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The properties of nonlinear phase osciHations in a microtron have been studied systematically with a single 
theoretical method. Resonance and high-current instabilities of the phase motion are described, the cause of 
appearance of the two-humped distribution of the density of electron bunches is indicated, and the physical 
nature of the limitations in the energy and current of the accelerated particles is clarified. A mechanical 
model of a microtron is described. For the case of a microtron it is shown how the transition occurs in a 
nonlinear system (as the nonlinearity is increased) from the dynamic to the stochastic regime of 
oscillations. 
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or, alternatively, point transformations of the following 
form (see for example ref. 9): 

The phase motion of the particles in a microtron is 
extremely Wlique, since a microtron is the only device 
which employs a nonlinear resonance with a variable 

( ] 'i'",,=cp.+2,.,rn/Q, r.+,=rn+A cos (pn~', (1) 
multipliCity of interaction. I Many features of the phase 
oscillations were already observed in the first studies ,(2, 31 where the parameter n is equal to the ratio of the guid-
and subsequently it has been possible(4-e] to investigate ing magnetic field H to the cyclotron field Ho = mocw/e 
the p~ase motion more completely, using the new me- (:..J is the frequency of the accelerating voltage), and the 
thod(o] of solving the difference equations describing constant coefficient A is the ratio of the accelerating-
this motion. This investigation has been continued in the field amplitude to the quantity Uo/e. 
present work: We have determined the factors leading 
to loss of particles accelerated in a microtron and 
limiting their energy; we have explained why the region 
of phase stability has such a queer shape, why its size 
is so anomalously small, and other items. As a whole, 
the properties of the phase motion can now be considered 
adequately studied, and the article sums up the work in 
this area. For completeness and Wlity, we have men­
tioned briefly the results obtained previously. 

Study of the phase dynamics of particles is necessary 
not only to increase the efficienc1' of a microtron. As 
noted by Zaslavskil and Chirikov 7] the variable-multi­
plicity resonance used in a microtron corresponds from 
a physical point of view to the limit of appearance of 
stochastic instability in nonlinear oscillatory systems. 
We can, therefore study in detail in the case of the mi­
crotron the transition from dynamic to stochastic pro­
perties, and also better Wlderstand the cause of appear­
ance of stochastic behavior. In addition, study of the in­
tegral nonlinear resonances observed in a microtron(5] 
may turn out to be useful in solution of the problem of 
small denominators which arises in the general theory 
of stability of dynamic systemsYl 

1. SOLUTION OF THE NONLINEAR 
PHASE EQUATIONS 

In derivation of the phase equations, we will assume 
the accelerating gap to be infinitely narrow, since the 
effect of its finite width is felt only in the first few turns 
and then will be taken into accoWlt by introduction of a 
correction factor. We will discuss the following quan­
tities: the accelerating field phase <Pn for the n-th pas­
sage of the particles through the accelerating gap and 
the dimensionless energy I'n (the total energy U of the 
particles, relative to their rest energy Uo) which de­
scribe the particles after this passage. In the approxima­
tion indicated, the quantities <Pn+1 and f'n+1 are expressed 
in terms of <Pn and r n by means of difference equations 
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The system of equations (1) has a particular solution 
whith describes the resonance acceleration of eqUili­
brium particles (resonance with variable multiplicity): 

C. n=Q[m+g(n-l) l. tlC=gQ=A cos cp., 

cp" n=q:,+2,.,(n-l) [m+ 1j,g(n-2) l. 
(2) 

where CPs is the equilibrium phase measured from the 
closest maximum of the accelerating field, and the fixed 
integers m and g express (in Wlits of To = 2lT/w) respec­
tively the duration of the first revolution aroWld the 
resonator and the change in the duration from revolution 
to revolution. 

The properties of the phase oscillations have been 
studied previously in the linear approximation[2, 3] and 
we will not discuss them here. In order to find the non­
linear solution, following ref. 5, we will introduce the 
complex variable 

Wn = + (Hi tg ~ ) 1jJn+,.,(1-ictg v)I1.= I Wnlexp(ien) , 

'1",=q:"-<p.,., 11"=(r.-r.,.)/Q, cosv=i-,.,tgcp. 

(v is the frequency of linear oscillations, 0 < v < IT). 
The choice of Wn indicated is determined by the fact 

(3) 

that in the linear approximation the solution has the very 
simple form eivnWo, i.e., the representative point moves 
along a circle. 

We will use Eqs. (1)--(3) to express Wn+1 in terms of 
Wn ; we will then apply this procedure successively, be­
ginning with n = 0, and represent the solution Wn in the 
form of the sum of the linear term indicated above and 
nonlinear terms depending on Wo, WI, ... , Wn-1' Then 
we will take into accoWlt the smallness of the nonlinear 
terms (for oscillations of small amplitude) and find the 
solution (i.e., the dependence of Wn on n and Wo) by the 
method of successive approximations. 

If we limit ourselves to the third approximation and 
retain only the quadratic and cubic terms in the power 
expansion, the solution has a singularity for two values 
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of the frequency ll: for II = 1T/2 and II = 21T/3. Far from 
these frequencies the nonlinearity leads only to a shift 
of the frequency and center of the oscillations, but does 
not destroy the stability of small oscillations. However, 
near these frequencies the situation is qualitatively dif­
ferent: In the power expansion of the quantity Wn , ad­
ditional resonance terms appear whose amplitude in­
creases in proportion to n and which lead to a buildup 
in the phase oscillations and a number of other conse­
quences. In these resonance cases the solution is sought 
as follows. Calculating the increment Wn+3 - Wn (for 
II ~ 21T/3) or Wn+4 - Wn (for II ~ 1T/2) and taking into 
account, in view of the quasiperiodic nature of the motion, 
the smallness of these increments, we will replace the 
increments by differentials; the solution of the differen­
tial equations obtained also determines the shape of the 
phase trajectories. 

For II = 21T/3 +1) (II)I « 1), retaining the linear term 
due to detuning of the frequency I) and the quadratic 
resonance term (0: W2), we find the phase trajectories 

IWI'[3"'M2n+IWI cos3,ej~const, (4) 

along which the representative points drift (in the theory 
of point transformations such curves are usually called 
invariants, since they transform into themselves on re­
flection). 

If II = 1T/2 +1) (11)1 « 1), then there are no quadratic 
resonance terms, but the quadratic nonlinearity in the 
second approximation and the cubic nonlinearity in the 
first approximation result in an additional resonance 
term (ex: W) whose action, when the nonlinear correc­
tion to the frequency is taken into account, determines 
the phase trajectories: 

IWI'[n'+1-(n'-"/,) cos 4ej-4151 WI'=const. (5) 

2. RESONANCE INSTABILITY OF NONLINEAR 
PHASE OSC I L LA TI ONS 

The principal nonlinear effect, determined by Eqs. 
(4) and (5) and first observed by Melekhin and Lugan­
SkU[4, 5], is the instability of phase oscillations near 
resonance values of cps. It follows from Eq. (4) that for 
II = 21T/3 (I) = 0) the phase trajectories are open and ex­
tend to infinity for oscillations with arbitrarily small 
initial amplitude; consequently, these oscillations are 
unstable. Since the values of CPs are small in the micro­
tron (CPs < 32°), the quadratic nonlinearity is large and 
the instability due to it develops rather rapidly. Inte­
gration of the equations shows that the number of turns 
in which the amplitude of phase oscillations rises sub­
stantially amounts to n - 3/IWol (lWol is the initial am­
plitude of the oscillations), Le., 10--20 turns for the main 
mass of the particles. The results of a numerical cal­
culation of the initial system (1) confirm these conclu­
sions. 

If the phase CPs is slightly shifted from the resonance 
value (I) ~ 0), then, as follows from Eq. (4), there is a 
closed separatrix passing through special points of the 
saddle type and located at the most a distance 31/ 21)/1T 
from the center of oscillations (in the W plane); the 
minimum size is a factor of two smaller. Inside the 
separatrix the phase trajectories are closed and the os­
cillations are stable, and outside it the trajectories ex­
tend to infinity as before. With increase of II)I the inner 
region of stable oscillations is extended; for 11)1~0.3 the 
size of this region coincides with the total size of the 
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FIG. 1. Phase trajectories for IJ = nl2 ('Ps = 0.308, 'P = 'Ps + 1/;). Solid 
curves-numerical calculation by computer, dashed curves-plotted from 
Eq. (5) and drawn through points No. 80 (outer curve) and No. 600. 

region of phase stability, and with further change of CPs 
the stable region changes in size relatively slowly. This 
quantity also determines the zone of resonance insta­
bility. For II = 1T /2 the pattern of oscillations is some­
what different. As a result of the stabilizing action of 
the cubic nonlinearity, the phase trajectories remain 
closed, but the effect of the quadratic nonlinearity leads 
to a strong beating (see Fig. 1). 

We see that in the discrete system being considered 
a resonance buildup of oscillations occurs without ex­
ternal perturbations only under the influence of the in­
trinsic nonlinearity, and the re sonance is integral, i.e., 
it arises in the case when the period of the phase oscil­
lations is equal to a whole number of turns k. As this 
number increases, the strength of the resonance drops 
rapidly and for oscillations of small amplitude only the 
cases k = 3 and k = 4 previously discussed are important. 
However, with increase of the amplitude of OSCillations, 
the resonance perturbation is strengthened and resonances 
of much higher order begin to appear. The theory de­
veloped above is not suitable for large amplitudes, but 
for physical reasons it is clear that integral resonances 
should lead to instability also for oscillations with large 
amplitude. 

The existence of this effect is confil'med by numerical 
calculations, and in fact it explains the anomalously 
small size (in comparison with other accelerators) of 
the region of phase stability corresponding to stable os­
cillations for a fixed value of cps. This fact was noted 
already by Kolomenskir[2] but the reason for it was not 
understood. A calculation carried out by us showed that 
for CPs equal to 0.20, 0.25, and 0.308 (the period of linear 
oscillations 21T/ll in these cases is 5.2,4.6, and 4) the 
period of oscillations at the limit of the stable region is 
respectively 7, 6, and 5. For this reason the bOWldary of 
the region is not a completely defined curve (separatrix) 
as in other systems described by differential equations, 
but some transitional resonance zone. The size of the 
stable region increases with increasing number of turns 
since resonances of higher order begin to appear and, 
more precisely, it 1s necessary to consider the dynamic 
phase aperture of the microtron (cf. ref. 10). 

The constant loss of particles from the stable phase 
region as the result of resonance buildup of oscillations 
can explain why in a microtron with thirty orbits [9] an 
appreciable falloff of current is observed in further 
orbits, practically independent of the means of injection 
of particles. Only V>-3% of the particles injected into 
the resonator are accelerated to a final energy of 30 
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MeV. Fortunately, the particles which leave the stable 
phase region are rapidly lost in the resonator walls as 
the result of buildup of vertical oscillations and therefore 
load the resonator comparatively little. Altogether about 
25% of the power of the high-frequency generator in 
30-MeV microtrons is used in acceleration to the final 
beam energy. However, this effect nevertheless limits 
the accelerated beam power substantially and leads to 
the necessity of providing a high current density from 
the cathode. 

3. HIGH-CURRENT INSTABILITY IN A 
MICROTRON 

The loss of particles in acceleration by the applied 
field rises sharply when the values of CPs lie inside one 
of the resonance zones (V"" 1T/2 and V"" 21T/3). In Fig. 2 
we have shown "current-voltage" characteristics of a 
microtron obtained by numerical calculation, i.e., the 
dependence of the accelerated current (which is propor­
tional to the number of representative points N on the 
n-th orbit located near the center of the stable region) 
on the resonator voltage, which is uniquely associated 
with the value of CPs (in Eq. (1) the coefficient A ~ l/coscps) 
The calculation was carried out with the system of equa­
tions (1) and the initial distribution of representative 
points in the phase plane was assumed uniform. It is evi­
dent that the shape of the curves in the n-th orbit depends 
on the resonator width L; for L = 0 in the vicinity of the 
two resonance values there are dips which become deeper 
with an increase in the number of orbits. 

The finite width of the resonator can be taken into 
account (Fig _ 2b) by introducing a so-called flight factor 
2 sin ( Llcp /2)/ LlCP, where Llcp is the angle of flight of the 
particles across the resonator. In this case the left dip 
almost disappears as the result of the rapid increase in 
loss of particles with small CPs (in the initial orbits the 
condition of resonance acceleration is not satisfied for 
them), but the right-hand dip remains as before. An ex­
periment carried out in a microtron with thirty orbits[4] 
showed that in the first type of acceleration, where the 
resonator width is small,r9J the measured current-vol­
tage characteristics (in different orbits) are very close 
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FIG. 2. Current-voltage characteristics of a microtron: a- L = 0, for 
curves I, 2, and 3 n is respectively 8, 15, and 28; b-L = 1.45 c/w, for 
curves 1,2, and 3 n is respectively 8, IS, and 25. 
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to the curves of Fig. 2a, and in the second type of ac­
celeration, where the 1,'esonator width and the flight 
angle are large, the results are close to Fig. 2b. 

The appearance of the dips in the characteristics is 
not so important at first glance, but in practice this leads 
to serious consequences. The left slope of the dips cor­
responds to a negative differential conductivity of the 
accelerated beam. In the case of electronic apparatus it 
is well known that negative resistance leads to instability 
at sufficiently large currents. A calculation made by the 
author and an experiment carried out by Luganskir and 
the author[4] showed that in fact these "large" currents 
are extremely small and in the thirtieth orbit the cubic 
term amounts to only several milliamperes (in the pulse). 
For the currents of ~ 100 mA achieved in practice, if 
the phase falls on the negative slope of the characteristic, 
the instability develops rapidly and leads to disruption of 
the acceleration regime. Here the electron loading of the 
resonator decreases sharply, the field strength in it 
rises several times, and as a result high-frequency 
breakdown occurs. 

For this reason in pulsed microtrons with 15--20 turns 
or more it is generally not possible to achieve phases 
CPs lying to the right of the first maximum (in order of 
increasing cps) of the volt-ampere characteristic. As a 
result, even without this the narrow region of equilibrium 
phases which are stable in the linear approximation 
(32.5°) narrows further by about a factor of two, and the 
range of achievable values of accelerating voltage de­
creases in this case by a factor of four. If we further 
take into account that for small CPs the capture of par­
ticles is too small (see Fig. 2), the actually achievable 
limits are .6.cps ~ 3° and M/ A ~ 1 %, which leads to quite 
severe technical difficulties in a microtron with a large 
number of turns. 

4. SUBDIVISION OF THE PHASE PLANE NEAR 
RESONANCE VALUES OF 'Ps 

The nonlinearity leads to an additional curious feature 
of the phase motion. In experiments carried out by 
Bykov rll ], a two-humped radial phase distribution of the 
denSity of electron bunches accelerated in the microtron 
was observed. This phenomenon does not fit into the 
framework of theoretical ideas, disappears on changing 
the adjustment of the accelerator, [12T and in general 
could be considered some kind of accident, if it were not 
observed repeatedly and in subsequent experiments of 
other workers.[9] An explanation of this effect is con­
tained in Eq. (5). It follows from this equation that for 
small positive values of /j the W plane is broken up into 
individual regions. In addition to stable points W = 0 
around which closed phase trajectories exist, there are 
four unstable points of the saddle type (\W!2 = 36/(31T2 

+ 1), e = (1/4)1T(2m + 1)) and four stable points of the 
center type (!W!2 = 36/2, e = 1Tm/2), in the vicinity of 
which there also exist stable closed trajectories. For 
larger amplitudes Eq. (5) describes closed trajectories 
which encompass the entire region described. 

These stable fourfold points (which are reproduced 
every four turns) serve as new centers of attraction in 
the phase plane; as a result a nonmonotonic radial phase 
distribution of the electron bunch density arises. Lu­
ganskU and Melekhin[6] carried out detailed numerical 
calculations which showed that if the means of filling 
the phase plane (at the moment of injection) is taken into 
account, a two-humped radial phase distribution arises 
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FIG. 3. Phase-stability region calculated for 30 turns: a-IPs = 0.15, b-IPs = 0.30, c-IPs = 0.445, d-IPs = 0.594. 

in subsequent orbits, for which the shape and other char­
acteristics are close to that observed experimentally. 
This structure of the bunches occurs, in agreement with 
the conclusions of the theory, only in a narrow region of 
rps (v = 1T/2 + 0, for small 0> 0). It is interesting to note 
that these values of rps correspond to the left maximum 
of the curve of Fig. 2a. The two-humped behavior has 
been observed quite regularly, in spite of the smallness 
of the region of f/Js, just because it arises in adjusting 
the accelerator for maximum current. With further in­
crease of f/Js, the fourfold points approach the boundary 
of the stable region and become unstable together with 
their regions of attraction. This also leads to appear­
ance of a dip in the volt-ampere characteristics. 

The existence of stable multiple points in the phase 
plane of a microtron (near II = 21T /3 there are threefold 
points, and for II :;: 1T there are twofold points) was ob­
served theoretically by Luganskir[13] and is illustrated 
in Fig. 3. In the general theory of point transformations, 
this island structure had already been described by 
Birkhofff14] and is an important feature of nonlinear sys­
tems. The physical reason for appearance of stable and 
unstable multiple points is the compensation of a small 
linear detuning 15 of the frequency II (near resonance 
values of II) by the nonlinear shift of the frequency fj.1I. 

In the linear approximation for resonance values of II, 

all points of the phase plane are multiple and there are 
no phase trajectories at all. However, the action of the 
nonlinearity leads to a dependence of the oscillation 
frequency on the amplitude, the indicated degeneracy of 
the phase plane is removed, and it is broken up into 
individual regions. 

This phenomenon is particularly interesting near the 
value II = 1T. The very appearance of a boundary at this 
point can be treated as a resonance buildup of oscil­
lations even in the linear approximation. The nonlinearity 
decreases the phase oscillation frequency in a micro­
tron, and therefore the boundary of the stable region is 
shifted somewhat to larger rps, the region becoming 
doubly connected and grouped around stable twofold 
pOintsY3] The variable W introduced above is not ap-
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propriate for investigation of this case, since the fre­
quency II becomes complex, but it is possible to find 
directly a particular solution of the system (1) corres­
ponding to the twofold pOints if we limit ourselves to 
several terms of the expansion. In the quadratic ap­
proximation the solution has the form 

IjJn=21,,-tg cpo + (-1) n (tg' cp.-4/,,') "', 
(6) 

'1n=,,-1 (-1) "+1 (tg' cp.-4/:1')". 

Since 1)max ~ 0.1, the maximum value of stable rps de­
parts from the linear limit by only 30

, i.e., the extension 
of the region of phase stability is small and is of interest 
more in principle than in practice. 

5. ESTIMATES OF THE LIMITING NUMBER 
OF TURNS 

We saw above that the resonance instability gradually 
(with increase of the number of turns) destroys the re­
gion of phase stability. This effect leads to a practical 
limitation of the number of turns in the microtron, in 
spite of the fact that in an ideal field equilibrium par­
ticles can be accelerated without limit. The nature of 
the limitations depends substantially on the value of the 
equilibrium phase. We shall describe how the size and 
shape of the region of phase stability gradually change 
with increase of the equilibrium phase f/Js (see Fig. 3). 

For small f/Js (Fig. 3a) the frequency of the oscilla­
tions is small, nonlinear resonances cannot appear, and 
therefore the boundary of the region has a smooth shape 
and its size is close to the maximum achievable (the 
left boundary almost coincides with rp = - rps)' For 
rps = arctan 1T -1 (II = 1T /2, Fig. 3b) with k = 5 resonance 
determines the boundary of the region. Its size is rela­
tively small and the boundary is cut up, since the rate 
of growth of the oscillations depends not only on 1 W 01 
but also on the initial angle eo in the W plane. For a par­
ticularly favorable initial position of the representative 
point, the os cillations do not rise initially, but decay. 
This also serves as the cause of appearance of isolated 
stable points outside the continuous region (in fact, of 
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course, these are not points, but small regions whose 
size is less than the calculation cell). 

With a further small increase of CPs, the fourfold 
points described above arise, and for CPs = arctan(3/21T) 
(II = 21T/3, Fig. 3c) as a result of the strong resonance 
instability the central region is very small, there are a 
number of isolated points, and isolated regions appear 
which surround the threefold stable pOints. In the linear 
boundary of the region (cps = arctan (2/1T), II = 1T), as was 
noted above, the region is singly connected and rather 
large as the result of the stabilizing action of the non­
linearity, and for larger CPs (Fig. 3d) two isolated regions 
appear which surround the twofold pOints of Eq. (6). The 
size of these regions decreases rapidly and for :{Js = 35.5° 
they disappear. 

The strengthening of the effect of nonlinear resonances 
observed with increase of CPs appears also in the differ­
ent nature of the drop in current with number of turns. 
In Fig. 4 we have shown the theoretical dependence ob­
tained for an accelerating gap of zero width with a uni­
form initial distribution of representative pOints in 
phase space. In view of the approximations the drop in 
the first few orbits is not characteristic, but in the 
further orbits the approximations mentioned are unim­
portant. It can be seen that for small CPs the number of 
accelerated particles is comparatively small (the sta­
bility region is small), and after that the current no 
longer drops and for large CPs the capture of particles 
into the acceleration regime occurs more efficiently; 
however, the current falls off too rapidly. 

At first glance it appears that it is possible, for a 
not too high beam intenSity, to increase the number of 
turns significantly by going to small CPs at which the 
frequency II is small (curves 1 and 2 of Fig. 4). How­
ever, in this case an instability of another kind arises, 
due to various disturbing factors. The stability region 
for small CPs is small, the tolerance on the accelerating 
voltage is quadratically small, and the phase oscilla­
tions in the microtron, as was noted above, are not 
damped, since the relativistic increase of the particle 
mass is compensated by the increase in the phase length 
of the turns. Therefore a slow diffusion of the repre­
sentative points occurs under the influence of perturba­
tions, and when they leave the stable region they are 
rapidly lost. 

There is an additional interesting effect. Since the 
duration of the n-th turn increases in proportion to n, 
the phase oscillations, which are periodic in the number 
of turns, are aperiodic in time and slow down with in­
creasing turn number. For small CPs the oscillations 
become so slow that they hit a resonance with fluctua­
tions of the field in the resonator, and as a result rapid 
loss of particles occurs (curve 4 in Fig. 4, which was 
obtained with inclusion of periodic pulsations (± 0.6%) 
of the accelerating voltage, 300 times slower than the 
accelerating frequency). When these factors are taken 
into account, the use of small CPs gives no practical 
advantage. 

The drop in current with increasing number of turns 
and the associated decrease in efficiency of the micro­
tron, and also the decrease in the tolerances on the 
various parameters of the accelerator with increasing 
number of turns, leads to the result that a number of 
turns of the order of 100 must be considered the natural 
limit for a microtron. In the existing acceleration modes 
the maximum increment of energy per turn is ~ 1.5 MeV, 
and therefore an energy of ~ 150 MeV is the limiting value 
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FIG. 4. Drop in current with number of turns in perturbed case 
(curve I-IPs = 0.10, 2-IPs = 0.15, 3-·IPs = 0.32) and under the influence 
of a slow perturbation (4-iOs = 0.15). The right-hand scale of N is given 
only for curve 3. 

for a microtron of the usual type. Further increase of 
energy is possible only in a transition to racetrack mi­
crotrons, in which a small linear accelerator is placed 
in the magnet gap and the energy increment per turn can 
be raised to 20-30 MeV and the final energy to 500-1000 
MeV. In practice a microtron of the usual type with a 
continuous magnet is convenient to use up to 40-50 MeV, 
and then it is necessary to go to racetrack microtrons 
in order that the number of turns as before not exceed 
30-40. 

This limitation on the number of turns executed by 
the particles exists only in the microtron, the only ac­
celerator with a variable multiplicity of acceleration. 
To achieve the microtron regime, two conditions are 
necessary: the accelerating field must be localized in 
the accelerating gap, as a result of which the energy 
accumulation has a discrete nature, and the magnitude 
of the energy increment per turn must be sufficiently 
large to provide the necessary change of phase duration 
of the turns. In view of the first condition, the phase 
motion is described by difference equations, and the high 
frequency of the phase oscillations, due to the second 
reason, does not permit these equations to be replaced 
by differential equations as is usually done in other ac­
celerators. 

It is appropriate to mention here that Turrin (15] uses 
as initial equations not difference equations, but the 
differential equations usual for all accelerators, and only 
then makes a transition to difference equations. It is 
just this procedure which constitutes an error leading 
to results which are inconsistent not only with all pre­
vious theoretical conclusions but also with direct mea­
surements of the region of phase stability, carried out 
by Melekhin and Luganskif(4]. 

6. MECHANICAL MODEL OF A MICROTRON 

Let us discuss a mechanical model of a microtron 
which permits its place among other dynamic systems 
to be seen readily. Let an ideally elastic sphere bounce 
on a plane horizontal base which oscillates harmonically 
along the vertical. The duration of the flight of the sphere 
up and down in a gravitational force field is proportional 
to its initial vertical velocity, and the change in this 
velocity on reflection is equal to twice the velocity of the 
reflecting plane at the moment of colliSion, i.e., it de­
pends harmonically on the phase of reflection. If the 
amplitude of oscillation of the reflector is small in 
comparison with the height of rise of the sphere and, 
for this reason, we can assume that the reflection occurs 
in one and the same plane but for different velocities of 
V. N. Melekhin 807 



the reflector, and if we also neglect the deformation of 
the sphere and the base, then the difference equations 
describing the vertical oscillations of the sphere will 
coincide with equations (1). 

For a small vibration frequency of the reflecting 
plane, the mechanical model corresponds to an ordinary 
cyclotron and there is a limiting height of rise of the 
sphere. When the frequency exceeds a critical value and 
the condition of resonance with variable multiplicity is 
satisfied (Eqs. (2) for g = 1), then the height of rise of 
the sphere begins to increase monotonically from col­
lision to collision (of course, for an appropriate choice 
of initial conditions), which corresponds to the accele­
ration regime in a microtron. 

With a further increase of the vibration frequency, 
the nonlinear resonances described above arise, and 
then linear oscillations with g = 1 become unstable but 
a narrow phase-stability region arises corresponding 
to g = 2, and so forth. If the frequency of oscillations 
is very high, there are a number of unstable equilibrium 
phases corresponding to resonances with variable mul­
tiplicity for g = 1, 2, 3, ... , the phase oscillations are 
mixed, and the motion has a random nature to a Signifi­
cant degree. 

In a microtron a similar stochastic acceleration re­
gime can in principle be achieved by decreasing the 
magnetic guide field H, increasing the accelerating 
frequency w, or increasing the accelerating amplitude 
A (cf. ref. 7). In all of these cases the parameter 
AjrP:; gmax will be large and a number of unstable 
equilibrium phases arise which correspond to g = 1, 2, 
. . . , g~ax. Near each of these phases the oscillations 
build up exponentially, which is a necessary condition 
for appearance of stochastic behavior. The numerical 
experiments carried out in the work of ZaslavskU and 
Chirikov[7, 16], particularly on calculation of various 
mechanical models with use of an elastic sphere, ac­
tually demonstrate the approach to a stochastic nature 
of the oscillations in the presence of a strong nonlinearity 
corresponding in the case of a microtron to a large value 
of the parameter A/n; the value A/n ~ 1 serves as the 
boundary of stochastic behavior. 

It should be noted that the problem of appearance of 
stochastic behavior in a dynamic system cannot be 
considered definitively solved at the present time. As 
a rule, this problem does not permit analytic solution, 
and in numerical calculations there always remains the 
question of the role of rounding errors. While it was 
previously assumed[7] that the stochastic properties 
depend first of all on the magnitude of the nonlinearity, 
the recent work of Zakharov[17] and Manakov[lB] has 
shewn that in a number of problems the corresponding 
continuous systems are completely integrable and there­
fore the rate of approach to stochastic behavior of a 
discrete system depends only on its deviation from its 
continuous analog. 

Phase oscillations in a microtron for a large value 
of gmax satisfy both conditions for appearance of sto­
chastic behavior: The system is both substantially non­
linear and typically discrete, and far from the continuous 
limit. Therefore the onset of stochastic behavior in this 
case appears very likely. At the same time we should 
apparently observe partially ordered oscillations cor­
responding to new centers of attraction around multiple 
points of the type corresponding to Eq. (6). From what 
has been said it follows that a microtron as a physical 
system is a very appropriate object for theoretical and 
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experimental study of the problem of appearance of 
stochastic instability. 

It is possible to state in another way why the micro­
tron acceleration regime occupies an intermediate po­
sition between the ordinary mode of resonance accele­
ration (for example, in an isochronous cyclotron) and 
the stochastic acceleration regime. In ordinary reson­
ance, the particle energy U increases in proportion to 
the acceleration time t, and if the phases of passage of 
the particles through the resonator are random, then 
we have U 0: t1l2. In a microtron the particles arrive 
only in the accelerating phases, as in the ordinary 
resonance method. However, since the total accelera­
tion time in n turns is tn ex: n 2 and the energy Un 0: n 
(see Eq. (2)), then we have U ex: e/2 as in the stochastic 
case. For just this reason a resonance with variable 
multiplicity leads in prinCiple to an unlimited increase 
of the amplitude of oscillation of an nonisochronous os­
cillator when a periodic pulsed force acts on it. 

In conclusion the author expresses his deep indebted­
ness to Academician P. L. Kapitza for his attention to 
this work and for its support. The author is extremely 
grateful to L. A. Yamshtem and S. P. Kapitza for help­
ful advice and valuable critical remarks, to L. B. Lu­
ganskH for his helpful cooperation in solution of a 
number of technical questions which arose in this article. 
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