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The anisotropy of hyperfine field and of the NMR frequencies in orthoferrites are studied by symmetry 
theory. The shape of the nuclear magnetic resonance absorption lines is considered for nuclei located within 
the domain walls. The influence of a magnetic field on the line shape is studied. It is shown that the line 
shape depends strongly on the type of domain walls existing in the orthoferrites, so that NMR can be 
employed as a direct method for identifying the type of the domain wall. 

PACS numbers: 76.60., 7S.6O.F 

1. INTRODUCTION 

The presence of weak ferromagnetism in orthoferrites 
can lead to unique features of the magnetic-resonance 
spectrum of nuclei located in domain walls. These 
features are connected with two factors: the existence in 
weak ferromagnets of specifiC types of domain 
walls [1-3J, and the characteristic anisotropy of the 
dependence of the hyperfine field on the magnetic mo
ments of the sublaUices [4,5J. Orthoferrites are a con
venient object for the study of this process, inasmuch as 
their NMR and their domain structure have been inten
sively investigated of late. 

The magnetization in weak ferromagnets is deter
mined by the orientation of the antiferromagnetism vec
tor 1. Therefore the domain wall can be characterized 
by the distribution of l(r). The plane in which the vector 1 
rotates in the wall is determined by the character of the 
anisotropy. Orthoferrites are known to have domain 
walls of two types [2 ,3J . In the walls of the first type, 
the vector 1 rotates in the ac plane of the crystal, and 
the magnetization m remains essentially unchanged when 
1 rotates; these walls do not differ in practice from the 
domain walls in ferromagnetic materials. Let the axes 
of the rectangular system x, y, z coincide with the axes 
a, b, and c of the crystal; then the vectors 1 and m in 
these walls are given by 

I~(lcose, 0, lsin8), m~(msin(), 0. meos8), 

where e is the corresponding angle in the ac plane and 
varies in the wall from zero to 1f or from 1f to 21f. In 
walls of the second type, the vector 1 rotates in the ab 
or bc plane of the crystal, accompanied by a monotonic 
change of the magnetization from m to -m. In the walls 
of the second type we have 

I~(lcos'f, lsinq:, 0), m~(O, 0, mcosq:), 

where the angle qJ changes in the ab plane from zero to 
1f or from 1f to 21f. Reversal of the orientation of the 
vector 1 in the wall causes corresponding changes in the 
hyperfine field and in the NMR frequency. 

2. ANISOTROPY OF HYPERFINE FIELD IN 
ORTHOFERRITES 

To determine the NMR spectrum from the domain 
walls, it is necessary to know the angular dependence of 
the NMR frequency. It is convenient to determine in it 
phenomenologically, by using the symmetry of the crys
tal [4J. Let Mi (i = 1, 2, 3, 4) be the magnetization of the 
i-th iron sublatiice, and let hi be the hyperfine field 
acting on the nuclei of the i-th sublattice. The structure 
of the hyperfine fields, which is uniquely determined by 
the magnetic structure, remains invariant under trans-
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formations of the magnetic-symmetry group of the crys
tal. This means that the transformation properties of hi 
and Mi coincide. It is known that the follOWing combina
tions [6J 

F=M,+M,+M"+III,, A=M1-M2-M,+M" 
G~M,-M2+M,-M,. C~Ml+M,-M,-M, 

transform in accordance with the one-dimensional 
irreducible representations of the orthoferrite group 
Pbnm. We introduce analogous combinations of the 
hyperfine fields f, g, a, c; according to the foregoing, 
they transform in the same manner as F, G, A, C [4}. 

Our task is to obtain a linear relation between hi and 
Mi' It is known that it can take place only between those 
components of hi and Mi which transform in accordance 
with one and the same irreducible representation. The 
case of two magnetic sublattices (A = C = 0) was consid
ered in [4J. For a more detailed consideration of the 
problem (in particular, of the NMR spectrum of walls of 
the second type with reorientation of 1 in the plane ab 
or bc) it is necessary to take four sublattices into ac
count. 

We use the foregoing considerations concerning the 
symmetry of the hyperfine fields to find the angular de
pendence of the NMR frequency in the case when the 
reorientation takes place in the planes ac and abo 

A. Reorientation of I in the Plane ac (Walls of the First 
Type) 

Let l = l sin e and lx = l cos e. From the thermo
dynamicZtheory of weak ferromagnets [6, 7J we have 
Fx 0:: Cy 0:: sin e, whence 

f.~fl sin e, g,=g, sin e, Cy~C, sin e, 

Le., all the quantities that transform in accordance with 
the irreducible representation r 1 are proportional to 
sin e (fl, C2, and g3 are constants independent of the 
angle e). Analogously, all the quantities that transform 
in accordance with r3 are proportional to lx, Le., to 
cos e. We have 

f,~f, cos 8, gx~g, cos 8, ay~a, cos 8, 

where f3, gl, and a2 are constants independent of the 
angle e. In our case, i.e., in the representation rl x r3), 
only the foregoing combinations of the hyperfine fields 
differ from zero. Substituting them in the formula for 
the hyperfine fields 

h,~f+j(+a+c, h,=f-g+c-a, 

h3~f+g-a-c, h,=f-g+a-e, 

we obtain their angular dependence. We assume also 
that the main contribution to the hyperfine field acting 

(1) 
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on the i-th nucleus is made by an isotropic interaction 
proportional to the magnetic moment of the corresponding 
i-th ion (this agrees with the experimental data). This 
means that the structure of the hyperfine fields at the 
Fe nuclei differs little from the structure of the mag
netic moments. The largest of the magnetic moments 
F, G, A, and C is G, and for the nuclei the largest is 
analogously g. We therefore regard ratios of the type 
f1/g1 as small parameters (of the order of 10-2, as fol
lows from the analysis of the experimental data given 
in [8, 9J ). 

The NMR frequency of Fe 57 (I = 1/2) is given by 

wi='Ylh,+HI, (2) 

where H is an external field lying in a plane perpendicu
lar to the easy axis. We shall consider for the sake of 
argument the case when the easy axis coincide with the 
c axis of the crystal. The external magnetic field in
tensity is assumed to be small in comparison with the 
hyperfine field (IHI «hi, with hi ~ 5 x 105 Oe in ortho
ferrites), and y is the gyromagnetic ratio of Fe57• 

Substituting in (2) the values of the hyperfine fields 
(1) and confining ourselves to terms of first order in the 
small ratios H Ihi' fig, etc. we obtain 

<0,=<0, (i-a sin' 8-~,~ sin 28+~,h cos 6), (3) 

where ~i = 1 for i = 1 and 3 and ~i = -1 for i = 2 and 4; 
Wo = ygl, Ci = (gl - g3)/g lo f3 = (fl + f3)/gb h = Hx/gl' 

B. Reorientation of I in the Plane ab (cb) (Walls of the 
Second Type) 

We put Zx = Z cos cp and ly = I sin cp. For the same 
reasons as in subsection A, we have 

/,=/, cos <p, gx=g, cos <p, ay=a, cos <p, 

gy=gz sin <p, a.t:=a, sin (['1 C~=C3 sin If. 

Substituting these relations in (1), we obtain the angular 
dependence of the hyperfine fields. Substituting the 
values of hi in (2) and confining ourselves to the linear 
approximation in the ratios f 3 /g 1 , al/g2, etc. and H/lhil, 
we obtain 

where 

a= (g,-g,) , ~,= a,+a" hx= Hx, hy= Hy, 
~ 2~ ~ q 

1],=1],=-113=-1].=1, s,=s.,=-~,=-£.=:L 

In the expression for the frequencies (3) and (4), it is 
necessary to add also the anisotropic terms due to the 
decrease of the magnetic moments of the sublattices in 
the central part of the wall as a result of temperature 
excitation of the Winter mag nons (see, e.g., [1OJ). It is 
obvious that, just as in the case of ferromagnets, they 
are described in the lowest approximation by terms of 
the type f(T) sin2 e, so that they can be taken into account 
in a phenomenological analysis by assuming the corre
sponding temperature dependences of the coefficients Ci 
and Cil in formulas (3) and (4). 

We note that expressions (3) and (4) for the NMR fre
quencies differ significantly from each other in their 
dependence on the magnetic field. In case A, the double 
degeneracy in the frequencies is reserved in the magnetic 
field (Wi = W3, W2 = W4), and the y component of the ex
ternal fields (which is weak enough to leave the magnetic 
structure unchanged), has practically no effect on the 
NMR frequency. In case B, at hx f. 0 and hy f. 0), a com-
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plete splitting of the NMR spectrum into four lines takes 
place. 

3. MODEL OF THE MAIN STRUCTURE AND SHAPE 
OF THE NMR LINE FROM THE DOMAIN WALLS 

We assume that the sample is a plate whose plane is 
perpendicular to the easy axis of the crystal (to be 
specific, the c axis). The domain-structure model is in 
this case a system of stripe domains (stripe structure), 
oriented in such a way that the vector 1 in the wall ro
tates in definite crystallographic planes (for example, 
in the plane ac in case A or in the plane ab in case B). 
We choose the normal to the walls to be the y axis (a 
more general case will be considered in Sec. 6). The 
period of the domain structure, i.e., the distance between 
the centers of the domains with equal magnetization 
directions will be deSignated by D. The question of the 
NMR absorption line shape of crystals with a domain 
structure was investigated in detail in a number of 
papers (see, e.g., [11, 12J). We present an expression for 
the NMR line shape, following [12J , with allowance for 
the specifics of the NMR spectrum and the domain struc
ture of orthoferrites. 

The absorption of a radio frequency field with polar
ization Ci (Ci = x, y, z) is determined by the imaginary 
part of the NMR susceptibility X;Ci' which takes the 
form 1) 

)(aa" (<0) = E T]a'(y,)xn" (y,), (5) 
, 

where T/ Ci (yZ) is the local gain of the field with Ci polar
ization, located at the point yz; Xn(YZ) is the correspond
ing local NMR susceptibility relative to a circularly
polarized field 

z,,"= (2x"oIN) ul"rr6 (W-<On), 

where XnO/N is the static nuclear susceptibility (per 
nucleus). We have assumed that the natural NMR line 
width is much smaller than the "inhomogeneous broad
ening" due to the domain wall riJ. « f3w o, a situation 
usually realized in orthoferrites (for example, according 
to [13J, r n ~ 10-20 kHz in ErFe03 as against an 
"inhomogeneous broadening" 2 f3wo ~ 1 MHz). For the 
nuclei in the domain wall, the greatest importance 
attaches to the local gain T/z (in the considered geom
etry), which can be determined in terms of the suscepti
bility of the displacement of the domain walls (for the 
sake of argument we refer to walls of the first type, in 
which the direction of the vector 1 is given by the angle 
e; the direction of the normal to the wall coincides with 
the yaxis): 

<00 dS <00 dS dy <00 DXdis dS 
T]'''''"1dii="1 dy dH ="1' 2m, dy' 

We have used here the known relation Xdis 
= (2mg/D)dy/dH, where ms is the magnetization of the 
material. The function e in a 1800 wall is determined 
by the character of the flee energy. In this case (taking 
into account the magnetic field in the ab plane) it can be 
defined in the following manner: 

dS 1 1. }'I, (A ) '!, 
-= .. -1(8), f(S)={-[F(8)-F(8 0 )] ,b= -K ' 
dy 6 K, , 

Kl is the second-order anisotropy constant, F(e) is the 
density of the free energy of the crystal, and eo is the 
value of the angle e in the domain (as y - ± 00). In a weak 
magnetic field (H « HA, where HA is the anisotropy 
field) and far from the reorientation region, fee) takes 
the simple form fee) = sin e. 
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In the analysis of the NMR line shape one must bear 
in mind one more singularity of the domain walls. 
There exist walls (or sections of walls) in which the 
angle 8 changes from zero to 1T; they have a magnetic 
moment directed along the x axis (mx '" ms sin 8). There 
are also walls (or their sections) in which the angle 8 
varies from 1T to 21T; their magnetic moment is directed 
opposite to the x axis. In the absence of a field (H '" 0) 
the energies of both types of wall are the same, a fact 
we shall call for brevity "degeneracy in the wall polar
ization." A similar degeneracy exists also in walls of 
the second type. In a magnetic field lying in the ab 
plane, the picture changes. In walls of the first type the 
degeneracy in the polarization is lifted the walls (or their 
sections) with magnetization directed against the field 
have a tendency to turn into walls magnetized along the 
field; in a sufficiently strong field it can be assumed 
that all the walls of the first type are magnetized along 
the field, i.e., we have in them 0::::: 8::::: 1T. 2) 

The walls of the second type are insensitive to the 
field, since the magnetization in them is always perpen
dicular to H. Consequently, walls of this type retain de
generacy in the polarization in a magnetic field, 

The summation over the nucleiin (5) presupposes 
three types of summation: over the wall polarization p, 
over the nonequivalent positions, and over the nuclei 
inside the walls, which reduces to integration with 
respect to the angle: 

2 , N 6N' , , • .E ... = .E.E 2D Jdx ... = 2D.E.E J dfJl(fJ)... (6) 
I p=1 1=1 J,=l 1=1 0 

Summation over the polarization is conveniently carried 
out in the following manner: We assume that at H '" 0 the 
areas of the walls of both polarizations are the same; 
then an analogous spectrum from walls where 8 (rp) varies 
from 1T to 21T is added to the NMR absorption spectrum 
from the walls where the angle 8 (or rp) changes from 0 
to 1T. This means that the summation over the polariza
tion can be replaced by extending the limits of integration 
with respect to the angle in (6) from 0 to 21T. This con
clusion remains in force also for walls of the second 
type at H '" 0, since they retain the degeneracy in the 
polarization also in a magnetic field. For walls of the 
first type at H f. 0 (H :;;:; 100 Oe) we assume that there 
remains only one energywise favored wall polarization, 
so that the integration with respect to 8 are zero and 1T. 

After summing over the polarizations by the described 
method, the summation of the nonequivalent position is 
very Simple. It turns out that the contributions made to 
X" (w) from individual positions, integrated over the 
angle, are the same. We shall demonstrate this with 
walls of the first type as an example (H '" 0). It is easily 
seen from (2) that the frequency of a nucleus belonging to 
the first or third sublattices (~ '" 1) and situated in that 
place of the domain wall where 8 '" 80 , is equal to the 
frequency belonging to the second or fourth sublattices 
(~ '" -1) when located where 8 '" 1T - 8 o. It is obvious 
that when 8 changes from zero to 1T the frequencies of 
the first and third sublattices run through the same 
values of the frequencies of the second and fourth sub
lattices, but in a different sequence. Consequently, upon 
integration with respect to 8, all the sublattices give the 
same contribution to X". This reasoning is valid for 
walls of the second type with allowance for the fact that 
rp ranges from 0 to 21T. 

Taking all the foregoing into account and integrating 
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with respect to angle with the aid of a Ii-function, we ob
tain 

x,," (00) =AP (00) , (7) 

where the "amplitude" of the absorption is determined by . 
0 6 

A=4xn·7]'·li"OO·P., P.= J dfJll(fJ) I. (8) 
• 

The line shape function P(w) normalized3 ) to unity 
(fP(w}dw'" 1) takes the following form: 

1) walls of the first type: 

P(OO)=~ ~ l(e}) . 
p, ~ Idoo,/del.~. ' , ' 

here 

(9) 

00, (6) =Ul.(-ct sin' fJ-~ sin 2e+h cos fJ), (10) 

8j is one of the roots of the equation w - wl(8) '" 0, con
tained in the interval 0 ::::: 8 < 1T; 4) 

2) walls of the second type 

p(oo)=_1_,E f(rpl) , 
. 2P. j IdUl,ldrpl._., 

(11) 

where 
oo,(<p) =Ul. (1 +a, sin' <p+~, sin 2ql+hx co~ <p+h" sin <p), (12) 

rpj (0::::: rpj < 21T) are roots of the equation w - W2(rp) '" O. 

Quantities of the type Idw/d81 in (9) and (11) are func
tions of wand are inversely proportional to the spin 
density in walls having a resonant frequency equal to w. 

4. NMR SPECTRUM AT H = 0 

At H '" 0 the angular dependences of the NMR fre
quencies for walls of the first and second types, wl(8) 
and W2(rp), are the same; consequently, the line-shape 
functions P(w) are also the same, We consider below, 
for the sake of argument, the case of walls of the first 
type. 

We consider first two particular cases in which the 
line shape can be represented in analytic form: {3 » (JI 

and {3 « (JI. The first case, according to experimental 
data [13J, is realized in certain orthoferrites near the re
orientation temperature, whereas the second is typical 
of high temperatures. 

1. The case (JI '" O. Here, as follows from (10), we 
obtain 

oo-Ul. I dOO'1 sin 2fJ= --, - =.2Ul.~ cos 26, 
Ulol> dfJ 

f(fJ)=sin8 [1+ :>in'e r, 
where K2 is the second anisotropy constant and must be 
taken into account near the reorientation region. Substi
tuting these values in (9) and taking into account the 
ambiguity of (10) [the presence of two roots in the inter
val (0, 1T)J, we obtain the absorption line shape in param
etric form (u is the parameter of the function): 

where 

1 
P (Ul) = =-=---::~--;::-..,.. 

2P .Ul.~ I cos 2u I 

{ ( K. )'" (K. ) ".} . sin u 1+ K, sin' u + cos u 1 + K, cos' u , 

P.= 

1+K,IK, (K' )'" 
1+ (K,IK,)'" arcsin K.+K, ' 

1-IK,I/K. 1+(IK,I/K.)"· 
1+ 2(IK,I/K,)'" In 1-(IK,I/K.)'''' 

K,<O 

K,>O 
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Formulas (13) and (14) reflect an interesting singularity 
of the absorption spectrum near the reorientation region: 
the temperature-dependent restructuring of the spectrum 
is possible on account of the variation of K2 /K1 with T, 
i.e., on account of the change of macroscopic character
istics of the crystal (while the microscopic NMR param
eters, i.e., the coefficients in (10) and (12), can remain 
constant). At K2 « K1 (Po'=" 2), formulas (13) and (14) 
take the simpler form 

( ) _ 1 sinu+cosu 
P 00 -_ , 

4w,~ cos 2u 

sm2u= -- , O';;u<-. . 1 00 - 00 , I n 
w,~ 4 

(15) 

Outside the interval wo(l - {3) ::s w ::s wo(l + {3) we have 
P(w) = O. The absorption spectrum (15) is shown in 
Fig. 1a. This character of the absorption spectrum 
agrees with the experimental data of [13J. We note that 
the line shape is here significantly different than in the 
case of a ferromagnet. In particular, the absorption has 
here sharp maxima at the frequencies wmax = wo(l ± {3), 
which correspond to the angles 81 = 1T/4 and 82 = 31T/4 in 
the domain wall. 

2. The case {3 = O. In this case the angular depend
ence of NMR frequency coincides with that investigated 
in [11, 12J , and consequently the line shapes also coincide 
(Fig. 2a): 

p(w)=_1_ [1+(K,IK,)sin'u]"', 
P,aw, cosu 

( 000-00 )'" n sinu= -- • O';;u<-. 
aw, 2 

At wo(l - QI) < wand w > wo we have P(w) = O. The 
Singular point of the spectrum corresponds to the angle 
8 = 1T/2 (the center of the domain wall), and the discon
tinuity of the function P(w) corresponds to the angles 
e = 0 and 1T (edges of the domain wall). 

3. In the general case QI f. 0 and {3 f. 0 the expressions 
for the line shape are cumbersome, and we confine our
selves to the determination of the Singular points of the 
spectrum and to an investigation of the character of the 
line shape near these singularities. These points (points 
where P(w) - 00) are defined by the equations 

P(w) 

A 

b 

B 

d 

[ 

FIG. I 

8' 

b 
p' 

[' w 

Plw) 

FIG. 2 

. 
w 

FIG. I. Schematic dependence of the line shape pew) and the mag
netic field for walls of the first type at H /I a, a = 0, (J> 0: a) h = 0, 
b) h < her, c) h = her, d) h > her, e) h < O. 

FIG. 2. Form of the function pew) at different h: a) h = 0, b) 
h < her, c) h > her. Walls of the first type, h /I a, {J = O. 
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dwJde=o, 00-00, (e) =0. 

The solutions of these equations are 

e,=n-Ijl/2,9,=nl2-Ijl/2, 

m.. ( a-p ) m.. ( a+p ) 00, =000 1-2 , 00, =00, 1--2- , 

where 

p'= (a2+4~') '\ cos Ijl=a/p sin ¢=2~/p. 

(16) 

The behavior of the function P(w) near the Singular 
points can be explained in the following manner: near the 
Singular point 81 we have 

dw, ",(d'W') (9-9). 
dU de' e, ' 

(17) 

At the same time, expanding the equation about 81, 

1 (cl'W') 00=00'+2 de' e. (9-9,)', 

eliminating with the aid of this relation the quantity 
(8 - 8d from (17), and substituting dW1/d8 in (9), we ob
tain 

! [1+(K,IK,)sin'I\1/2j"'sinljl/2 
p (pw )"'(-00+00-)'" ' 

P(w)= 0' , 

[1+ (K,/K,) cos' "'/2J'" cos 1\1/2 
p, (pw,)'" (w-w~")'" ' 

(1l<m~CIGC, (18) 

where Po is defined by (14). 

We have put here (JI > 0 for the sake of argument. At 

w > w~ax and w < w;uax we have P(w) = O. The height 
of the peak can be estimated by putting Iwmax - w I = r 
in (18). 

Formulas (16) show that the Singular points of the 
spectrum correspond to certain common angles 8 in the 
domain wall, which depend on 1jJ, i.e., on the ratio of the 
constants (JI and {3 characterizing the anisotropy of the 
hyperfine field. The "heights" of the absorption peaks, 
according to (18), are also different, depending on the 
ratio of these constants. A good illustration of these 
conclusions is the temperature deQendence of the ab
sorption spectrum in ErFe03 (see [13J, Fig. 1). Accord
ing to [13J , the coefficient QI increases with increasing 
temperature, and therefore the low frequency branch of 
the spectrum shifts towards the frequency corresponding 
to the center of the domain wall, and the high-frequency 
branch shifts towards the domain frequency. 

5. NMR ABSORPTION SPECTRUM AT H"* 0 

In a magnetiC field, the NMR absorption spectra for 
walls of the first and second type differ significantly. 
This is seen already from (3) and (4). First, the absorp
tion spectrum of walls of the first type is practically 
insensitive to the magnetic field directed along the b 
axis, and the spectrum of walls of the second type is 
equally sensitive both to a field directed along the a axis 
and to a Jield directed along the b axis. Let us examine 
in greater detail the dependence of the NMR spectrum 
on H for both cases. 

To assess the qualitative behavior, we can set the 
function f(8) in formulas (9) and (11) for P(w) equal to 
sin 8. This is justified under the following two condi
tions: a) in a sufficiently weak magnetic field (H « HA), 
when the deviation of the magnetization inside the 
domains from the c axis can be neglected; b) at K2 < K1, 
i.e., outside the reorientation region. 
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A. Walls of the First Type, H Parallel to the a Axis 

We consider first two limiting cases: ex = 0 and (3 = O. 

1. The case ex = O. The "evolution" of the absorption 
spectrumS) P A (w) with increasing magnetic field h is 
conveniently explained by regarding Eq. (10) 

oo/oo,-l""w~-~ sin 28+h cos 8, (19) 

as an equation of a one-parameter family of lines (in this 
case straight) w(h) with parameter B. Each line of the 
family, corresponding to a definite value of B, charac
terizes the change of the frequency of the nuclei located 
at that place of the wall where B(y) = B. It is seen from 
Fig. 3 that on the whole the spectrum has a tendency to 
spread out with increasing field h. Of greatest interest 
are the singular pOints of the spectrum, where P(w) 
- 00. The singular pOints of the spectrum (here-lines 
on the (w, h) plane) are defined by the condition dw/dB 
= O. It is known that such lines are the envelopes of a 
family of the curves (19)-caustics. In our case the equa
tions of the envelopes have the parametric form 

w~-~(sin28-cos28ctg8), h~-2~cos28/sin8. (20) 

The family of lines and the envelopes are shown in Fig. 
3 for the case {3 > O. The lines AO and OA' (h > 0) 
correspond in (20) to the angles rr/4 :5 B :5 3rr/4, where 
the lines AA correspond to the angles 0 < B :5 rr/4, and 
the lines AE' to the angles 3rr/4:5 B < rr.6) The family of 
lines (and the absorption spectrum) has a critical pOint 
o with coordinates wcr = 0 and her = 2{3, to which the 
caustics converge. At h > hcr' the absorption spectrum 
has no Singular pOints. The conclusion that the depend
ence of the singular points of the domain-wall NMR ab
sorption spectrum on the magnetic field is described by 
caustics of the corresponding family of frequencies, 
does not depend on the spectrum (19) and is general in 
character. 

The caustic equations (20) can be represented in ex
plicit form in the case of weak fields and near the criti
cal field hcr = 2{3. We assume for the sake of argument 
that {3 > O. The case {3 < 0 is obtained from the consid
ered one by taking the coordinate transformations 
w - -wand h - -h. The lines OAE and OA'E' are des
cribed by the equations 

I -~+h/1'2, Ihl ¢;~ 
WOAB~-WO""E'= -(8/3)'I'~(1-hl2~r', h~hCI. 

l h, h<O, Ihl »~. 
At h < hp (the forms P and p' in Fig. 3, ~ ~ 2{3/3), 

the line sections OAE and OA'E' coincide with the 
boundaries of the spectrum. At h > hp, the boundaries 
of the spectrum (the lines PC and p' C') are determined 
by the equations wmin = -h (the line PC) and wmax = h 
(line P'C'). 

The character of the absorption spectrum at PA(w, h) 
(the subscripts A and subsequently B, C, and D pertain 
to the case under consideration) can be qualitatively 
established in the following manner 7). According to (9), 
the function B(w, h) (the solution of Eq. (10) determines 
completely the absorption spectrum. At h < hcr, this 
function is not Single-valued and consists of three 
branches that are joined together at points belonging 
to the envelopes; at h > hcr , the function e (w) is 
Single-valued. Let us examine first how the ab
sorption spectrum is formed at h < hcr (Fig. 4a). 
For example, at h corresponding to the line BFF'B' in 
Fig. 3 we have: in the first branch 8 changes from zero 
to 8F' (the periphery of the domain wall), in the second 
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FIG. 3 FIG. 4 
FIG. 3. One-parameter family of lines w(O, h) for walls of the first 

type h II a, ~ = 0, (3 > 0. Each line of this family represents the field 
dependence of the NMR frequency of those nuclei to which corresponds 
a definite angle 0 in the wall. The envelopes of the family OAE and 
OA'E' are the lines of the singular points of the NMR absorption spectra. 

FIG. 4. Illustration of the formation of the NMR absorption spec
trum: a) plot of O(w) at h < hcr (see the line BFF'B' in Fig. 3), b) con
tributions of different branches of the function O(w) to the absorption 
spectrum P(w) = PI + P2 + P3• 

branch we have 8F' < B < rr - BF' (the center of the wall) 
and in the third branch rr - BF' < e < rr (periphery of the 
wall). The function PA(w), according to (9), is the sum 
of the contribution of all three branches, P l + P 2 + P 3 

(Fig. 4b). Each of the contributions is proportional to 
the product of the "nuclear spin density" jdB/dwj by the 
weight function f(B). Near the envelope, the "density" 
jdB/dwj - 00, and therefore also P(w) - 00. From the 
form of the envelopes we can easily establish the varia
tion of the function P A (w) with increasing field h (Figs. 
1a and b). Near the envelopes, for example near the 
caustic OAE (Fig. 3), PA(w) can be represented in 
analytic form (by the same method as in Sec. 4): 

( 11 12 h ) [ ( h ) ] _'h Po~(oo)=sin 4-sT 200, 4~-l'2 (OO-OOOAE) ,OO>OOOAE. 

We have put here B ~ rr/4 + h$/8{3, which is valid when 
jhj « {3. With increasing field h, the "peripheral" 
branches of the function B (w) stretch out, and the branch 
corresponding to the center of the wall compresses and 
is transformed at h = hcr into a point (inflection on the 
B(w) curve), and accordingly the function PA(w) has here 
only one singularity (see Fig. 1). The function PA(w) 
near the critical point 0 can be obtained in the following 
manner: Since w(B) has an inflection at 8 = Bcr' it must 
be expanded in powers of 6B = B - Bcr (Bcr = rr/2) up to 
terms of third order, and the function jdw 1 /dBj must be 
expanded up to terms (6B)2. Eliminating 6B from jdw/de j 
with the aid of w(B) and substitUting jdw/dBj in (9), we 
obtain 

P.,(oo) ='/6(W'~)-'" (w-wo) -'I,. 

With further increase of h, the function B (w) becomes 
Single-valued (jdw /dBj .;, 0), the Singularity at the center 
is transformed into a smooth maximum, and becomes 
gradually smeared out (Fig. 1d). With increasing field h, 
the function P A(W) decreases, and its mean value can be 
estimated at 

P.(W)=----
(i)mo;l!:-Wmin 

1 
2oo,h 

At the n points of the spectrum we have in this case 
P A (w) = 0, since the n points corre spond to B = 0, while 
f(B) = f(rr) = O. 

Thus, in the considered case there are separated in 
tlJ.e absorption spectrum two symmetrical branches of 
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singular pointS' (Fig. 3) which converge with increasing 
field, and the domain-wall angles corresponding to these 
singular points change from 1T/4 and 31T/4 at h = 0 to 1T/2 
at h = hcr. A similar dependence of the absorption spec
trum on the field was observed in ErFe03 at 
T = 100.3°K[lsJ. 

2. The case {3 = O. The one-parameter family of lines 
w(B, h) 

(J)-CUo 
--"'w=-a sin' e+h cos e 

"'0 
(21) 

has envelopes (Singular lines of the NMR spectrum) de
fined by the equations (21) and dw/dB = O. We put for the 
sake of argument a > O. The case a < 0 is obtained by 
means of the transformation w - -wand h - -h. 

The envelope of the family (21) (OAO' in Fig. 5) is 
determined by the equation 

w=-a[1+(hl2a)'], Ih/2al.,;;1. 

The critical points 0 and 0' correspond to hcr = ± 2a 
and wcr = -2a. The function dw/dO vanishes also on the 
lines 0 = 0 and 0 = 1T (DBE and CBF in Fig. 5), but the 
function f(O) in (9) also vanishes in these lines. The func
tion P A (w) therefore does not become infinite on these 
lines but experiences a discontinuity. 

Let us examine the dependence of PA(w) on h. At Ihl 
< Ihcrl, the function 8(w) is not single-valued and has 
two branches that are joined together at points belonging 
to the envelope. P A (w) is a sum of two functions PI + P 2 

corresponding to these branches (see Figs. 2a and b). 
Near the envelope, pew) tends to infinity like 

At h > hcr, the function 0 (w) becomes Single valued and 
pew), having no Singularities, becomes smeared out with 
increasing h (Fig. 2c). 

The lines EBD and CBF, where the function pew) ex
periences a discontinuity, has an interesting property 
that must be taken into account in the analysis of a real 
situation. If we introduce into the formula for the spec
trum (21) a small term -{3sin20 (where {3 > 0 and 
{3 « I a I), then the line FBC is transformed into a caus
tic, or more accurately: near the line 0 = 1T, there ap
pears an envelope on which pew) becomes infinite like 
(6wfll2, while the discontinuity in the line EBD vanishes. 
Therefore in real situations in orthoferrites, where 
{3 ~ 0, the line FBC, in contrast to DBE, can appear as a 
noticeable Singularity of the NMR spectrum. 

3. We consider briefly the general case a ~ 0 and 
{3 ~ O. The Singular-pOint lines of the NMR absorption 
spectrum are defined by the following equations in 
parametric form: 

w-w, ""w=-~+~cos(2e+¢)- psin(2S+¢)ctgS, 
w, 2 2 

h=-p sin (2S+>I') I sin e, (22) 

where p and I/! are defined by (16). The characteristic 
form of the envelopes of the family of the lines (22) is 
shown in Fig. 6. 

The decisive singularity of the NMR spectrum is in 
the general case the presence of the critical point O. 
The location of the critical point on the wh plane deter
mines the dependence of the singular point of the spec
trum on the magnetic field-approach or divergence of 
the lines, bending of the spectral lines, etc. The coor
dinates of the critical point are determined by simul-
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FIG. 5. The family of lines w(O, h} for walls of the first type, h II a, 
at c; > 0 and {3 = O. The envelope 00' is the line of the singular points of 
the absorption spectrum. 

FIG. 6. Character of the lines of the singular points of the absorption 
spectrum P( w} in the general case (walls of the first type, h II a, 0 < 1/1 
<'Tr/2). 

taneously solving (22) and the equation d~/d02 = 0, i.e., 

-2~ cos(28+¢) --Ii cos 8~{)' 

At a > 0, {3 > 0 (0 < If! < 7T/2) the critical point is loca
ted at h > 0 and is shifted towards the low-frequency 
end of the spectrum. At a < 0, f3 > 0 (1T/2 < If! < 7T) the 
critical point lies in the half-plane h > 0 and is shifted 
towards the high-frequency end of the spectrum. The 
remaining two cases, 1T < If! < 31T/2 and 37T/2 < If! < 21T 
are obtained from the considered cases by the coordin
ate transformation w - -w, h - - h. Examination of 
Figs. 3, 5, and 6 enables us to trace the transition of 
the critical point from the line B = 1T (at If! = 0, Fig. 5) 
into the intermediate position (Fig. 6) to the line 0 = 7T/2 
(at I/J = 1T/2, Fig. 3). 

We present the analytiC form of the plots of the 
singular points and of the behavior of P A (w) (Fig. 6) near 
these points (at h/p« 1): 

a-p . '" 
WOAE= - ----z- +h sm 2'"' 

( '" h ¢) [( '" ) ] -'f, P,(w)=sin 2+ 2p cos 2' 2wo 2p-hsin'2 (W-Wo .. ,,) 

a+p 1~ 
WOA'E'=-~-hcos --:-,. 

PA(W)=COS(: + ~) sin ~ ) [26'( 2p-hcost) (O)OA'E'-"')] -' (23) 

Thus, in the general case the spectrum of the walls 
of the first type with H II a has two branches of singular 
points that converge to the critical pOint. The rate of 
variation of the singular points with increasing field, 
the position of the critical point, and the values of the 
absorption peaks all depend strongly on the ratio of the 
constants a and {3 which characterize the anisotropy of 
the hyperfine field (see (23)). An example of the consid
ered case is the NMR spectrum in ErFe03 at 
T = 128.8°K, which was investigated in [13J. 

B. Walls of the First Type, h Parallel to the b Axis 

In the approximation linear in yH/wo, the NMR fre
quencies, according to (3) are independent of H. Assum
ing that the shape of the walls does not depend on H, the 
shape of the line PB(w) is also independent of H. This 
conclusion agrees with the experimental data [7J. 

C. Walls of Second Type, H Parallel to the a Axis 

The NMR frequency has in this case the same angular 
dependence as in the case A. The form of the absorption 
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spectrum Pc(w, h) is determined by the superposition of 
two bands: PI from walls with 0 ~ cp 1 < 7T and P2 from 
walls with 7T ~ cp ~ 27T. The band PI coincides fully with 
PA(w) at h > 0, while P 2 (w) is also reduced to PA(w) by 
means of the transformation cp - 7T = cp' and h = - h' . 
Thus, 

(24) 

D. Walls of Second Type, b Parallel to the b Axis 

Formula (20) for the angular dependence of NMR fre
quency can be reduced by means of the transformation 
cp = 7T/2 + cp' to the form (hx '" 0): 

(w-wo)!'''o''''w=a;-a; sin' 'I,' -~ sin 2cp'+h cos 'I," (25) 

We see therefore that the transformation w' '" w - a, 
h' '" h transforms the spectrum (25) to the form investi
gated in subsection C. The absorption function for this 
case, PD(w, h), defined by expression (11) with 0 ~ cp 
~ 27T, remains invariant under the transformation 
cp = 7T/2 + cp'; it follows therefore that 

PD(w, h) =lh[PA(w+a;wo, h)+PA({i)+a;{i)o, -h) J. (26) 

From (24) and (26) it follows, in particular, that the ab
sorption function P(w) for walls of the second type has 
four branches of singular points in a magnetic field, two 
diverging with increasing field and two converging to the 
critical fOint. This fact was observed by Zalesskit 
et a!. [13 in DyFe03 near the reorientation temperature 
and agrees well with the fact that in DyFe03 the re
orientation occurs in the ab plane of the crystal. Near 
the reorientation temperature, the anisotropy energy is 
K1 "" 0, so that walls of the second type are energywise 
most favored. 

The fact that walls of the first type have two branches 
in the NMR spectrum in a magnetic field and are insen
sitive to a magnetic field directed along the b axis, while 
walls of the second type have four branches, makes it 
possible to use NMR to determine the type of the wall 
the transformation of the domain structure, etc. (see [13 J). 

6. GENERALIZATION OF THE DOMAIN·STRUCTURE 
MODEL 

We have considered the NMR spectrum using as an 
example a strip domain structure in the domain walls of 
which the vector rotate in definite crystallographic 
planes. The domain structure observed in orthoferrites 
is as a rule not of the strip type but "labryinth-like." 
For example, in crystals cut in such a way that the easy 
axis is normal to the surface of the plate, the domain 
walls parallel to the easy axis can become oriented in 
an arbitrary angle relative to the corresponding crys
tallographic planes (ac, bc). The results obtained above, 
which describe the NMR spectra in domain walls, can 
apparently be used also for such a domain structure. 
We present the justification for this conclusion. 

In strongly anisotropic ferromagnets with small mag
netization, the domain walls can be of more general 
type than the Bloch or Neel walls. Consider, for exam
ple, a wall whose plane is parallel to the c axis and 
makes an angle if! with the ac plane. Let n be the coor
dinate along the normal to the wall. The character of the 
anisotropy is assumed to be such (rhombic symmetry) 
that the easiest magnetization plane is ac, and therefore 
the vector 1 (as well as m) rotates in its ); the angle e 
(between 1 and a or between m and c) depends on n. 
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The energy of such a wall (per cm 2), in the standard 
notation, is given by 

{ de • H'm 
cr= S ALJ +K,Sin'e-T}dn, (27) 

where the magnetic field H' is determined by Maxwell's 
equation 

divB=~(H'+4nm).=O. on 

It follows therefore that H' has only One component 

Iln'=-4nm.=-4nm. sin e sin tjJ. 

Substituting this expression in (27) we obtain 

A variational procedure leads to Eq. (6), where 

6= [:, (H+Sin'''') r, cr=4[ AK, (H+Sin'''' )] 'I •• 

(28) 

In orthoferrites the quantity q = K1/27Tm~ is much larger 
than unity (~102), so that the energy a of such a wall de
pends very little on its orientation, i.e., the walls can 
bend slightly, forming a labyrinth-like structure. The 
vector 1 remains everywhere in the ac plane. It is ob
vious that the NMR spectrum for such a structure is de
termined by formulas (7) and (8), where the reciprocal 
period liD must be replaced by s/v (S is the total area 
of the domain walls and V is the volume of the sample). 

These results can be easily generalized to the case 
when account is taken of the influence of the constant K2 
and of an external magnetic field, and the main conclu
sions of this section remain in force then. 

The author is grateful to A. V. Zalesskir for interest
ing discussions which served as the impetus for this 
work and helped in its performance. 

l)We shall investigate principally the singular points of the spectrum 
and their behavior following variation of the magnetic field and the 
temperature, so that in the analysis of the line shape we confine our· 
selves only to X"(w), i.e., to the case of a vanishingly weak high
frequency field. Obviously, the character of the behavior of the singu
lar point remains the same also in the more general case when partial 
saturation of the line takes place and its shape is determined by the 
combination X' and X". 

2)Experiment shows [13) that the field in which the domain·wall mag
netization exists is of the order of 100 Oe. A probable mechanism of 
the magnetization of the walls are processes of displacement of the 
Bloch lines. 

3)We note that Po is proportional to the domain-wall energy Uw = 2(AK I } 

1!2p 
o· 27r 

4)For walls of the first type at H = 0, the integral f in (6) is a sum of 
7r 27r 0 

two identical integrals land l . 
S)The subscript A of the function pew} denotes that we are dealing with 

the absorption function for walls of the first type with H II a (case A). 
6)ln Sec. 3 we have established that only the case h > 0 has a physical 

meaning for walls of the first type (H II a), in a sufficiently strong mag
netic field (the walls are polarized along the field). The properties of 
the family of lines (19) at h < 0 will be used later on in an analysis of 
the absorption spectrum of walls of the second type. 

7)From the mathematical point of view, the problem of the "evolution" 
of the absorption spectrum pew} as the magnetic field is varied is anal
ogous to the problem of the appearance or vanishing of folds in the 
.case of motion of a continuous medium (see, e.g. [14), pp. 86-93}. 

8)This is valid in the zeroth approximation in the small parameter 47rmsl 
Hb, where Hb is the anisotropy field that prevents the vector I from 
leaving the plane ac. 
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