

(oo)=oo'exp [(2: C' sino,)' SdxxE(x)+ ~~ S dxdQ ~' E(x,Q) )t]. 

(5.11) 
For small t, expression (5.11) can be expanded in a 
series. If we confine ourselves only to the first term 
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in the argument of the exponential, leaving out the 
second term, then as the sound wave passes through a 
turbulent layer of thickness x, the average frequency 
of the sound wave should increase by the amount 

",' (U' )' L\w~<",>-")o=-x -sine Sdy.y.E(y.). 
20 C 

(5.12) 

This expression agrees qualitatively in form with the 
analogous expression obtained in the second geometri­
cal-optics approximation for an electromagnetic wave 
passing through a turbulent layer of given thickness. (3) 

It is obvious that besides the acceleration effect, i.e., 
the effect of the frequency shift, there occurs within 
the framework of the statistical mechanism a phonon 
energy spread, which leads to broadening of the 
spectral line. The magnitude of this effect can be 
estimated from (4.3), where Ak must be replaced by 
w2 • To estimate the spectral-line broadening and compare 
it with the possible shift Aw = (w) - wo, we introduce the 
quantity 

It follows from (4.3) and (5.3) that if Dll = w2B, B 
= const, then we can obtain for an initially mono­
chromatic signal 

(ro)=woe 2CBl , (w2.)=wl):!e 6cBt , 

where according to (5.11') 

1 (n' )' 2eB=~ --sinO Sdy.xE(x). 
_t C 

(5.13) 

Consequently 

a=(w')-( w)'=wo' (e,c"_e""), 
(5.14) 

(.'1.00)'= «00)-000) '~wo'(e"·'-l) '. 

Hence 

x'~a/ 0",) '=e"·'/ (i-e-""). (5.15) 

In cases when the method of successive approximations 
can be used, i.e., if 2cBt « 1, we have 

X"" (2eBt) -'''» 1, 

a"'"""" (2eBt) '\ 

(5.16) 

(5.17) 

We note that expression (5.17) corresponds to the 
formula for the rms fluctuation of the phase for sound 
propagating in a turbulent medium. 

Let us obtain numerical estimates. It is known(4) 
that in the inertial interval of isotropic turbulence we 
have E(K) = 0.76y~13K-513. Here E is the dissipation 
energy per unit time and per unit mass; the atmospheric 
layer next to the earth this quantity is of the order of 
103 cgs units. Therefore 

J dxxE (x) =2.28,,(i"I'(2:rt/l,) 'I" I,«L,. 
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The parameter y, generally speaking, is subject to 
changes and increases with increasing wind velocity. 
We assume here yl12 ~ 3, which is close to the value 
given in (4). Here 10 is the internal turbulence scale, 
Lo is the external scale of the flux, lo ~ 1 to 10-1 cm. 
If we use expressions (5.11) and (5.17) for small t, then 
estimates yield the following results: at a sound fre­
quency f ~ 2 X 104 Hz, a flux velocity ur ~ 20 m/sec, 
and a process duration t ~ 0.2 sec, the line broadening 
in Hertz 

'" 1 a, = 2:rt a' = 2" «['>-(/>')" 

is of the order of 102 Hz, whereas the shift of the 
mean value (f) from the initial fo yields a value on 
the order of 2 - 3 Hz. Against the background of such 
a line broadening, under the assumed conditions, the 
effect of statistical acceleration of the phonons is diffi­
cult to discern, but in principle it is observable. We 
note that it follows from (5.15) that the parameter X2 
has a minimum that is reached at t* = In 2/2cB and 
is obviously equal to Xmin = 2. This circumstance gives 
grounds, in principle, to hope to be able to observe ex­
perimentally the acceleration effect against the back­
ground of the statistical spread of the phonons in those 
cases when the condition 2cBt « 1 is not satisfied. 

The foregoing estimates cannot claim better than 
order-of-magnitude accuracy. Yet the values obtained 
for a 112 are in satisfactory agreement with the available 
experimental data, and the values for Aw do not contra­
dict them. 

It must be borne in mind that the method described 
in the paper can be applied to a few other problems of 
sound propagation in the field of random velocity pulsa­
tions, for example in the ocean, where the energy 
density of such pulsations can be quite large in a num­
ber of cases. 

I)Conceming the definition of the canonical variables for hydrodynamic 
problems see, e.g., [2]. 
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