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Impurity states are examined in substances with a narrow energy gap and a large anisotropy of the carrier 
mass, for which the adiabatic approximation can be used. In the main order of approximation with respect 
to the mass ratio, the bound states have a Dirac type spectrum with half-integral angular momentum. The 
corrections are of power-law type, with the exponent depending on the coupling constant. The shift of the 
critical value of the coupling constant, due to deviation of the potential from Coulomb form at small 
distances, is found by the WKB method. 

PACS numbers: 71.55. 

In recent years there is increasing interest in sub
stances with a narrow energy gap. An example of such 
substances is alloys of bismuth with antimony. At a point 
L of the reciprocal lattice of such a substance there is 
an energy gap Eg, whose size in pure bismuth is about 

100 K and changes appreciably as antimony is added. 
The theory of semimetals [lJ proposed by Abrikosov and 
the present writer can be applied to such substances. 
Abrikosov has shown [2J that the gap can become closed. 
If the size of the gap is small in comparison with the 
distance I' to the farther bands the rather complicated 
spectrum obtained in ref. [lJ can be simplified, and takes 
the following form: 

e = k,' (M-'-M -')±{[2+~(M -'+M-') ]'+k '0 '+k '0 '}'" (1) 4 1 2 2 4 I 2 xx till' 

where Vx and Vy are constants of the order of the usual 
speeds of electrons in metals, v ~ 5 X 107 cm/sec, and Mi 
are positive masses of the order of y/v2 • The quantity I' 
is the small parameter of the theory [lJ; it is small be
cause the lattice of bismuth differs only slightly from 
simple cubic form. Experiment gives for I' a value of 
some tens of electron volts while the masses Mi are 
close to the order of magnitude of the mass of a free 
electron. 

For positive values of the gap width Eg the two bands 
described by Eq. (1) do not intersect; thls is the so
called direct position of the bands, and the expansion of 
Eq. (1) near the minimum of the conduction band is of 
the usual quadratic form 

eg k/ I kll2 k/ 
e=~+--T--+--

22m, 2m, 2M,' 
(2) 

where mx " Eg /2v~, my " Eg /2v~. It can be seen from 
Eq. (2) that as Eg is decreased the small masses mx and 
my become smaller, but the large mass Ml does not 
change. This result agrees with experiment, [3J which 
gives for the ratio of the longitudinal mass M to the 
transverse masses mx , my a value IJ. ~ 102-103 depend-
ing on the size of the gap. The expansion of the spectrum 
in powers of k near the maximum of the valence band is 
obtained from Eq. (2) by changing the sign of Eg and re
placing Ml with - M2. 

For negative Eg (inverted position of the bands) k " 0 
is a saddle point and there is no energy gap in the spec
trum, but the density of states is small in the range 
E < IEgl. [4J 

In the present paper we consider the influence of the 
electrostatic field of an impurity introduced into the 
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alloy on the carriers, whose spectrum is described by 
Eq. (1). The corresponding effective Hamiltonian, the 
critical-energy operator 

(3) 

was found in a paper by Beneslavskil and the writer [4J 
by eliminating the farther bands from the Hamiltonian 
derived in [lJ; it is the operator of differentiation, 
it" -ill/or. l ) 

The interaction with the impurity 
V(r) =-Ze'/xr, R<r<r" (4) 

is determined by the dielectric constant K and the differ
ence of valence Z of the impurity. From considerations 
of symmetry, two prinCipal values of K are equal; there 
are three points L in the Brillouin zone, and the third 
value differs from the two by not more than 15 percent. 
We shall neglect this difference, and also the difference, 
of the same order, between the values of Vx and vy' de
noting their common value by v. The range of distances 
in which the potential can be treated as of the Coulomb 
form is limited. At large distances r > rd the Debye 
screening manifests itself; here rd is the Debye radius. 
In pure bismuth at low temperatures rd ~ 10-6 cm; in 
alloys rd depends on the carrier concentration. At small 
distances r < R ~ v/y the potential differs from the 
Coulomb form owing to interband transitions to levels at 
energy differences of the order of y. [5J At distances 
r < R the potential varies according to the law 

(5) 

which describes the Debye screening in a "good" metal; 
ro is of atomic size. We note that because I' is small 
one is conSidering in Eq. (5) distances of macroscopic 
scale. 

As will be seen from what follows, the interaction 
with the impurity is characterized by the dimensionless 
constant a "Ze2/Kv. For the parameters of pure bis
muth a ~ 0.1 for Z " 1. For small a the impurity levels 
are shallow; they lie in the energy gap near the extrema 
of the bands. For sizable a-and we shall not exclude 
this pOSSibility-there occur so-called deep levels, for 
which the ionization energy is comparable with the gap. 
The radius of a bound state in the xy plane is v/I aEgl; it 
is assumed that this quantity lies in the interval from R 
to rd described by the Coulomb law (4). For lal > % 
there is "collapse to the center" like the instability for 
nuclei with Z > 137 in the Dirac equation. In this case, 
a <; is well known (cf., e.g., [6J), the decisive region is 
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that of small distances, in which the potential differs 
from the Coulomb law because of the finite size of the 
nucleus. In a potential cut off at small distances bound 
states also exist for somewhat larger values of Z. But 
for some value ocr a bound state level drops out into a 
continuous spectrum, which leads to instability of nuclei 
with Z >Zcr' 

Near r = R the potential (5) changes much more 
rapidly than the Coulomb potential (4). For this reason, 
as will be shown later, a potential barrier appears at 
r 'S R, and the quantity R plays the role of a cut-off 
parameter for the Coulomb potential (4), The critical 
value of a at which an impurity level drops into the con
tinuous spectrum is somewhat different from 7'2. Impuri
ties with lal > acr are not very effective; they behave 
like neutral structures of rather small radius. 

The main qualitative features of deep levels in semi
conductors have been considered by Keldysh, [7J who 
studied the example of the Kane model. In particular, the 
ground state of this complex spectrum was found by 
means of a variational method. The small parameter 
which we have at our disposal, the mass ratio 1/11, allows 
us to use the adiabatic approximation. It turns out that 
in zeroth order in 1/11 the problem of impurity levels in 
a Coulomb field has an exact solution. The first -order 
correction is determined by the equation of one-dimen
sional motion of a heavy mass M, depending on the coor
dinates and on the interaction with the impurity. An 
analYSis of this equation enables us to ascertain in what 
sorts of cases the zeroth-order spectrum is discrete, 
continuous, or quasidiscrete. We shall construct the adia
batic approximation for a system of two equations des
cribing two close-together bands, and then consider two 
separated motions: a fast two-dimensional motion and a 
slow one-dimensional motion. The last section is devoted 
to "collapse to the center." 

THE ADIABATIC APPROXIMATION IN THE 
TWO-BAND MODEL 

The equations describing impurity states near the 
point L are of the form 

{Ha,(r} + [V (r) -ej6a ,} wlO ' (r) ~o, (6) 

where H(r) and V(r) are given by the expressions (3)-(5). 

Let us separate out the fast motion in the variables 
p = (x, y). We write the free Hamiltonian (3) of Eq. (6) 
in the form 

H(r} ~H(O) (p) +T(z}, 

where 

H(O)(p}~ lim H(r}, Ta,(z}~(2M)a,-'k/, 

d h t · M'l . d' I M-l M-l M-l M-l an t e ma rlX a{3 1S 1agona: 11 = 1, 22 = 2. 

(7) 

We shall look for the solution of Eq. (6) in the form of 
an expansion 

w(al(p,Z)~)1 Un(Z}'1<~'(p) ....... (8) 

in terms of the eigenfunctions l/! (a) (p) of the eigenvalue 
nz 

problem of the operator H(O)(p) + V(p, z): 

{H~:) (p)+[V(p,Z)-f.n(z)]6a,}IjJ~~) (p)=O. (9) 

whose eigenvalues are An(Z). The variable z on which 
the potential V(p, z) depends occurs in Eq. (9) as a 
parameter. SubstitUting Eq. (8) in Eq. (6) and using the 
orthogonality of the l/! (a) (p) for any fixed z, 

nz 
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, "S' (a) ( ) (al ( ) <an Ian) = £...J. d p ilin" p ljJ., p =6n,,', 
a 

we get the equation for the determination of un(z) and E: 

[<ani ~n)Ta, (z) +An (z) -e ]un (z) =-2-'u" (z) <anIM.,-'k/1 ~n) 
(10) 

- (k,u" (z)) <anIMa,"k,1 ~n) -~' <ani Ta, (z) I ~n')un' (z). 
n' 

There is summation over the repeated indices a, {3, but 
not over n. 

As in the ordinary adiabatic approximation, the po
tential energy An(Z) of the slow motion (10) is the aver
age energy of the fast motion for a fixed position of the 
slow particle, which is here represented by the projec
tion of the motion on the z axis. The first term in the 
square brackets on the left-hand side of Eq. (10), the 
kinetic energy of the slow motion, can be written in the 
form 

<ani ~n)Ta,(z) =[2Mn (z) ]-'k,', (11) 

where the coordinate-dependent reduced mass Mn(z) of 
the slow motion is given by the expression 

1 _ S ' [lljJ!:) (p) I' _ IljJ~;) (p) I'] 
--- dp , 
Mn(z} M, M, 

(12) 

In the ordinary adiabatic approximation there is no a, {3 
matrix structure, the coefficient of T given as an angle 
brackets in Eq. (11) is equal to unity owing to normal
ization, and the mass of the heavy particle depends 
neither on the coordinates nor on the interaction. We 
get this result in the case of shallow levels, when only 
one term survives in the brackets in Eq. (12), the first 
for a donor impurity and the second for an acceptor; the 
omitted term is proportional to the square of the coup
ling constant a. The reduced mass Mn(z) is not definite 
in sign, as it should be, because Eq. (6) simultaneously 
describes an electron in the conduction band and a hole 
in the valence band. 

The first two terms in the right member of Eq. (10) 
are of the usual form for the adiabatic approximation, 
and are small to the extent that the characteristic dis
tances z of the slow motion are small relative to the 
characteristic distances q-l of the fast motion. The rela
tive order of magnitude of the last term in the right 
member is (An - E)/(An - An +1)' The condition 

(13) 

for the right-hand side of Eq. (10) to be small can be 
satisfied, as we shall see when we find the behavior of 
An (z), if the mass ratio is sufficiently large and the ,state 
of the slow motion is not a high excited state. EquatlOn 
(10) finally takes the form 

{[2Mn(z} j"k,'H,,(z} -e}un(z) =0. (14) 

We are interested in the case of large mass Mn(z). Then 
the z motion, if it is finite, occurs near the equilibrium 
point z = Zo at which An(Z) has an extremum. The ampli
tude of the deviation z - zo, and also the deviation of E 
from A (z), are small for large Mn(z). Accordingly, to n , . 
determine these quantities we need to know the pos1tlon 
of the extremum and the behavior of An (z) near it. Start
ing from the form (4) of the potential V(p, z), which for 
given p has its extremum at z = 0, we make the assump
tion, which is confirmed by the subsequent calculation, 
that the extremum of An (z) is at z = O. Solving Eq. (9) 
for z = 0, we find An(O), i.e., E = An(O) in zeroth ap
proximation in the mass ratio 11-1• When we then calcu
late by perturbation theory the expansions of An(Z) and 
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Mn(z) near z = 0 and solve Eq. (14), we find the correc
tions in powers of M -1 to An (0) in the expansion of Eo It 
may turn out that already at small z the z motion is 
infinite and Eq. (14) has no discrete levels. An analysis 
of Eq. (14) is necessary for this reason and also to find 
out in what cases the spectrum of Eq. (9) at z = 0 corre
sponds to discrete levels of the original Eq. (6). We now 
proceed with this program. 

THE SPECTRUM OF THE FAST MOTION 

Let us find at z = 0 the solution of Eq. (9), for which 
the free Hamiltonian is 

H(O)(p)= I 8,!2 ~ v(ik.+k.) I 
v (-ik.+k.) -e,l2 

and the interaction is taken in the Coulomb form 
Ze' 

V(p,z)=- % (p'+Z')'I. 

We change to cylindrical coordinates p and cp 
= arc tan (y/x). Calculating 

~ - (a ia) 
k.±ik.=e~i. ±ap--pa.p , 

we see that the solution of Eq. (9) is to be looked for in 
the form 

(a) e'" I \jJ(') (p) I 
\jJ, (p,ql)= (2,,;),1. \jJ(') (p)e" (15) 

with integer values of the angular momentum component 
l; here the subscript zero means z = 0, and we omit the 
index n denoting a set of quantum numbers. 

Substituting Eq. (15) in Eq. (9), we get 

(~ + V(p,O)-1. )\jJ(O(p)+v (a: + 1;1) \jJ(') (p) =0, 

-v ( :p - f )\jJ(') (p)+ (- ~. + V(p, 0)-1.) \jJ(') (p)=O, 

where V(p, 0) = -Ze 2/Kp. With the substitution 

(16) 

(17) 

the system (16) reduces to the system of equations for 
the radial functions of the Dirac equation in a Coulomb 
field. [8J The difference between the spectrum of our 
problem, 

I. 0=-' 1+ sina a=-Ie I { a' }-'" Ze' 
.() 2 [11,.+ «l+'I,)'-a') '1'1' g, %V' (18) 

and the corresponding Dirac spectrum is that here 1 + Y2 
takes half-integral values. For 01 « 1 there are hydro
genlike levels: 

le,1 [ a']' (19) 
1..(0)=2 1-2(n,+Il+'I,I)' signa, 

whose ground state is deeper than that of the hydrogen 
atom by a factor 4. 

The sign of the levels (18), (19) depends on the sign 
of the impurity charge. For example, for an acceptor 
impurity O! < 0 and the discrete levels are located in the 
lower half of the energy gap. 

We need the expression for the wave function 
p'e-p/ ' [r (2~+n,+1) (eg/2±1.) qv ] 'f, 

x(t,2) = r(2~+1) n,!aef(l+'I,+aeg/2qv) 

X[+n,F(1-n" 213+1, p) + (l+'I,+ae,!2qv)F(-n" 213+1, p) 1; (20) 

13=[ (1+'/,),-'l'1\ q= (e,'/4-')..') 'I,/V, 8,>0; 

F(OI, (3, p) is the confluent hypergeometric function, r(OI) 
the gamma function; with a change of sign of Eg there is 
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a change of the sign of the function X(l). In the case 
when the radial quantum number nr = 0 there is a re
striction on the possible values of 1: for OIEg > 0, 1 is 
nonnegative, and for OIEg < 0, 1 is negative. The ground 
state has quantum numbers nr = 0, Il + % I = %, and the 
following energy and characteristic momentum: 

1.,(O)=le.I(,/.-a')"·signa, q,=lae.l/v. (21) 

The characteristic distance q-1 is usually large com
pared with R, and the actual form of the potential (4) at 
small distances has little effect on the positions of the 
levels for 01 < %. For 01 > %, however, the quantity (3 
becomes imaginary for some values of 1, and so-called 
"collapse to the center" occurs. In particular this is ex
pressed in the fact that the function (20) for the ground 
state oscillates, in contradiction with its definition. In 
this case it is necessary to take into account the depar
ture of the potential from the Coulomb form at small 
distances. We shall return to this question after examin
ing the slow motion for 01 < %. 

THE SLOW MOTION 

To calculate the l/M correction to the spectrum (18) 
we go back to Eq. (14). The potential energy An(Z) and 
the reduced mass Mn(z) are calculated by means of the 
solution of Eq. (9) with the use of Eq. (12). It is easy to 
find An(Z) for small z by treating the deviation of V(p, z) 
from the previously used value V(p, 0) by perturbation 
theory: 

I..(z) -x.(O) =<anlV(p, z) - V(p, 0) I an). 

USing Eqs. (15) and (17), we find from this for the ground 
. state 

1.,(z)-')..,(0)=-2aiae,1 S dpixIT)i'[ (p'+z')-'"-p-'], (22) 

where p and z are in dimensionless units (2qor1• Substi
tuting the expression (20) in Eq. (22), we can verify that 
for z « 1 the important region in the integral is p ~ z, 
and e-P is to be replaced with unity. We get 

() (0)- 2alae,1 S~ ,.-,( p 1)d _alae,lr(1-Pl II" 
').., z -').., --r(2p+1) ,P (p'+z')'''- p- 2'~~r(1+~) (~3) 

Since the integral (22) is determined by the behavior of 
X at small p, the power-law exponent 2{3 does not change 
when we go to excited states. 

Consider Mn(z), given by Eq. (12). For the ground 
state and at z = 0 we find from Eq. (20) 

M, (0) =Me,/[').., (0) -].], (24) 

where we have introduced the notations 

M= M,M, X=~ M,-M, 
M,+M, ' 2 M,+M2 • 

If the coupling constant 01 is such that the po~tion of 
the level is close to the point of mass reversal A, it is 
necessary to calculate the dependence of Mn(z) on the 
coordinate. For small z this can be done with perturba
tion theory, like the way the dependence of An(Z) was 
found: 

M,-' (z) -M,-' (0) =b I z I"/~M. (25) 

The expression for b, which depends on 01 only weakly, 
is a sum over excited states n, which has not been calcu
lated in explicit form. 

The solution of Eq. (14) with A and M in the forms 
(23)-(25) is not known. The spectrum and the wave func
tion u(z) can be written out explicitly for lOll « 1, when 
{3 = %. In the case of inverted position of the bands, 
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Eg < 0, there are no discrete levels since the z motion 
is infinite. If Eg > 0 and 0 < 01 « 1: we have Mn (z) = M1, 
and Eq. (14), written in the dimensionless units 

takes the form 

fl=M,v'/e" E=[e-A.(O) 1/2a'e" 

1 d' 
( - -'----+Izl:-E) u(z)=O. 

~I dz' 

(26) 

(27) 

Its solution can be expressed in terms of the Airy func
tion: 

n(z) =cAi [~I'!'(z-E)], z;;;.o. 

The energies of states even in z are found from the con
dition that the first derivation is continuous at z = 0: 

Ai' (-fl'I'E) =0, 

which has as its first root Jll13E = 1.02. From this and 
Eqs. (19) and (22) we find the following result for the 
ground state: 

(28) 

which agrees with the result of Kohn and Luttinger for 
the shallow levels in silicon. [9J The ground state of an 
a?ceptor impurity is obtained from (28) by changing the 
slgn o~ the par~ntheses and, in accordance with Eq. (24), 
replac1ng Ml w1th M2 in the definition of Jl, Eq. (26). 

If 01;; % but is not small, the energies and radii of 
deep. state~ can be estimated by means of Eqs. (23)-(25). 
We f1rst d1SCUSS the possibilities that exist here. It is 
clear from phYSical considerations that discrete levels 
can exist only for the direct position of the bands, 
Eg > 0; their energies lEI < Eg/2. This can be verified 
by examining the asymptotic behavior at large distances 
of the wave function <I>(QI)(r) of Eq. (6). For r _ "", 
where V(r) - 0, the function for a bound state must be 
decreasing. This is possible only for the indicated range 
of eigenvalues. Furthermore, for QI > 0 the potential 
A(Z) in Eq. (14) increases with increasing z, from the 
value A(O), Eq. (18), lying in the upper half of the energy 
g.ap, to IEgl/2. Whe.n the sign of QI is changed, the poten
tIal A(z)cnanges sign. Because the masses Ml and M2 
~e different the reduced mass M(O) of Eq. (14) changes 
slgn at an energy which is not at the center of the energy 
gap. For this reason, in the region of small z, the slow 
motion can be finite also for E < 0, which leads to the 
appearance of quasidiscrete llvels. 

What has been said will become clearer if we consider 
the quasiclassical integral from which we can estimate 
the energy of the ground state of Eq. (14): 

S{ [MO)-A b _I 'J, 

fl[e-I.(z) 1 --e,-+Tlzl"] } dz~1, (29) 

where Jl = 2M1M2V2/1Egi (Ml + M2), Z is in units v/lQlE I, 
d ," . 2 g an E - 11. 1S In umts 01 IEgl. 

If the level is not too close to the point of reversal of 
the mass 

(30) 

then the coordinate dependence of the reduced mass 
given by the second term in the denominator in Eq. (29) 
need not be taken into account, and we find for the energy 
and the radius: 

1 A (O)-A 'I (I HI 
. e-I:.(O) ~ala:e,l~-'/(t+" _' __ 1' , 

fle, 
1 

A. (0) -A 1 t/('+2,) 
z~ ~--- . 

/le, (31) 
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For QI « 1 one gets from this the last term in Eq. (28). 
It can be seen that the longitudinal size of a bound state 
in the z direction is small compared with the longitud
inal size, the smallness being that indicated by the sec
ond expression in (31). 

We point out that for normal position of the bands 
there cannot be any levels in the interval from the center 
of the gap to about A. For inverted position of the bands 
there can be quasidiscrete levels in this interval, of 
donor or acceptor type according to the sign of ~. 

For small AO(O) - 1:, when the inequality opposite to 
(30) is satisfied, levels can exist for a definite relation 
between !.he signs of (AO(O) -1:)/Eg and b. If 
(AO(O) - A)/Eg > 0 and b < 0, then in the region of small 
z a donor impurity creates a narrow potential well, and 
in the case of an acceptor impurity there is a potential 
barrier. We get the following estimate for the energy 
and radius of donor states: 

( e) (t-il}/~ 
e-I..(O) -a2eg/l-I~-'/' --'-

1.0(0)-" ' 
1 

~ 'I,' 
z- ~(1.0(0) -A) 1 (32) 

and for acceptor state s: 

(33) 

If (AO(O) - 'X)/Eg < 0 and b > 0, the roles of donor and 
acceptor impurities are interchanged. Finally, if 
(AO(O) - 'X)/Eg and b are positive, there are donor levels 
of the type (33); for negative (AO(O) - 1:)/E and b there 
are acceptor states (33). g 

In the case of infinite z motion it is interesting to 
calculate the singularities of the density of states near 
E = An (0). To do so one can again use the adiabatic ap
prOXimation, since the character of the singularity is 
determined by the behavior of un (z) in the region of 
small z. The calculation, which we shall not present, 
shows that the phase of the wave function, which deter
mines the variation of the number of states, has no 
singularity at the point E = An (0) itself. However, in the 
region above a barrier, for example for an acceptor im
purity for E > An (0) and inverted position of the bands, 
a behavior of the phase is found which is characteristic 
of the scattering of slow particles by a virtual level. 

THE NONCOULOMB POTENTIAL AT SMALL 
DISTANCES 

Let us examine what are the consequences of the de
parture of the potential (5) from the Coulomb form at 
small distances. If QI < %, the shift of the levels A (0), 
Eq. (18), OWing to this difference is small, since th~ 
Bohr characteristic distance q-l ~ v/lQlE I is large in 
comparison with R. The correction to th~ ground-state 
energy is calculated by perturbation theory: 

1\1.0 (0) 
alae,l (2Rae,),, [ . x ] 

~r(2~+1) -v- 1-c (In x)" . 
(34) 

We have expressed the ro of Eq. (5) in terms of 
K = exp(R/ro), requiring that the expressions (4) and (5) 
match at r = R; the constant c ~ 1 is determined by the 
lower limit r ~ ro of the region of Eq. (5). 

We note that the correction (34) depends on the coup
ling constant 01, the dielectric constant K, and the ratio 
REg/v, which is of the order of the mass ratio Jl-1. 
Therefore the quantity (34) can be of the same order of 
magnitude as the adiabatic corrections given by the first 
expressions in Eqs. (31)-(33). Here, however, it is 
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necessary to recall that along with the adiabaticity con
ditions (13), which can be written out explicitly by means 
of Eqs. (31)-(33), we also had satisfied the condition that 
R be small compared with the characteristic values of z 
indicated in Eqs. (31)-(33): 

R I ae,l /v«z. 

Otherwise in calculations of the potential A(Z), Eq. (22), 
one must take into account the departure of the field 
from the Coulomb form at small distances. 

This effect is important for 0' - %. The main ques
tion is what then happens to the fast-motion levels of 
Eq. (18). To answer this we make the usual substitution 
for the Dirac equation [B): X(l) = (Egl2 -y + A)l/~. After 
eliminating X(2) from Eq. (16) the equation for f reduces 
to self-adjoint form: 

r (p)+k'(p)j(p) =0, (35) 

where 

k'(p)= - -e, (V '-)' '/4 1'-'/. __ 3 ( V' )'_ V"/2+(l+'/,)V'/p 
v' p' 4 e,/2-V+'- e,/2-V+'-

(36) 
the potential Y is given by Eqs. (4) and (5) with r = p; 
primes denote differentiation with respect to p; for 
definiteness we are considering the case 0' > O. Using 
Eqs. (4) and (5), we find 

'-'-e,'/4 2a'- a'-l' 3+(2/-1) (2+ (2'-+e,)p/av) R 
k'(p)=---+-+-- , p> , 

v' vp p' 4p'(1 + (2'-+e,) p/2av)' 

a'x' I' (l+'/,)ln x 5ln' x (37) k'(p)=_X-,,/R___ --- ro«p<R 
R' p' pR 4R' ' , 

where we have added the well-known Langer term-1/4p2, 
since we intend to use the WKB method, and in the sec
ond equation have neglected terms of order REg/V « 1, 
and also used the fact that in the region in question the 
variation of the exponential in Eq. (5) is most important. 

For the analysis of Eq. (35) we use the WKB method, 
which, as Kralnov [10J has shown for the Dirac equation, 
gives practically the exact value of the critical charge 
of the nucleus. Picking out the coordinate-dependent 
terms in Eq. (37) as an effective potential energy, we 
see that the difference from ref. [1OJ is in the specific 
character of the cut-off of the Coulomb potential. Owing 
to the last term in the second equation of (37), which ap
pears because of the fast variation of the potential, 
there is a potential barrier for the ground state over a 
rather wide region: 

In In x/In x>1-p/ R>O. 

Nevertheless, as 0' increases the ground level drops, 
and for some coupling constant Q1cr it reaches the value 
A = -Eg/2, i.e., merges with the continuous spectrum of 
holes. The corresponding quasiclassical integral de
termining the position of the level is easily c'alculated, 
and we get the relation 

4a.p'-1 ( 3n) 
R = -. -- v exp - 2 - ?!. 2 '/,' 

ega,p _("a,p -1) 

connecting Q!cr with the cut-off radius R. Effects of the 
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slow motion change Q!cr' This change is small, of the 
order IJ.- l ; we shall not present the calculation of it here. 

CONCLUSION 

Let us briefly summarize the results of this paper. 
The impurity levels existing in a substance with a narrow 
energy gap and an anisotropic spectrum of free carriers 
are located inside the energy gap when the pOSition of 
the bands is the direct one. For the inverted position of 
the bands quasidiscrete levels can exist if the coupling 
constant is not too small. The states are characterized 
by a Bohr radius v/IQlEgl which is large on the atomic 
scale. For 10'1 > Q!cr such states are unstable; neutral 
structures of smaller radius are stable. This is appar
ently the explanation of the small effectiveness of im
purities in bismuth. The effect of a large anisotropy of 
the carrier spectrum is to make the bound states have 
the shape of ellipsoids of revolution with small long i
tudinal axis. The anisotropy of the mass allows us to 
use the adiabatic approximation. The condition for its 
applicability is that the longitudinal size of a bound state 
be small compared with the transverse radius [expres
sions for z in Eqs. (31)-(33)], and also that the frac
tional corrections to the energy levels (18), as given by 
Eqs. (31)-(33), be small. 

I am happy to express my gratitude to A. A. 
Abrikosov, who called my attention to the fact that im
purity states is gapless substances had not been studied 
previously. 

I)We take h = I. 
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