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Diffusion of defectons in quantum crystals at low temperatures is considered. The diffusion coefficients. 
mean free paths, and mobilities of the defectons are found in all limiting cases of interest. The theory is 
compared with the experimental results. 

PACS numbers: 67.20.S 

As shown by Andreev and I. Lifshitz [lJ, the kinetic 
properties of point defects in quantum crystals at low 
temperatures are determined by the behavior of the 
quasiparticles corresponding to them, the defectons. 
The main kinetic characteristics of defectons and their 
dependences on the temperature were determined by the 
present author [2-5J on the basis of the microscopic 
theory. The experiments performed on the diffusion of 
He 3 impurities in solid He 4 [S-9J are in qualitative agree
ment with the predictions of the theory. The main re
sults [1-5J were confirmed also in studies of the diffusion 
of light impurities [10, 14J. In view of the increased inter
est in quantum kinetics of defects, it is necessary to 
consider more fully the main features of this kinetics, 
since failure to take these into account leads sometimes 
even to the wrong order of magnitude. 

THE ROLE OF DEFECTS 

At absolute zero temperature, a defecton moves 
through a crystal like a free particle, and is scattered 
mainly by lattice inhomogeneities and by other defectons. 
The gas of null phonons has time to adjust itself to the 
defecton, greatly altering its dynamic characteristics, 
but not leading to dissipation. Therefore, if the defect 
concentration x is small enough, then its diffusion coeffi
cient can be calculated by using the gas approxima-
tion [4J. If we denote by a the cross section for the scat
tering of a defecton by a defecton (in units of a2, where 
a is the lattice constant), then the mean free path is 
l = aN2xa. The quasiparticle velocity can be determined 
from the velocity of the delocalization-wave front [4J : 

v = Aa/n (A is the amplitude of the probability of the 
transition of a defect into a neighboring equivalent posi
tion). The diffusion coefficient is then 

1 a'A ac e 
D,= --=-- "" --, 

31'2 xa zxa (3 
(1 ) 

where c is the speed of sound, z is the number of nearest 
neighbors, ® is the Debye temperature, and E = zA is 
the width of the defecton band. 

In order for the defectons to be good quasiparticles, 
their mean free path should be larger than the lattice 
constant; this takes place at concentrations 

x<a-1• (2) 

It is important that the scattering cross section itself 
depends on the width of the band [2, 4,5J and in the case of 
narrow bands it can turn out to be anomalously large. 
On the one hand, this imposes rather stringent require
ments on the permissible concentrations and on the per
fection of the employed crystals, and on the other hand 
it shows that one cannot put Do ~ E, as is frequently as
sumed in the reduction of the experimental results. To 
determine the dependence of D on E it is necessary to 
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know the interaction potential between the defects. We 
assume for simplicity that it takes the form V(r) 
= Vo(a/r)3 (the _case of isotropic interaction, V ~ r S, is 
considered in [2J ). As a rule, the width of the impurity 
band is small in comparison with VO (E « V 0)' Then, if 
the defecton wavelength is not very large (A $ aVo/E), 
the quasiclassical approximation a ~ V oA/Ea is valid. 
If T > E, as is the case in practice, then a ~ VolE and 
D ~ E2. 

Owing to the small width of the energy band there are 
produced around the defects large regions that are in
accessible to the quasiparticle. Their linear dimension 
can be easily estimated from the relation V o(a /R)n ~ E, 
R ~ a(Vo/E)l/n, and the cross section is R2 ~ a 2(Vo/E)2/n. 
We can thus expect a statip "trapping" of the electron to 
take place at x ~ (dVo)3/n. 

Generally speaking, when defectons are scattered by 
the lattice defects, a situation wherein V 0 « E is possi
ble (e.g., when a vacancion is scattered by an isotropic 
impurity). In this case the Born approximation is valid 
and the problem can be solved completely with account 
taken of the angular dependence of V o(n) (n is a unit vec
tor in the direction of the line joining the interacting 
particles). The quantity Vo(n) is of alternating Sign, i.e., 
there are directions corresponding to attraction as well 
as directions in which the defects are repelled. Of 
course, its average over the angles is equal to zero. We 
consider for simplicity a primitive cubic lattice(l21 

Vo (n) =uor (II), r (II) =n}+n,,'+n,'-'!,. 

According to the general theory [13J , the scattering 
amplitude is 

F(n) = a 2~~ S r(n')e-if,· dr', 

where f = p' - P is the difference between the initial and 
final wave vectors of the defecton. The calculation of the 
integral that enters here is exceedingly complicated [4J 

and yields 
2a UO 

F(n) =- -::-- r(n). 
/., ,,1 

It is seen that the scattering amplitude has the same 
angular dependence as the interaction potential, and that 
the scattering cross section is a ~ (Uo/E)2. Thus, if this 
mechanism turns out to be the principal one (e.g., owing 
to the very small defecton concentration), then D ~ E3. 

DIFFUSION IN PHONON GAS 

At T f. 0, owing to scattering by thermal phonons, the 
diffusion coefficients begins to depend strongly on the 
temperature. To determine this dependence, let us con
sider an individual collision of a phonon with a defecton. 
We start from the energy and momentum conservation 
laws: 
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(3) 

p+k=p'+k'. (4) 

Here k is the wave vector of the phonon, m* is the effec
tive mass of the defecton. The primed letters denote 
the quantities after the collision. For simplicity we use 
a quadratic dispersion law for the defecton and a linear 
one for the phonons, which is well satisfied at sufficiently 
low temperatures. If the phonon gas is assumed to be in 
equilibrium, then the mean thermal value of the phonon 
momentum is Ilk ~ T/c. Thus, at temperatures T « m*c3 
T « m*c3, which is almost always the case, we have 
ilk «m*c. Taking this into account we obtain for the 
energy transfer in the collision the value 6E = fiCK, 

where 
k k' m'c 

x~k'-k=-p(n'-n)--(l-Iln'), P,,=-,,_' (5) 
po Po 

n = k/k and n' = k'/k are the directions of the incident 
and scattered phonons. For the wave vector transferred 
during the collision we have Similarly 

q=k(n-n')+xn'. 

It is easily seen that the relative changes of the en
ergy and momentum of the defecton are small: 

!J.E k (T) 'I' q _ k 
--;(p)~p~ m'e' «1, p~p';;1. 

As to the phonon momentum, its direction changes 
greatly in each collision, but its magnitude remains 
practically constant. The situation thus recalls the mo
tion of a heavy particle in a gas of light particles. The 
difference lies in the dispersion laws and in the different 
statistics obeyed by the defectons and phonons. It is im
portant also that the width of the defecton band is rela
tively small. 

Let us find first the diffusion coefficient in momentum 
space. Obviously, the change of the square of the wave 
vector per unit time is given by the integral 

3c S <q')=--. dkdakk'n(k) (k-k')', 
(2,,)'a' 

(6) 

where n(k) = [exp(fick/T) -1P is the phonon distribu
tion function and dakk' is the differential cross section 
for phonon scattering by the defecton. As shown in [2J, 
this cross section is given by 

ooaZ 

dakk'= (2,,) , (ka)' (nn') 'dQ', 

where ao is a constant that depends on the type of defect. 
In the case of a vacancy, ao = 1, and in the case of an 
isotopic impurity ao = ((M - m)/M)2, where M is the im
purity mass and m is the mass of the main atoms of the 
crystal. At low temperatures (T « fic/a) the integration 
limits in (6) can be extended to infinity, after which the 
result is expressed in terms of the Riemann 1; function 

where' 

2 aoc ( T )' <q )=a- - , 
a,l 8 p 

",~ (9) 
a= 240~ (8) '" 1,27, 

ftc e 
8.= 2a = 2 (Bn') '/, . 

(7) 

To calculate the diffusion coefficient in coordinate 
space we proceed as follows: We define the free path 
time of the defecton as the time during which the trans
ferred momentum squared becomes of the order of the 
square of the initial particle momentum: 

T=~ sip) (9.)', 'l:o=!!.... 
aao 8 p T A 

(8) 
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Then the mean free path is the path traversed during 
the time 7: 

l= 1'2 ~ 8~)1' (8 p )', (9) 
aao l'A8 p T 

and the coefficient of diffusion in the phonon gas is 

D h=~'l:V'=~( e(p) )'(8.)'. (10) 
p 3 3aao 8" T 

The presence of the temperature raised to the ninth 
degree has a lucid physical meaning-three degrees are 
connected with the number of phonons, four with the 
scattering cross section, and two with the ineffective
ness of the collisions. It is very important, however, 
that the temperature parameter is not the Debye tem
perature 8 but 8 p ~ 8/8. (In[2"'3 J we used the quantity 
8/8 for convenience in the calculation.) 

Defectons can satisfy both Fermi-Dirac statistics and 
Bose-Einstein statistics. We have accordingly for the 
two cases 

D ac '/,( 8 )'(8.)' ac (8 p )' F"'-X '. - - DB,.....,--
ao 8 p T' ao T . 

But the degeneracy temperature of the defecton gas is 
unusually small, T* "" Ax2h. Therefore in almost the en
tire experimentally accessible range of temperatures 
we have T > T*. If at the same time T < E, then Boltz
mann statistics apply and the relation E(p) = 3T/2 can 
be used to estimate the averages over the temperature. 
In this case we obtain for the free path time and for the 
diffusion coefficient, respectively, 

(11) 

From the last expression and the Einstein relation 
we easily obtain the mobility b of the defecton in the 
phonon gas 

(12) 

Naturally, the same value of the mobility can be ob
tained by direct calculation of the force experienced by a 
quasiparticle moving in the gas. Indeed, in the system 
in which the defecton is at rest, the phonon distribution 
function takes the form n(k) = n( E -ilk' v), and the force 
acting on the defecton can be expressed as the change of 
the momentum per unit time: 

F= 3cft Sdkda'k'ii(k)k(n-Il,)~.b-'v. 
(2,,) , 

In first order in the small ratio v/c « 1, the mobility 
calculated in this manner coincides with (12). I 

If T > E, then the band is filled uniformly and E(p) 
= E. Thus, we obtain the well-known result [3-5J: 

'1:0 8 (8.)' ac ( 8 )'(8.)' (13) 
'I:=~9p T ' D=3aao 8 p r-' 

Such a temperature dependence was obtained later in [llJ 
for the diffusion coefficient of light impurities. 

Of course, the derived formulas are valid so long as 
7 > 70, i.e., if the free path time is longer than the time 
required to produce the defecton. This condition reduces 
to T < Tc ' where 

(14) 

At temperatures T > T c; the mean free path becomes 
smaller than the interatomic distances. As a result, the 
defecton begins to spend a greater part of the time within 
the cell, and only rarely does it execute individual tran-
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sitions (tunnel or activation) to a neighboring equivalent 
positions. At T '" Tc the diffusion coefficient is 
D ~ a 2dn. Its behavior at higher temperatures calls 
for a special analysis. It appears that situations are 
possible [llJ when the T-9 law is valid also at T > Tc' 

COMPARISON WITH EXPERIMENT 

For the comparison with the experimental results let 
us consider the diffusion of He3 impurities in solid He 4 

at temperatures T > Eo If the mechanisms of scattering 
by phonons and by defectons are regarded to be inde
pendent, then, using the Matthiessen rule, we can repre
sent the diffusion coefficient in the form [5J 

1 8. { B. ( T) '} D-'=-- 8xa+3ctao- - . 
ac E E 8. 

(15) 

The experimental value is 

D-'=(j.Z;; ·10'" x-f-4.o·1O' T' cm -2sec (16) 

Comparing (15) and (16) and recognizing that 0"0 '" 1/9 in 
this case, we obtain E "" 10-4 OK and 0" ~ 102• Substitut
ing the value determined in this manner for the band 
width in (14), we obtain for the critical temperature the 
value Tc '" 1.3°K, in very good agreement with experi-

ment [7J. The lower temperature limit to which the D(T) 
law (13) can be observed follows from (15): 

T,<T<Tc' T,=Tc(xa) 'I,. 

At x '" 10-3 and 0" '" 102 we obtain Tl '" 10K, which is also 
in good agreement with the experimental curves [7-9J • 

Unfortunately, there is still no experimental answer to 
the question of the behavior of the diffusion coefficient 
at T >Tc ' 

The author thanks I. M. Lifshitz for a discussion of 
the work. 
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