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The problem solved is that of the excitation of nonlinear surface electromagnetic waves on a plane 
dielectric-vacuum interface by a relativistic electron beam passing over the surface of the dielectric. 
Nonlinear field equations and their boundary conditions are derived for conditions of strong magnetic 
confinement of the electron beam. The stationary values of the amplitudes of monochromatic surface waves 
excited by the beam are found, and the radiative energy fluxes and the efficiency of transformation of beam 
energy into radiation energy are found for conditions near the saturation threshold. 

PACS numbers: 03.50.J, 73.20. 

1. INTRODUCTION 

In previous papers[l,2] we have given a detailed 
analysis of the problem of the nonlinear interaction of 
a relativistic electron beam with volume electromag
netic waves in an isotropic dielectric medium with 
permeability Eo( w); the physical mechanisms have been 
found which limit the increase of the amplitudes of 
waves excited by the beam, and also the energy fluxes 
of the electromagnetic radiation near the saturation 
threshold. 

In the case when the dielectric medium is a plasma 
and Eo(W) = 1 - wp/w 2 the beam can excite only quasi
longitudinal (almost potential) volume electromagnetic 
waves, and therefore the flux of radiation is extremely 
small. In this case the energy loss from the beam is 
mainly expended in producing intense longitudinal waves 
in the plasma, which are then dissipated into heat. The 
situation is different when an electron beam goes past 
a plasma cylinder and only surface electromagnetic 
waves are excited in the systemY] First, the surface 
waves with large phase velocities which are excited by 
the beam are strongly nonpotential, and contain a strong 
radiative flux. Second, under conditions of magnetic 
confinement of the beam and relatively rarefied plasma 
a single fundamental axially symmetric mode of surface 
waves is excited, and therefore we can apply a one
mode approach(l,Ool] in studying the nonlinear stage. 

Incidentally, the assumption of strong magnetic 
limitation of the transverse motion of the beam is very 
necessary for excitation of surface electromagnetic 
waves in the system, since the beam electrons are 
acted on in such a wave by an average Miller force[4] 
pushing the beam away from the surface of the plasma. 
A sufficiently strong longitudinal magnetic field, con
fining the beam (but not the plasma) neutralizes the 
action of thi s fo rc e . 

In the present paper our purpose is to extend the 
method expounded in(l] and[~] to the case of excitation 
of nonlinear surface electromagnetic waves by a beam. 
Therefore for Simplicity we have restricted ourselves 
to the consideration of a plane dielectric-vacuum inter
face, with the medium with dielectric constant Eo( w) 
filling the halfspace x ~ O. In the region x > 0 an elec
tron beam moves parallel to the surface with velocity 
u II z, and is confined by a longitudinal magnetic field 
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strong enough so that ile » wb, where ile and wb are 
the Larmor and Langmuir frequencies of the beam elec
trons. This condition allows us to neglect the trans
verse motion of the electrons in the beam and take into 
account only the perturbation of their longitudinal 
velocity by the action of the surface wave excited by the 
beam. 

As before,[l,2] the dielectric medium is assumed 
linear, and the nonlinearity is entirely due to the action 
of the electromagnetic wave on the motion of the beam 
electrons. The thermal motion of the electrons in the 
beam is neglected (cf.[l]), and the beam is described by 
the equations of relativistic magnetohydrodynamics[5] 

iinliit+div ~v=O, 

[~+(VV)] O-:'lc')'I. :{E++[VXB1}, 
(1.1 ) 

where n is the mean density and v the mean velocity of 
the beam electrons, and E and B are the strengths of 
the electric and magnetic fields, which satisfy Max
well's equations. 

2. LINEAR THEORY OF EXCITATION OF SURFACE 
WAVES 

Before proceeding to the study of the interaction of 
the electron beam with the surface oscillations of the 
dielectric medium, we present the main results of the 
linear theory. Linearizing the system of equations (1) 
and the Maxwell equations for perturbations of the form 

f-f(x) exp (-iwt+ik,z) , (2.1 ) 

we readily derive the equations for the z component of 
the E wave l ) 

ii'E'/iix'-x,'E,=O for x<O, 

ii'E,/iix'-c,x'E,=O for x>O; 
(2.2) 

where 

and the longitudinal (Ezz) component of the dielectric
constant tensor of the magnetically confined beam is 

c,=1-w,'y-31 (w-k,u)'. 

The other field components of the surface E wave are 
connected with E z by the relations 
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iw eo ()E, f 
B y =----- or x<O, 

c )(.02 ax 
iw 1 ()E, 

By = --;:-----:;}Tx for x>O. 

(2.3) 

The equations (2.2) must be supplemented with the 
boundary conditions, which are that the tangential field 
components are continuous: 

{E,}x~o={B,}x.~o=O. (2.4) 

The solution of Eq. (2.2) for a surface wave 

E,=A. exp (xox) for x<O, 

E,=A,exp {-(B,X')'I,X} for x>O 
(2.5) 

exists only for EbK2> 0 and K~ > O. Substitution of (2.5) 
into the boundary conditions (2.4) leads to the following 
dispersion equation for the E-type surface wave: 

(2.6) 

Using the facts that /(0) 0 and K > 0, and that Eb is 
nearly equal to unity, we arrive at the conclusion that 
E-type surface waves are possible only in a medium 
with Eo(W) < O. In particular, a plasma is such a 
medium in the frequency range W < wp. Moreover, it 
follows from Eq. (2.6) that the beam excites waves 
whose phase velocity is close to the velocity of the 
beam, i.e., Wo = kzu. Using this fact, we find the fre
quency spectrum and the growth increment of the sur
face waves excited by the beam (w = Wo + iO): 

Bo(6)0) +1'=0, 

-i+l3 [ () ( X)] 'I, 1 6 =--- (()b 2/2-, - 80- -, 

2 aw, "0 1 
(2.7) 

1= (1-u'le') -'I,. 

In the case when the dielectric medium is a plasma, 
the expressions (2.7) take the well known form[3l: 

_ -i+l'3 (w,') ';' ( 1 ) 'I, Ii - --- 01, --- --
:2 , 2wp' 1'+1 

(2.8) 

3. NONLINEAR STATIONARY SURFACE WAVES 

Accordingly, small-amplitude surface waves de
scribed by the linear theory are unstable and increase 
with the time. Let us now examine how surface waves 
of finite amplitude behave; in doing so we shall, as in[ll, 
treat them as stationary. This enables us to ascertain 
the threshold amplitude values above which there is no 
instability and the waves do not increase with the time. 

Assuming that all quantities depend on the variable 
~ = t - kzz/ wand that under conditions of strong mag
netic confinement the electrons in the beam move only 
longitudinally, we find the following integrals of the 
system (1.1): 

{fJ-k,u 
n=nb---, 

w-kzvz 

k,c ( 2 2+ ') 'I ek, k,c ( u W) - me p, '-p,+-<D=-mq 1--- , 
w w w e ~ 

(3.1 ) 

where the function <I> is connected with Ez by the rela
tion 

"cD k, dcD 
E,= - fI= =-;;;- d~ , (3.2) 

and Pz = mVz /(l - Vi/C 2 )1/2. 

Using Eqs. (3.1), (3.2), and (2.3), we easily reduce 
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the Maxwell equations in the region x > 0 to the follOW
ing nonlinear equation for <1>: 

,,'IP x' 0'</) ,m,,' {( 2e<Dk,') -'j, 1} (3 3) --+---, =-(0, -- 1- -.' 
ax' 0)' d~' , ek/ m1'(w-k,u)' 

In the region x < 0 occupied by the medium the field 
equation is still linear [Eq. (2.2)], and can be written 
in the same form for the function <l>. Finally, the 
boundary conditions for <I> can be written in the form 

Bo "cD I 1 ,,<D I -,- =2- . 
Xo ax X=I) X ax :c=o 

(3.4) 

Now, having formulated the nonlinear system of 
equations for the function <I> and its boundary conditions, 
we can solve the boundary-value problem, USing the 
smallness of the nonlinear terms and applying the 
Bogolyubov-Krylov approximate method (cf.(1l). To do 
so we write the required solutions in the form 

<D=ill,e""' cos ws for x<O, 
(3.5 ) 

Substitution of these solutions in the boundary conditions 
(3.4) gives <I> 1 = <1>2 and 

k=-Bu,,2/xo>O. (3.6) 

(All the requirements of the linear theory, K > 0, Ko> 0 
and Eo(W) < 0, remain valid here.) From Eq. (3.3) itself 
we also obtain 

( Bo'X' ) w,'m {( 2e<]l,k,'e-hcos'¥ ) -'1'_1} --, -1 'D,e-" cos '¥= --- 1- -~-=----.:....::.... 
xo:!. ekl2 m/'(~«(i)-kzu)2 ' 

where 'if = w~. (3.7) 

Multiplying this equation by e-kxcos 'if and integrat-
ing over x from 0 to ao and over 'if from 0 to rr, we get 

(
eo 1 ) 4 m BoW,' ~ " 
-, -, </), = - ----, r dx S d\l' coS \1' e-k " 

Xc, X :rt e Xokz~ 01 
o 0 

x [1- 2eill,k,'e-"cos '¥ ]-';2, 
my'(w-k,ll)' 

In the small-amplitude case, when 
my3(w-k,Il)'~2eill2k,', 

(3.8) 

Eq. (3.8) reduces to the dispersion relation of the 
linear case, Eq. (2.6), corresponding to increase with 
time of the oscillations in the frequency range W "" kzu. 
This instability perSists for finite values of the wave 
amplitude, as long as 

eill,<'I,nq' (u-wlk,) '~'/2my'Il'1 6'1 Iwo', 

where Wo and 0 are given by the equations of the linear 
theory, Eq. (2.7). 

When this inequality is violated the instability is 
stabilized and the wave becomes stationary, Equation 
(3.8) then takes the form 

_ [ '/2m(1l-wlk,)'y'+e(D,e-'X ]';. ~ 1 [ mY'(ll-wlk,)'] 
1']- ------,- ----- - -= 1 + . (3.10) 

2e<I>ze-k:r 12 4e$ze-b 

Using the last relation, which holds when the strong 
inequality 

e<D,~'I,m1' (u-wlk,)', 

corresponding to complete absence of instability, is 
satisfied, we finally get 

eo'x' -1=22- mw,' [mY'(U-wlk,),] 'f, 
xoz 'ek/t.D2 eW z . (3.11) 
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This equation determines the amplitude of a mature 
surface wave excited by a beam, near the threshold of 
saturation.2) Using the results of the linear theory, we 
now find 

elI), _ .J { 2,2oo,'y } 'I, 
mu'-Y 000"(1+1') [de ol ooo+2y'(y'-1)/oo,,) . 

In the case in which the dielectric medium is a 
plasma and Eo = 1 - w~/ w2 , we have 

e!ll, _ ,[ 1,1oo.'y ] '/, 
mu' - y oo.'(y'+1) . . 

(3.12 ) 

(3.13 ) 

4. DISCUSSION OF THE RESULTS. ENERGY FLUX 
OF THE ELECTROMAGNETIC RADIATION 

The relation (3.12) enables us to determine the am
plitudes of the electric and magnetic fields in the sur
face wave inside the dielectric medium as well as out
side it. In fact, according to Eq. (3.5) 

{ exp(lk,lyx) for x<O 
!ll=!ll,cosooo;' . 

exp(-lk,lx/y) for x>O 

From this, recalling Eq. (3.2), we have 

E __ .f> k' • { exp(lk,lyx), 
z- 'V2 l SIn wor,;.· 

. exp(-Ik,ix/y), 
x<O 
x>O 

(4.1 ) 

(4.2) 

The components Ex and By are found by means of the 
relations (2.3). 

Knowing the fields, we can calculate the flux of 
electromagnetic energy (the Poynting vector) and thus 
find the efficiency of the transformation of the energy 
of the beam into the energy of the electromagnetic 
surface wave which it excites. It is easily shown that 
in the case we are conSidering, the problem with a 
plane geometry, the only component of the energy-flux 
vector of the field which is nonzero when averaged over 
a period is the longitudinal component 

c +J~-
P, =4; ExBudx=P"+P,,. (4.3) 

Here Pz1 is the flux of radiation in the dielectric 
medium (Le., in the region x < 0), and Pz2 is that out
Side the medium (i.e., with x > 0). Using the relations 
(2.3), we find 

where 4>2 is given by Eq. (3.12). 

x<O 
x>O' 

(4.4) 

It follows from Eq. (4.4) that the radiation outside the 
medium is larger than that in the medium by a factor 
)'4. This result can be understood if we use the fact that 
in the strongly relativistic case the phase velocity of 
the surface waves excited by the beam is close to the 
velocity of light; these waves are decidedly nonpotential 
in nature and are easily radiated out of the medium. 

The ratio of the quantity Pz to the flux of kinetic 
energy of the electron beam gives the efficiency of the 
transformation of the energy of the beam into energy of 
electromagnetic radiation. In the case we are consider
ing, when the beam occupies the half-space x > 0, the 
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total flux of kinetic energy in the beam obviously 
diverges. However, the surface wave penetrates into 
the region x > 0 only to a distance of the order of 

y/ I k,1 "'yu/ooo, 

and only the part of the beam that fills this layer inter
acts with the wave; the rest of the beam has practically 
no effect in strengthening the wave and can be dis
carded. Therefore in determining the radiative effic
iency we are to divide the quantity Pz by 

The result is 

(4.5) 

x<O 
x>O 

(4.6) 

For the case of a plasma, in which Eo = 1 - W~/W2, 
the expressions (4.6) take the form 

x<O 
x>O 

(4.7) 

In conclusion we note that the efficiency of radiation 
into surface waves, precisely as in the case of excita
tion of transverse electromagnetic waves in a spatially 
unlimited medium, [1,2] is proportional to j~3, where jb 
is the current density in the electron beam. 

')A surface wave of the B type, in which the components Bz, Bx, and Ey 
are nonzero, does not interact with the beam and therefore is always 
stable. 

2)We note that an electromagnetic wave excited by a beam never becomes 
rigorously stationary. As has been shown [6) with the example of an 
electrostatic instability in a plasma-beam system, the amplitude of the 
wave, after it has reached a certain threshold value, will oscillate slowly 
with time. It is this threshold value of the amplitude which is deter
mined in our treatment. 
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