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We consider the properties of the coherent interaction between resonance radiation and a three-level 
medium. We find stationary solutions corresponding to the propagation of an undamped pulse, resonating 
with the transition between the lowest level and the upper or middle level in the presence of stationary 
radiation resonating with the transition between the upper two levels. It turns out that the irradiation of 
the upper transition by relatively weak light can lead to an appreciable delay of the pulse resonating with 
the lower forbidden transition at a pulse intensity well below the intensity of the usual 27T pulse. We suggest 
the use of this phenomenon to measure dipole moments and relaxation times of forbidden transitions. 
Moreover, it turns out to be possible to control short light pulses of one frequency by using continuous 
radiation or long light pulses of a different frequency. 

PACS numbers: 42.50. 

The coherent interaction of light pulses with a two
level system leads to a number of interesting effects 
such as, for instance, self-induced transparency (SIT), 
photon echo, and so on. Many theoretical and .experimen
tal studies (see, e .. g., (ll) have been devoted to this prob
lem. In particular, a detailed study has been made of 
the properties of the propagation of undamped 21T pulses 
in media which absorb in resonance, which were first 
discovered by McCall and Hahnyl At the moment the 
most wide-spread application of coherent effects is the 
measurement of the dipole moment matrix element s of 
the corresponding transitions and also of the transverse 
relaxation times. Both in the measurements using SIT 
and in the photon echo set-up one needs fields 
E ~n/{ltp> n/{lT 2, Le., pulse intensities I>c(l1/{lT2)2, 
where {lIS the dipole moment of the transition and T2 
the transverse relaxation time. As the threshold inten
sity ex {l-2, one needs high intensity laser pulses to 
study forbidden transitions. When the light intensity is 
high other non-linear effects may become important 
which will complicate the measurement. 

The estimate given above for the threshold intensity 
of coherent effects in two-level systems is connected 
with the fact that the amplitude of the lower level when 
it interacts, for instance, with a 21T pulse, decreases 
initially and only starts to increase after the transition 
speed vanishes. This is possible in a two-level system 
only when the lower level is completely emptied. 

We show in the present paper that the presence of a 
third level which is coupled in resonance through sta
tionary radiation with the two levels considered changes 
the situation considerably. The transition speed can van
ish (after which the system can return to the initial 
state) if one takes into account the vanishing of the ampli
tude of the total level for both resonance fields. The 
amplitude of the given level increases if we take into 
account the transition involving the lower level under the 
influence of the resonance pulse and decreases if we 
take into account the transition to the third level under 
the action of the stationary radiation. If the dipole mo
ments of the transitions are very different in magnitude, 
the return of the system to the initial state may start at 
a small level of emptying (small with respect to the 
parameter of the ratio of the dipole moments) of the 
lower level. This means that the intensity of the undamped 
pulse may be lowered as compared to the usual 21T pulse 
by many orders of magnitude, if the dipole moments are 
of very different orders of magnitude. 
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We consider the problem of the stationary propaga
tion of light pulses which are in resonance with two cas
cade transitions in a three-level system. We assume 
that the inhomogeneous broadening of the two absorption 
lines is much smaller than the spectral width l/tp (tp is 
the length of the pulse) while ~, in turn, is much shorter 
than the transverse relaxation time which we put equal 
to infinity. Depending on the magnitude of ~:.I= :.1, - (;)2 

(:.1 1,2 are the frequencies of the cascade resonance tran
sitions) as compared to the spectral width of the pull;le 
two different situations are possible. 

1. We consider first the case tp~w» 1. The equa
tion of motion for the density matrix for the three-level 
system has a very complicated form, but as we neglect 
relaxation we can use directly the equations for the 
amplitudes of the occupation probabilities for the three 
levels which are in resonance. The contribution from 
the remaining levels is not in resonance and can be 
taken into account, using perturbation theory which leads 
to a dispersion of the phase velocity of the light. In the 
Maxwell equations and the equations for the level ampli
tudes we can split off the fast motion with frequencies 
:.II and W 2 and their linear combinations, using the con
ditions W 1,2tp <. ~W tp » 1. For the slow motions we 
look for a stationary solution with a constant phase of 
the electromagnetic field which depends solely on the 
variable ~ = t - x/v, where v is the velocity of propaga
tion of the envelope of the electromagnetic field. 

Using the fact that the phase of the field is constant 
we can take the amplitudes of the three levels and also 
the envelopes of the two resonance fields to be real. We 
give the equations for these quantities at once in dimen
sionless form: 

X'=-YJXz! Xz.=y,X'-Y2XS, 

Xa=Y2X21 Yl=XIXZ! Y2=')..,2X2X.~. 
(1) 

Here X , ,2,3 are the amplitudes of the lower, middle, and 
upper level, respectively, y,,2 the enveloping fields, in 
resonance, respectively, with the lower transition at 
frequency WI and the upper one at frequency W 2 : 

t. = fL' [ <il, (cl vn,-l) 1 'f, , 

III <il, (clvn,-I) 

the time is measured in units a-I, where 0 2 

= 21TNJl~{ri(C/vn1 - 1)}-" E 1,2 are the field amplitudes, 
{l1,2 the dipole moments, and n,,2 the non-resonance in
dexes of refraction for the lower and upper transition, 
respectively, while N is the particle density. 
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We can solve the set of Eqs. (1) with the initial con
ditions as t _ - 00 : 

by the substitution 
, t 

T = J x, dtwhen x,>O and T = J x, dtwhen x,<O. 

The solutions of Eqs. (1) as functions of T have the form 
y,=sinT, x,=(Yo/A)ShAl, y,=yochA" 

x,=± [sin' T- (Yo/A)' sh' AT 1"'. 

The function T(t) can be found from the equation 

dl/dt=[sin' T- (Yo/A)' sh' AT 1"'. 

(2) 

(3) 

It follows from (2) and (3) that the solutions obtained are 
the same as the well known solution for 21T pulses[l, 2] 
when Yo = 0, where X3 = Y2 = 0, Le., where the upper level 
does not take part in the interaction between the light 
and the medium. When Yo 'f 0 there is in the medium a 
stationary field, in resonance with the upper transition 
and not being absorbed because in the initial state the 
middle level is not populated. 

It is clear from Eq. (2) for the field Y2 that as the 
pulse Yl passes through an element of the medium the 
"guiding" field increases, and later decreases, although 
apparently the field Y2 should decrease when the middle 
leve I gets populated be cause of absorption. The fact is that 
the region of iriteraction of the pulse y 1 with the medium (which 
propagates with a velocity v < c 1,2)iS a barrier for the photons 
of the field Y2 which propagate in the medium with a 
velocity C2 outside the interaction region. In the station
ary frame the density of the photons increases in the 
interaction region because of the conservation of their 
flux. If Yo « e-\ the pulse El (t) has two humps and con
sists of two approximate 21T pulses, which are farther 
apart the smaller Yo. If e-A « yo« 1, the pulse El has 
a single hump with the same exponential tailS, but its 
area is 

fL'JW 41 8=. E,dt"'-ln-<2lt. 
"_~ A yo 

One can qualitatively explain the diminishing of the 
area of the pulse as follows. When the usual 21T pulse 
propagates in a two-level medium each particle is 
lifted to the upper level and afterwards is dropped 
down, while the re-emission of the absorbed light only 
starts after the lower level is completely emptied. In 
the present case the speed of the transitions from the 
middle to the upper level is much higher than the speed 
at which the lower level is emptied (when fJ.2» fJ.l)' The 
re-emission starts therefore even when the lower level 
is as yet emptied weakly. Initially the re-emission (the 
center of the stationary pulse) corresponds to the vanish
ing of the amplitude of the middle level. It follows from 
(3) that the stationary propagation of the pulse El is 
possible only when Yo < 1. We note that Yo ~ 1 corres
ponds to E~ ~ NJiw2/A2. When A~ 1 this means that on 
average there occurs one photon of the guiding field 
for each particle. It is clear that the stationary picture 
cannot be established when the radiation density is 
larger. When A » 1 each photon of the guiding field is 
able to operate many times so that the maximum field 
Y2 decreases. As yo - 1 the pulse has one hump and is 
stretched by a factor (1 - yof1l2, while its area 8 
= 21T,r{3/ (1 + A 2)} can be both larger and smaller than 
21T, depending on the magnitude of A, while 

E, = (2ft/Jl) [6 (i-yo) /(1 H') j"'Q'/ch[2", (1-yo) 'f'Qt]. 
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One can easily obtain the analogous solution for 
the case where the upper, third level is common to the 
two resonance transitions. As before, a stationary 
guiding field Yo for the upper 2 - 3 transition is neces
sary for the existence of a non-trivial response, dif
ferent from a 21T pulse for the 1 _ 3 transition. The 
responses are practically the same as the previous ones 
in the case A « 1 (for any Yo < 1). There is some dif
ference in the case A» 1, Yo« 1, as in contrast to (2) 
now X3 = (Yo/A)sin AT, Y2 = Yo cos AT' This leads to a 
small correction to the enveloping pulse Yl, which oscil
lates with a frequency ~A/tp. The spectrum of such a 
pulse has two scales: the main energy is concentrated 
in a frequency range ~tpl, while weak tails extend A 
times further. In the particular case A = 1 the pulse Yl 
has the form of a normal 21T pulse, extended by a factor 
(1 - yoP/2 and with an area which is larger by the same 
factor. 

2. We now consider the case tpAw « 1 when we can 
neglect the difference between the transition frequencies. 
The field y interacts in resonance simultaneously with 
both frequencies. The equations for the slow quantities 
have the form 

;;,=-yx" ;;,=y(x'+Ax,) , x,=-AYx" y=x,x,-Ax,x" (4) 

and the initial conditions as t _ - 00 are Xl = 1, X2 = X3 
= Y = O. Equations (4) have a solution which can be ob
tained through the change of variable 

t 

T= J ydt: 

1 1 
x,=-(cosPT+A'), x,=-sinpT, 

P' p 
A 

x,= ,(cos pT-1), 
P 

2 pT 1/ (PT) y=7 sin 2 f 211.'+ (1-11.') cos' 2 ' p= )'1+11.', 

(5) 

while T(t) is found from the equation T = y(T). Analysis 
of (5) shows that for any A the pulse has a single hump 
and has the same form as the usual 21T pulse for A = 0 
and A = 1, while for A» 1 . 

4l'2ftQ chQt 
E=----. 

Jl,A eh 2Qt 

The area of the pulse is equal to e = 41T.f(1 + A 2). 

The velocity of propagation of the pulse in the 

(6) 

cases considered above is connected with the length of 
the pulse through the following relation: tp = Q-l/.f(1-y~), 
i.e., 

c _ 2ltNJl,'ffid.' (1-': ') --1- yo . 
vn, n 

(7) 

3. We turn to a discussion of the results. The most 
popular region of applications of coherent effects at the 
present moment is the measurement of the matrix ele
ments of appropriate transitions and also of the relaxa
tion times of levels. The problems considered enable us 
to suggest new variants of such measurements. In par
ticular, if the lower transition is forbidden, we have 
J1.1 « fJ.2 and A» 1. Illuminating the upper transition with 
relatively weak light E2 « il.Q/ J..L2 (yo« 1) we can create 
the conditions for the propagation of an undamped pulse 
with a field El which is smaller by a factor A than the 
field of the usual 21T pulse, i.e., the pulse energy can be 
smaller by a factor A2 for measurements by means of 
coherent effects. 
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Of the greatest interest is, in our opinion, the pos
sibility to control short light pulses of one frequency by 
light of a different frequency. For instance, changing the 
intensity of the guiding field we can make the medium 
transparent or opaque for pulses of a well defined mag
nitude or choose in the same way from a train of ultra
short pulses of different magnitude the maximum one. 
A sufficiently long pulse can serve as the guiding field. 
If the front of the long pulse is sufficiently steep, we 
might by irradiating with it a layer of a resonance medium 
attempt to arrange a fast jamming for short pulses. 

4. A list of possible suggestions for the use of co
herent effects in three-level systems can easily be ex
tended and depends, of course, on the experiment. We 
give some numerical estimates. 

The guiding field affects the transmission of the pulse; 
even when its magnitude Yo« 1, i.e., when the light flux 
lz « 10 = (C/1T )(tinl fl.2)2. A lower bound for J,follows from 
the requirement that the interaction be coherent tp « Tz
the transverse relaxation time of the middle level, 
h» (c/1T)(f1/fl.2T2)2. This estimate is the same as to order 
of magnitude as the estimate for the SIT threshold[ll and 
lies within the wide band from 1 W/cm 2 (SF 6 , alkali metal 
vapors) to 100 kW/cm 2 (ruby). When the intensity of the 
guiding field approaches the upper limit of the above
mentioned estimate, the conditions for the propagation of 
a short pulse at the lower transition change for any val
ues of the ratios of the dipole moment s and the frequen
cies. If, however, for instance, the lower transition is 
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forbidden and fl.l ~ 10-2 fl.2, the SIT threshold intensity 
for the lower transition when the guiding field is included 
is, roughly speaking, decreased by a factor (fl.21 fl.l)2 ~ 104 • 

In conclusion we wish to turn our attention to an in
teresting detail: :t 2 ex: (c/vn l - 1)/(c/vn2 - 1). We remind 
ourselves that increasing ,\ corresponds to lowering the 
threshold energy for stationary pulses. If we perform 
experiments with a gas or a flUid, it could possibly have 
sense to use the dispersion of the medium when non
resonance transitions are taken into account. In the case 
n2tp« 1 we have from (7) (c/vnl - 1) « 1 and it is 
determined by the time of the pulse, but, choosing a 
medium with a low dispersion we can make (C/vn2 - 1) 
« (c/vnl - 1) which leads to an increase in '\. This can 
be done by adding a buffer gas with the required disper
sion and choosing its pressure. A similar effect can be 
achieved in a fluid or gas by changing their composition. 

In conclusion the authors express their gratitude to 
A. M. Dykhne for discussions of the results of this paper. 
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