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A theory of remote quenching of excited molecules in encounters with a quenching impurity is constructed 
which allows a consistent description of the course of the elementary energy-transfer event. The quenching 
rate constant for an (exchange) interaction that decreases exponentially with distance is computed. It is 
established that qualitative deviations from the contact model always occur not only in the case of too slow 
diffusion, but also in the case of rapid diffusion, when stochastic energy transfer is replaced by dynamic 
transfer, as manifested in the unusual hyperbolic decrease of the quenching rate with the growth of 
diffusion. 

PACS numbers: 32.20.1 

1. INTRODUCTION 

The migration of excited atoms and molecules facili
tates their encounter with quenching impurity centers. 
The result of the encounter depends not only on how 
close the partners get and what interaction mechanism 
obtains, but also on how quickly the quenching zone is 
crossed. It is clear that the effectiveness w of the en
counter should be a function of the diffusion coefficient 
D, which determines the duration of the encounter. How
ever, the contact theory of luminescence quenching[l,2 l 
either entirely ignores this circumstance (the "black" 
sphere model), or takes it into account in the most 
primitive manner, conSidering the quenching rate dur
ing the time of contact a constant (the "gray" sphere 
model). The more refined theory[3-5 l, which takes the 
extended nature of the interaction into account through 
the introduction of a local quenching probability U(r) 
that, by its very nature, cannot depend on D, is not free 
from this shortcoming. 

At the same time, it is clear that the time of stay in 
the interaction zone, growing shorter with the speeding 
up of diffusion, can become less than the durations of 
those dissipative processes that ensure the very exist
ence of the quenching probability. This indicates that a 
consistent computation of the encounter efficiency w 
should be based on an interaction Hamiltonian and 
mechanisms of energy relaxation, and not on the quench
ing probability. It is such a theory that is constructed 
in the present paper in the approximation of binary en
counters of the excited particles with the quenching im
purities. It is assumed that their interaction does not 
affect the interdiffusion process, i.e., that the coordi
nate measuring the distance between them is a parame
ter of the problem, and not a dynamical variable. It 
varies solely as a result of random walk, the mean mi
gration in an elementary event being assumed to be 
small compared to the characteristic scale of the inter
action. The last assumption is not absolutely necessary: 
if it is not fulfilled, we can develop an alternative hop
ping version of the theory similar to the one considered 
in[al. However, we shall restrict ourselves in the pres
ent paper to the traditional successive-diffusion ap
proach to the problem. 

In the probabilistic formulation of the problem the 
basic tools are the kinetic equations[3l 
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(1.1) 

(1.2) 

where N is the denSity of the excited donors in the 
sample, C is the concentration of the quenching impurity, 
and n( r, t) is the excitation density in the vicinity of a 
quencher, normalized to unity everywhere at the initial 
moment and at all times at points far from the quencher: 

n(r,O)=n(oo,t)=L (1.3) 

Such an approach to the problem allows a unified de
scription of both static decay (D = 0), when an excita
tion decays at the location where it arises, and diffu
sion-accelerated quenching. 

For any D quenching begins with static decay and 
ends with diffusion-assisted decay. When, however, a 
stable concentration profile ns = t!!..~n(r, t) gets 

establiShed around each acceptor, the complex kinetics 
of static and nonstationary quenching gives way to 
quasistationary exponential damping 

N(t) ~jV(O) exp (-kCt), (1.4) 

in which 
k= lim k (t) =4nDR Q (1.5) 

has the meaning of a quenching-rate constant, RQ being 
the effective radius of the quenching sphere. 

In the "black" sphere model RQ = R = const, while 
in the "grey" sphere model 

(1.6) 

is a two-parameter function of the diffusion coefficient, 
R being the radius of the interaction zone and kp the 
quenching rate at the interaction-zone boundary: 
41TR2n' (R) = kpn( R). Owing to the increase in the number 
of parameters, the "grey" model is broader than the 
"black" model, but it too remains purely phenomeno
logical, since it is impossible to relate R and kp with 
the nature of the interaction and its extension in the 
framework of the contact theory. Furthermore, the 
form of the dependence RQ( D) is itself not always as in 
(1.6), even if U(r) is in fact different from zero only in 
the bounded region r ~ R[7l. If, however, U(r) falls off 
smoothly with distance, then we can say what the de
pendence RQ( D) is only after the actual solution of the 
problem. 

The refinement, proposed in the present paper, of 
the tools of the remote-transfer theory allows us to 
compute RQ(D) in those cases when the quenching has 
a probabilistic character, as well as in those cases 
when it is a dynamically developing-in the course of an 
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encounter-process. A concrete problem is solved for 
an (exchange) interaction that falls off exponentially with 
distance. It is established that qualitative deviations 
from the contact model occur both when the diffusion is 
very slow and when it is very rapid. Slowly migrating 
excitations die off at distant approaches to the quencher, 
so that the "black" sphere equivalent to it Significantly 
exceeds it in dimensions. Furthermore, the radius of 
the sphere monotonically decreases with increaSing D, 
not, however, according to a power law, as in (1.6), but 
logarithmically. The correspondence with the "grey" 
sphere model is attained only after RQ, with the speed
ing up of the diffusion, comes close to Ro, the distance 
of closest approach of the particles, and only under the 
condition that the quenching occurs primarily in the 
thin contact layer. If, however, the encounters are so 
short that, while they last, the energy sink does not 
have time to discard the excitation energy, then their 
role amounts solely to the redistribution of the excita
tion, and the maximum efficiency decreases by a factor 
of two in comparison with the quenching "black" 
sphere: w::s %. Finally, when the duration of an en
counter turns out to be shorter than all the relaxation 
times, the stochastic energy transfer mechanism is 
replaced by a dynamical mechanism, which manifests 
itself in a totally unusual hyperbolic decrease of the 
quenching rate with the growth of diffusion. 

2. THE QUANTUM THEORY OF ENCOUNTERS 

The kinetics of quenching and line broadening in 
liquid solutions can be considered from a standpoint 
analogous to the impact theory in gases if the mean 
distances between the particles in the donor-acceptor 
system are large enough for us to be able to limit our
selves to the consideration of their binary encounters. 
In this case it is not necessary to consider from the 
very beginning the quenching process to be stochastic 
and determine the probability of its occurrence over a 
distance r without allowance for the relative motion of 
the partners. There is no such limitation in the impact 
theory, and it should be eliminated in the encounter 
theory. 

To achieve this, it is necessary to exclude the quench
ing probability fro m use by transforming (1.1) with the 
aid of (1.2): 

dN s{ an(r,t)} . -=-CN D!J.n(r t)---- dv. 
dt 'iJt 

(2.1 ) 

This refinement is adequate if the interval between the 
encounters is longer than the duration of their after
effect. It is useful in the sense that it allows us to in
troduce in place of Eq. (1.2), an analog of a "master 
equation," an identical-in meaning-quantum equation 
for the density matrix 

i ~ 

p,,,= - Jj[//o+ V (r); pL-P",'mp'm+D.'.p", (2.2) 

The excitation density n (r, t) figuring in (2.1) is none 
other than the occupation number p 11 of the term to be 
quenched. As to the boundary condition (1.3), it can be 
generalized in a natural way: 

(2.3) 

Besides the Hamiltonian lIo + V( r), which includes the 
interaction V(r) between the partners, we have intro
duced in (2.2) an intramolecular relaxation tensor P 
that takes into account the dissipation of the phases and 
the populations of the terms as a result of the interac
tion with the solvent and vacuum. 
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As in any microscopic theory, it is necessary for 
further progress to concretize the Hamiltonian and the 
dissipative properties of the system to correspond to 
some definite quenching mechanism. As an example, let 
us consider the quasiresonance, reversible energy 
transfer between two (and only two) terms 1 and 2 of the 
system (Fig. 1), a transfer which facilitates quenching 
because of the presence of a sink that empties the sec
ond term at a rate of lIT. This mechanism, which was 
proposed in[a], has been repeatedly tested in the static 
theory of energy transfer[9, 10], and it is now necessary 
to establish what the modulation by the motion (through 
r(t)) of the interaction matrix element b(r) 
= < 1[ V (r) [2) coupling the resonance terms leads to. 

This interaction can have different origins. An im
purity can act on the excited molecule as an external 
field, mixing the long-lived (1) and the short-lived (2) 
states, and thereby stimulating internal conversion in 
the course of an encounter. But there can also be a 
situation in which the excitation is captured by and de
activated on an impurity. Then the interaction couples, 
one to another, the collective states of the particle
impurity system, these states being characterized by 
the localization of the excitation. In the first case the 
aftereffect is negligible if the frequency of encounters 
of an excited molecule with impurity molecules is less 
than liT, while on the other hand in the second case the 
aftereffect is negligible when the frequency of encoun
ters of an impurity center with excitations does not ex
ceed liT. These conditions constitute supplementary 
restrictions on the impurity concentration in the first 
case and on the density of the excited states in second, 
but if they are satisfied, the n the kinetic equation (2.1) 
is a good basis for the description of quenching, and 
the encounter efficiency is determined by the solution 
to a system of equations that are identical for both 
problems: 

1 (j' un(r,t) 
D---,-, rn(r,t)+ib(r) {o(r,t)-o·(r,t)}=-.--, (2.4a) 

r dr' dt 

1 a' m(r,t) (jm(r,t) 
D--rm(r,t)-ib(r){o(r,t)-o'(r, t)}---= -r)--' (2.4b) 

r ar' T t 

1 o' iJo(r,t) 
D--ro(r,'t)-(r+i(J}o)o(r, t)+ib(r) (n(r, t)-m(r, t)}= --iJ-' 

r iJr' t (2.4c) 

1 {}' ao' (r, t) 
D--, -ro'(r, t) - (r-i(J}o)o'(r, t) -ib(r) {n(r, t) -m(r, t)}= -, --

r dr2 ot 
(2.4d) 

In these equations n = p 11, while m = pzz and a = p 12 

= P~1' The energy deficit is given by the parameter Wo 

= (E1 - Ez )/ll, while the quantity r = r 1 + rz is made 
up of the widths of the resonance terms. To the condi
tions identical with (2.3): 

n(r,0)=n(00,t)=1, m(r,O)=m(oo,t)=o, o(r,O)=o(oo,t)=o, (2.5) 

must be added one more boundary condition: 

n' (Ro) =m' (Ra) =0' (Ro) =0, (2.6) 

expressing the equality to zero of the particle flux when 
the particles are at their distance of closest approach 

'J~'V~?--+fIi, FIG. I. Energy-level diagram of -r-:: 
the donor-acceptor system. I) the 
tenn being quenched, 2) the quench-
ing term. 
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apart. Finally, in accord with the assumed interaction 
mechanism, we have 

b(r)=boexp (-xr). (2.7) 

The obtained kinetic equations allow us to investigate 
quasistationary (exponential) quenching, as well as non
stationary quenching, which is characterized by complex 
time kinetic s. The latter is not of great intere st to us 
here, since it is only partially connected with motion(l,2), 
it being in the other respects determined by the well
studied static quenching[lll. Furthermore, by restrict
ing ourselves to quasistationary quenching, we can sig
nificantly simplify the problem by setting all the time 
derivatives in (2.4) and an/at in (2.1) equal to zero. In 
such a case we immediately obtain from (2.1) the solu
tion (1.4), i.e., an exponential decay proceeding at the 
rate given by (1.5). The only thing we need to compute 
in this case is the effective quenching radius RQ, which, 
in view of the boundary conditions (2.6), is determined 
by only the asymptotic form of n(r)[121: 

1 S S~ d . ri . dll R q =- ~lIdV= -r'-II(r)dr=limr-. 
4" .' dr dr ,_~ dr 

The asymptotic form of n( r) is extremely simple: 

n(r) "'I-R,/r. 

Because of the boundary conditions (2.5), only one 
parameter remains in the asymptotic form, and this 
parameter is, as indicated by (2.8), RQ. 

(2.8) 

(2.9) 

Thus, the problem has been simplified and reduced 
to that of finding the asymptotic form of the steady
state solution of Eqs. (2.4). But even in such a formula
tion it is still fairly complicated. In order to facilitate 
matters, we shall consider successively three limiting 
situations differing in their time hierarchies: 

1 1 1 1. 1 1 
A) 2[,;;'-»-, B) 21'»-»-, C) -;;'21'»-. (2.10) 

T Tll To T To T 

In any of them the interaction time To can be deter
mined only a posteriori as a result of the solution of the 
system (2.4). It is certainly clear, however, that when 
this time is longer than the others, the diffusion terms 
in the last three equations of the system (2.4) can be 
neglected. In other words, in the situation A the vari
ables a, a*, and m attain their quasistationary values 
in such short times T and r- 1 that the distance between 
the partners does not have time to undergo any signifi
cant change as a result of diffusion. In the situation B 
this argument is applicable only to the variables a and 
a*, whereas in Eq. (2.4b), in contrast, the diffusion 
term should be retained and the relaxation term 
dropped: there is not enough time for the decay to occur 
in the course of an encounter. Finally, in the situation 
C all the relaxation terms are small compared to the 
diffusion terms. When they are neglected, the system 
evolves strictly dynamically if we do not consider the 
random relative motion of the colliding partners, which 
acts in like manner on all the variables. All the three 
situations are distinguishable not only mathematically, 
but physically as well, which is underscored by the 
titles of the sections devoted to them. 

3. LOCAL QUENCHING 

Neglecting diffusion in all the equations of the system 
(2.4), except the first, we obtain from it by elimination 
of variables a single equation describing stationary 
quenching in the situation A: 
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1. d' 
D--rn(r)-W(r) n(r) =0, 

r dr~ 

n'(R,) =0, n(oo)=l, 

which is characterized by the local probability 
. U(r) 

W(r)=Hu"(r)T' 

(3.1 ) 

(3.1a) 

(3.2) 

the exact analog of the generalized probability of the 
static theory[8,lO). The quantity W(r), being equal to the 
probability 

" 2b'(r) I' . 
u (r)=----'-+f" = uoexp(-2xr), 

(J)o 

(3.3) 

of energy transfer far from a quencher, becomes satu
rated and in the immediate vicinity of the quencher, 
where U( r) exceeds the drainage rate Ih, it becomes 
equalto 1h. According to (2.7) and (3.3), 

2b .. 'I' (3 4) U,=U(O)= ,,),"+1" ,['m=U(R")=L",,exp(-2xR,,). • 

If the saturation factor 

(3.5 ) 

then the draining of the energy is not shut off even in 
the case of continuity of partners, when the energy 
transfer proceeds at the maximum rate. In such a situa
tion W(r) = U(r) everywhere and the problem reduces 
to its probabilistic formulation (1.1)-(1.3), which ig
nores the possibility of saturation of the sink. However, 
upon the inversion of the inequality (3.5) the quenching 
probability W( r) goes over into some similitude of the 
Fermi distribution (Fig. 2), and the difference between 
it and U( r) in the vicinity of the quencher becomes sig
nificant. As Z -"" and K-OO (Zl/K = inv), W(r) de
generates into the rectangular function considered 
in[6,1', 14 1 as a model of a strictly limited interaction. 
The base of the degenerate rectangle 

1. 
Rz=R.+ 2x In Z (3.6) 

establishes the radius of the region within whose bound
aries quenching proceeds at the same rate equal to 1h 
and outside of which no quenching takes place at all. 
Such a crude approximation of W( r) is, however, not 
necessary, since the solution to the problem can be 
found in its general form. Indeed, according to the 
Appendix A, for any Z we have 

liQ=Ro + ~(ln1'Z+21('(\") T ~ + 2:t dgY:t.\(Z,;, ,». (3.7) 
2% y 

Here II = (4KGDTrl/2, ~ = KRo, Y = exp(C) (C is the 
Euler constant), I/J(ll) is Euler'S psi function, while 

FIG. 2 FIG. 3 
FIG. 2. The coordinate dependence of the local quenching probability: 

I) in the absence of saturation of the energy sink (Z ~ I), 2) in the case 
of strong saturation of the energy sink (Z ~ I). 
. FIG. 3. The behavior of the effective radius of the quenching sphere: 
I) in the case of a thin quenching layer (~ ~ 1), 2) in the case of an ex
tended quenching layer (~~ 1). 
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-\(Z \')= 2sF'+Z(1-2sv)F (37 ) 
. , S, 2~(F'-e2i"'«1l')+Z(1-2s\') (F-e"'''<Ii)' • a 

where F = F(v, v, 2v + 1; -1/Z) and q, = q,(v, v, 2v + 1; 
-1/Z) are hypergeometric functions of the first and 
second kinds, respectively, and the primes indicate de
rivatives of the functions F and q, with respect to their 
argument -1/ Z. 

Let us first turn to the situation when the inequality 
(3.5) is fulfilled and the sink is not saturated. Then, ac
cording to the Appendix A, the formula (3.7) can be 
transformed into the form 

RQ=R,+~(ln1'~m+28(~m,2S»' (3.8) 
2x 

where the function @(x, y) is expressible in terms of 
the modified Bessel functions I( 2 IX) and K( 2 IX) and 
has the form 

8( ) = K,(Ux)-yl'xK,(2l'x) 
X,Y • 

1,(2Yx) +yl'xl, (Ux) 
(3.8a) 

The parameter 13m = v"Z = Um /4K"D or, in the general 
case, 13(r) = U(r)/4K2 D is a local measure of quenching 
(the analog of action) determining the scale of the de
pletion, starting from the point r, of the excitation. 

The behavior of the effective radius RQ, (3.8), as a 
function of 13m is different for large and small values 
of this argument, i.e., in the regions respective ly of 
slow and rapid diffusion (Fig. 3). These regions are de
limited by that value of RQ that corresponds to 13m = 1 
(in Fig. 3, 13m = 1 is represented by the vertical 
straight line): 

R (l)=R=R {1+~(C+ K,(2)-2;K,(2»)} 
Q , ' S 1,(2)+2V,(2) 

= R {1 + 1.4+1.66 } 
, s(2.3+3.2s)· 

(3.9) 

It is no coincidence that it is denoted in the same way as 
the radius of the quenching sphere in the contact model; 
when RQ(D) increases so much that it becomes com
parable to R, the initially weak quenching becomes in
tense. 

If the quenching is weak, i.e. if 

p .. =i'> (R,) <1, andRQ<R, (3.10) 

then in the expression for @( 13m, 20, (3.8a), we can 
expand the cylindrical functions in series up to terms 
linear in 13m. Thus, we find a solution in which two 
particular cases 

(3.11) 

Um 1 
RQ = -- (1+2s+2s') for s < -, 

4x'D . pm (3.12) 

which overlap in the region 1 « ~ « 1/13m (Te 
= Ro/2KD), can be distinguished. In the first case the 
radius Ro of the sphere limiting the approach of the 
partners to each other is considerably larger than the 
thickness 1/ K of the adjoining quenching layer, while 
the opposite is true in the second case: 1/ K ~ Ro. 

lt is not difficult to verify that it is precisely the 
sphere with the thin quenching layer (and only it!) that 
is mathematically equivalent to the "grey" sphere 
specified in (1.6). In this case the radius Ro of contact 
practically does not differ from the radius R "'" Ro ( 1 
+ 1/0"'" Ro of the quenching sphere, and the quenching 
rate at the boundary of the latter sphere, determined as 
a result of the identification of (1.6) with (3.11), is 
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2nR,'Um J~ 
k. = -x-- "" U(r)4nr' dr. (3.13 ) 

R, 

Since it does not, in fact, depend on D, as was assumed 
in (1.6), the "grey" sphere model turns out to be quite 
acceptable, the phenomenological constant kp finding a 
clear meaning of total probability of deactivation of 
donors uniformly distributed around the quencher. Here, 
as before, under the term "grey" sphere is meant its 
contact model, which, still within the limits of applica
bility of (1.6), not only does not rule out the possibility 
of the sphere becoming "black" with the slowing down 
of the diffusion, but, on the contrary, postulates it. It is 
precisely because of this that we compare it only with 
the solution (3.11), in which two stages are distinguish
able: the kinetic stage, when kp/41TDRo = UmTe « 1, 
RQ « Ro, and the sphere is, in fact, "grey" in the 
sense of its efficiency (w « 1), and the diffusion-con
trolled stage, when kp /4lTDRo = UmTe» 1 and RQ "" Ro• 

If, on the other hand, the extension of the quenching 
layer substantially exceeds Ro, then the quenching has 
little in common with the contact model. As can be seen 
from (3.12), the kinetic stage, i.e., the region of linear 
growth of RQ( f3m), is now not bounded by Ro, but ex
tends far beyond the limits of the region of direct con
tact (Fig. 3) right up to RQ = R. 

Upon the inversion of the inequality (3.10), we have 
that the quenching near an acceptor is intense right up 
to the boundary whose radius is determined by the rela
tion 

~(Rs) =U(Rs)/4x'D=1. (3.14) 

Since the boundary RS has been moved far beyond the 
limits of the contact region (RS» Ro ), the contribution 
of the latter to the quenching efficiency is exponentially 
small: @ ~ exp (-4lfm). Neglecting this small quantity, 
we obtain from (3.8) the expression 

1 1 U, 1,15 
RQ=R, +- ln1'pm=-ln--+--. (3.15) 

2x 2x 4x'D 2x 
The dependence of RQ on Ro, as on @, vanishes. This 
is understandable: all that happens deep inside the 
strong-interaction region loses importance as soon as 
the quenching is completely realized at the boundaries 
of the region. The validity of the last conclusion can be 
verified by a direct computation: 

1 1 U, 
Rs = R, + -In ~m = -In-- (3.16) 

2x 2% 4%'D 

(see (3.14) and (3.3». A comparison of (3.15) with (3.16) 
shows that the constantly maintained difference ~ 1/ K 

between RQ and RS, which takes into account the par
tial destruction of the excitations beyond the limits of 
the strong-quenching region, is small and the slower the 
diffusion is, the less significant it is, This allows us in 
exchange quenching to regard RS as an analog of the 
Weisskopf radius in the adiabatic theory of spectral-
line broadening[8,15)1) . This radius for exchange quench
ing is suffiCiently exactly determined by Eq. (3.14), 
which Significantly differs from the corresponding rela
tion given in(13). Thus, the strong-quenching sphere is 
practically identical to the "black" sphere, whose 
radius increases logarithmically as the diffUSion slows 
down (Fig. 3). 

Let us now turn to the analysis of the situation in 
which the inequality (3.5) is inverted, so that strong 
saturation of the energy sink obtains. In this case we 
obtain from the general result (3.7) by expanding the 
hypergeometric functions in powers of 1/ Z that 
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where 

1 
RQ=R,+ -(In l'Z+21Jl(v+l) +X), 

2x 
(3.17) 

x=- ~{1-2JlV[ tgVJl-YJl.( 1+2v~ ) l"(2\,+1) z",] "}, (3.17a) 
v , 1~2vs f'(y+1) . 

and r( 211 + 1) and r( II + 1) are the Euler gamma func
tions. 

When 112» 1, the function X is negligibly small, and, 
since l/J(1I + 1) "" ln II and {3m = 1I 2 Z, (3.17) reduces ex
actly to (3.15), i.e., for 112» 1 the result does not de
pend on whether or not there is saturation. This is 
easily explained. As is clear from (3.6) and the defini
tion of (3(r), the quantity 112 is none other than (3(HZ), 
and if liZ = (3( HZ)>> 1, then (3( r) is comparable to unity 
when r = HS» HZ. Consequently, the strong-interac
tion region, in the vicinity of whose borders the quench
ing is fully accomplished, is much more extended than 
the saturation zone lying inside it. Therefo re, the pres
ence or absence of this (saturation) zone does not affect 
the result. 

The effect of the saturation of the sink can be mani
fested only in the 112« 1 case, when the diffusion is so 
fast that locally intense quenching is not attainable be
yond the limits of the saturation zone: Hs « HZ. But 
this means that it is, in general, unfeasible, since there 
obtains everywhere withtn the saturation zone spatially 
homogeneous quenching occurring at a rate of 11 T. To 
obtain the result pertaining to this case, we should use 
the fact that II is small, and, neglecting it in the argu
ments of the Euler functions, retain the first-order 
terms in the expansion of tan IIIT in (3.17a). Thus, after 
simple transformations we obtain 

Rz-R, sh Y6+~ch {~ 
RQ=Rz - (3.18) 

Yd chYd+~sh Yd 
where 

A=\"ln'Z=~ (Rz-R,)' , ~= Y-S;R, . 
. 't D R,-R, 

(3.18a) 

Like {3m, the quantity t.. has the meaning of action, but 
in the saturation zone-a spherical layer whose thick
ness h = HZ - Ho = (2Kr! In Z is clearly greater than 
)i" K. The coincidence of this result with the result ob
tained in[!3,!4] shows that the rectangle approximation 
to the coordinate dependence of W( r) is admissible if 
II" « 1 or t.. « ln2 Z. In the opposite case there obtains 
locally intense quenching described by the formula 
(3.15). As to the reducibility of the "rectangle model," 
(3.18), to the "grey" sphere model, (1.6), it is realiza
ble only in the case of a narrow saturation zone: HZ 
- Ho« Ho (I; » In Z), although the numerical differ
ences are not large at any 1;. 

4. LOCAL TRANSFER 
When the diffusion becomes so fast that there is no 

time for quenching to occur during an encounter, then 
the probability W( r) of its occurrence per unit time 
also loses meaning. The only result of the encounters 
is now the transfer of energy to a metastable term that 
spontaneously empties itself in the intervals between 
the encounters. The transfer probability U( r) is there
fore the sole measure of the local effectiveness of the 
process in this situation. Indeed, after the neglect of 
the sink term miT in (2.4b) and the diffusion terms in 
(2.4c) and (2.4d) the system (2.4) reduces to two balance 
equations: 
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(4.1) 

which describe stationary transfer under the previous 
boundary conditions (2.5) and (2.6). 

As shown in the Appendix C, a direct solution of (4.1) 
yields 

1 
2RQ = R, +- {In 21'~m+2e(2~m, 2s)}. (4.2) 

2x 

It is not difficult to see that the right-hand side of this 
expression is obtainable from (3.8) by simply doubling 
(3m, owing to which the entire analySiS of the behavior 
of (3.8) can be extended in a very simple manner to this 
situation. For weak transfer we obtain, instead of (3.11), 
the expression 

R R Um't. f • ~ 1 
Q= • 1+2Um't, or;~ (4.3) 

and exactly reproduce (3.12) for I; « 1. If, on the other 
hand, the transfer becomes strong, then, instead of 
(3.15), we have 

RQ=_l In~+ 1.84 
4x 4x'D 4x' 

(4.4) 

Thus, differences appear only in the case of strong 
transfer, and amount, roughly speaking, to this that the 
radius of the "black" sphere decreases by a factor of 
two as a result of the saturation of the energy sink. 
This is natural; in the case of strong transfer the exci
tation is equally divided during an encounter between the 
two terms, but only that half of the excitation that ap
pears in the state 2 decays. 

5. NON LOCAL TRANSFER 
All the solutions given above become invalid when 

diffusion interrupts an encounter before phase relaxa
tion is able to develop. In such a situation-under the 
conditions (2.10 C)-not only the quenching probability, 
but also the transfer probability per unit time, loses 
meaning. The transfer develops during an encounter 
not stochastically, but dynamically; therefore, only the 
final result can be estimated, i.e., the result of an en
counter can be estimated only after the entire encounter 
has taken place, and not at the various stages of the ap
proach of the partners to each other. Dropping all the 
dissipative terms in (2.4), and neglecting nonresonance 
transfer, we obtain the system of equations 

1 d' 1 d' 
D --;:"dr' rn = - D-;:--;J;2 rm = - ib (r) (a-a'), (5.1a) 

(5.1b) 

in which the sole local characteristic is the interaction 
itself, which attains at the maximum (at the time of 
contact) the value bm = b( Ho). 

The solution of the problem has, according to the 
Appendix C, the form 

2RQ = R, + ~ (In 21'am +2Rc e(2iam ,;n. (5.2) 
x 

The quantity a( r) = b( r)1 K2 D is a true action, the ana
log of (3( r) in the preceding situations, and am = 
= bm I K2D is its maximum value, which establishes the 
boundary between the weak and strong nonlocal transfer: 
am = 1. At this boundary 

(5.3) 
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For am « 1 there obtains weak transfer: RQ« R, 
while for am » 1 we have strong transfer: RQ» R. 

For weak nonlocal transfer expansion in powers of 
am « 1 is admissible and yields 

4bm'-r:.' 
Ro = Ro 1 +8bm''t,' for ~::J>I, (5.4a) 

b ' 
Ro = ;, {5+10~+10s'+4~'} 

2y.° 
for ;<1. (5.4b) 

At the diffusion-controlled stage the sphere with a thin 
quenching layer becomes almost "black," Le., its ef
ficiency ceases to depend on diffusion, but, for the same 
reasons as in the preceding Situation, it attains in the 
limit not 1, but Y2. In the kinetic phase, however, the 
solutions (5.4) differ markedly from the previously ob
tained solutions, independent of the thickness of the 
layer. The effective radius in this phase increases with 
liD not linearly, but quadratically, and, accordingly, 
the quenching rate is not constant, as is usually the 
case, but increases linearly as the diffusion slows down: 
k = 41TDRQ ~ liD. This distinctive feature is character
istic of reactions that proceed dynamically under condi
tions of weak interaction, and is a diffusion analog of 
the Born approximation in the theory of collisions[l6]. 

In the case of strong transfer, we can, by using the 
asymptotic forms of I and K for am » 1, easily verify 
that ® ~ exp ( -40 m) and, neglecting this small quantity, 
that 

t , 1 ,b. 
2RQ=R.+ -In 21 a",= -In 21 -. 

y. y. x'D 
(5.5) 

strong transfer in this case is effected by the similitude 
of a "black" sphere whose efficiency is less than the 
usual efficiency by a factor of two because of saturation, 
while the radius logarithmically increases as before 
with increasing liD. The general idea about the function 
RQ( D) in the situation C (see Sec. 2) yields Fig. 3 if 
a~ is plotted along the abscissa instead of 13m. How
ever, the contrast between this situation and the others 
and the distinctive feature characteristic of it in the 
kinetic phase are better discerned from the dependence 
k( liD) (Fig. 4). Resonance nonlocal transfer is easily 
recognized by the linear growth of k( liD) in the case of 
rapid diffusion. With the slowing down of the diffusion 
the process reaches the usual kinetic stage (k = const) 
(the continuous curve in Fig. 4), but it is possible for 
the nonlocal transfer to give way to local transfer or 
quenching even when the sphere is "black" and K de
creases with increasing liD (the dashed line in Fig. 
4). As can be seen from the figure, the "grey" sphere 
model is inadmissible in both the case of rapid diffusion 
(in the dynamical phase) and the case of too slow diffu
sion (in the strong-interaction region). 

APPENDIX A 

Equation (3.1) with the variable r replaced by x: 
1 

r=R. + -In (-xZ), 
2x 

1 
-oo<x";;;-z<O (1 ) 

and the sought function n(r(x» by w(x): 

676 

FIG. 4. Dependence of the 
quenching-rate constant on dif
fusion (the vertical boundary 
separates the regions of strong 
and weak interaction). 
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w(x) =n(r(x) )r(x) r' 

reduces to Gauss's hypergeometric equation 

x(l-x) w" + (2v+l) (i-x) w' -v'w=O, 

which has the general solution: 

(2 ) 

(3 ) 

w(x)=a,F(v, v, 2v+l, x)+a2e,,",'Ill(v, v, 2v+l; x). (4) 

USing the boundary conditions on the function w(x) that 
follow from (2) and (3.1a): 

2~w' (- ~) =Z(2sv-l)W( - ~ ), 

(5) 
1 

w(x) -x-' 2y. In(-x), x-+-oo 

and the formulas giving the asymptotic expansions of F 
and 4>[17,18], we obtain 

1 
a,=-[I-A(Z,~,v)], a2=-A(Z.s.v). 

2xq 2xq 
(6) 

where q = 2r( 211 )exp (-ilTlI)1 r2( II) and A (Z, ~, II) is de
termined by the formula (3.7a). USing (2) and (4), we 
establish that the coefficient RQ of the asymptotic ex
panSion of n( r) for r - "" is connected with a 1 and a2 
by the relation 

RQ=R. +~lnz+q{2a2nctgvn+(a,+a2) (2C+21jl(,,) + ~)}. 
~ v 

(7 ) 

from which we obtain the required result (3.7) with the 
aid of (6). 

The expression (3.7) for Z« 1 can be reduced to 
(3.8) with the aid of the following formulas, which are 
valid for Z - 0, 11- 00, and v 2 Z = 13m = const: 

F(v. v, 2,,+1; -lIZ)-Ko(2Ypm); 1j'(v)-ln ;', 

Ill(v, v, ~\+ 1; -liZ) -e-"'''{Ko(2YPm) -:1 elg n'/.(2l'i3.:')}' 

F'(\'. v, 2v+l; -IIZ)-\Z{K.(2l''f,,,)-lZK,(U~)}. (8) 
Ill'(v, v, 2\'+1; -lIZ)-\'Ze-"""{[Ko(U~) 

- l.zK, (21'~,") ]-:1 ctg \:1 [I. (2f ~'") + I ZI, (2J!i}:,) ]}, 

APPENDIX B 

Setting the sought functions 

n=(~+'l)/2r. m=('l-~)/2r, 

we transform the system of equations (4.1) into the 
form 

d' d' 

(9) 

dr' '1=0. dr' ~-8y.'cxp[2y.(Ro-r) J~=O. 
(10) 

Rol{(R .. }=l](Ro). R,,~'(R,,)=qR,,), 'l-~-r(r-oo), 

The solution to the first equation in (10) is 17 = r; the 
solution to the second can be found with the aid of the 
replacement of the variable r by x: r = Ro - K- 1 In x, 
reducing it to the modified Bessel equation: 

~"+~~'-8Pm!;=0, 
x 

1 
(11) 

~ - --In,T(x-O), y. 

which has the general solution 
~=a,I.(U2il: x) +a,K,,(2V2~m ,r). 

Using the boundary conditions, we find that 
1 1 

a,=--9(2pm,2s), a,=-, 
x Yo 

(12) 

(13) 

where ®(x, y) is given by the formula (3.8a). With the 
aid of (9) we establish that 

(14) 

from which after substituting for a1 and a2 from (13) 
we obtain the result (4.2). 
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APPENDIX C 

Introducing the new unknown functions 

'1~r("-t-m), E,=r(n-m+a-a'), ~~r(n-m-a+a'), (15) 

we can reduce the system of equations (5.1) to the 
closed system of three equations: 

d' 
- E+2ix'",", exp [x (R,-r) 1 e~O. 
dr' (16) 

In this case the function n necessary for the computa
tion of RQ is uniquely expressible in terms of TJ, E, and 
1;. Taking into account the fact that from a comparison 
of the last two equations in (16) follows the relation 
E := 1;*, we obtain for n the expression 

1 (e+~ ) 1 n=- -+'1 =-Re(~+11) 
2r 2 21' ' 

(17) 

which differs from the analogous expression for n given 
in (9) in that the real part is taken here. Since the equa
tions in (16) for the quantities 11 and 1; differ from the 
system (10) only by the replacement of 2K by K (2~ by 
o and f3m by iam, to find RQ in the situation under 
consideration, it is sufficient to use the result (4.2), 
replacing in it 2K by K (2~ by ~) and f3m by iam, and 
then taking the real part. As a result, we obtain (5.2). 

I)The Weisskopf radius establishes a boundary in the immediate vicinity 
of which a complete reduction of the phase occurs, whereas practically 
nothing happens beyond this boundary, nor is there anything to add 
to what happens near the boundary when we move from the boundary 
into the region defined by it. 
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