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The cross sections for transitions between 2p and 3p sublevels in collisions between various types of atoms 
and ions are considered. The calculation is based on the assumption of the energy splitting between the 
respective sublevels being small and on the multiplet being more or less isolated from the other terms. The 
results of the investigation may be of interest for a theoretical investigation of gas lasers based on elements 
considered in the paper. 
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1. QUALITATIVE DISCUSSION 

1. Gas lasers operating with a great variety of 
elements and compoWlds have now been or are being 
developed. Of great interest for theoretical investigation 
is the consideration of the transitions from their working 
levels to other levels as a result of collisions of the 
atoms or molecules. The cross sections of such transi­
tions are particularly large when both the working level 
and the level to which the transition takes place belong 
to one and the same multiplet. In a gas laser there is 
always a large number of ions, and the cross sections 
of the tranSitions of interest to us in collisions between 
atoms and ions are particularly large, as will be shown 
later on. The most important of all the possible inter­
actions of an atom with an ion is the charge-quadrupole 
interaction, since it varies like R-3, while the polariza­
tion interaction (i.e., the interaction of the charge with 
the dipole moment induced by its field) varies like R- 4 

(R is the distance between the nuclei of the atom and the 
ion). Apart from the charge-quadrupole interaction, such 
transitions can be produced only by resonant dipole­
dipole interaction (the order of magnitude of its decrease 
with increasing R is the same). 

Transitions induced by resonant dipole-dipole interac­
tion were considered in a number of papers[1-9], and 
preCisely for the transition 2P1/2 _ 2P3/2 in[3, 4, 8, 9]. In[7] 

they considered also the depolarization of atoms Wlder 
the influence of charge-quadrupole interaction. The pur­
pose of the present study is to find the cross sections of 
the transitions between the sublevels of the multiplets 
2p and 3p in collisions between different atoms and ions. 

2. The following three approximations are used in 
the paper: 

1) The motion of the nucleus of the ions relative to 
the nucleus of the atoms is assumed to be classical and 
along a straight-line trajectory. The satisfaction of the 
first of these conditions requires that in the c.m.S. the 
wavelength corresponding to the motion be small in 
comparison with the impact parameter Po: 

A~I/Mv<ro; (1.1) 

Here M is the reduced mass of the atom and the ion, and 
v is their relative velocity (we use an atomic system of 
WlitS:1i = me = e = 1). Satisfaction of the second of these 
conditions requires that the momentum transfer M> be 
small in comparison with the momentum P of the motion 
in the c.m.s.: 

IZQI po 'IZQI 
I1P-Fl1t----~--<P~Mv 

pu" v po:J v ' 
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where F is the largest force of interaction between the 
particles, ~t is the characteristic interaction time, Z 
is the ion charge, and Q is the quadrupole moment of 
the atom. From this we obtain the condition 

flo'~IZQI/Mv'. (1.2) 

2) We neglect the difference between the energies of 
the considered states of the atom. To this end it is 
necessary that the frequency w of the transition between 
the sublevels be small in comparison with the reciprocal 
characteristic time of the collision: 

(1.3) 

where 1.iE is the difference of the energies of the con­
sidered sublevels. 

3) We neglect the polarization interaction. To ascer­
tain the region where this neglect is valid, we compare 
the charge-quadrupole and polarization interactions of 
the atom with the ion. The energy of the first of these is 
?/5R3, where r is the distance of the valence p-electron 
from the nucleus of the atom (as is well known, for such 
an electron we have Q = (2/5)?). The energy of the sec­
ond interaction is ?/3R4~E, where ~E is the energy dif­
ference between the given level and the nearest level to 
which the electric dipole transition is allowed. Compar­
ing these two expressions, we obtain 

po-R~l/I1E. (1.4) 

(This derivation is rigorously valid only for alkali­
metal atoms, for they are the only ones having a single 
valence electron. However, in the case of any atom, the 
energy of the charge -quadrupole interaction is equal 
to Q/2R3, and the energy of the polarization interaction 
is Cl/R4 , where Cl is the polarizability of the atom, with 
Cl~E ~ Q.) 

3. The impact distance Po can be estimated by two 
means: 

a) The largest contribution to the transition probability 
is made by those p for which the parameter B in (3.4) 
is of the order of Wlity. This yields Po ~ (I Z QI /v )1/2 • 

b) The obtained cross sections are of the order of 
1f1 ZQI Iv. Since the cross section is a ~ 7TP~, it follows 
that Po ~ (/ZQI/V)1/2. 

Taking this condition into accoWlt, requirements (1) 
and (1.2) yield 

l/IZQIM'<I'<IZQI. (1.5) 

On the other hand, from (1.3) it follows that 

v~[ IZQI (liE) '1". (1.6) 
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Finally, the requirement (1.4) yields 

v¢:IZQI (,',E)'. 

It must be assumed that 1 QI ~ 1 and IZI 

(1.7) 

= 1. There-
fore condition (1.5) is practically always satisfied at 
thermal velocities (thus, for helium M- 2 ~ 5 X 10- 7 and 
v~5x 10 4 (at a temperature 3000 K). On the other hand, 
the conditions (1.6) and (1.7) depend on the quantities 
BE and ~E. The values of BE and ~E should be such as 
to satisfy the inequality 

[IQZI (bE)'J·¢: IQZI (tlE)', (1.8) 

which follows from the conditions (1.6) and (1.7); other­
wise our approximations are incorrect. On the other 
hand, the inequality (1.8) is satisfied for the ground, 
metastable, or resonant 2p or 3p terms of the following 
elements: helium, all the elements of period 2 of the 
periodic system with the exception of neon, and also 
chlorine. The values of BE and ~E and the resultant 
minimal and maximal values of the relative velocities 
vmin and vmax of the atoms and ions and of the tempera­
tures Tmin and Tmax for the indicated elements are 
listed in Table 1. It is assumed that the atoms collide 
with their own ions. The values of BE and ~ are taken 
from(!O) . 

In addition to the charge-quadrupole polarization in­
teractions, transitions between the sublevels of the multi­
plets 2p and 3p can also result from exchange interaction. 
However, since the characteristic impact distances are 
large in comparison with the atomic distances, the ex­
change integrals will be very small (the electron shells 
of the atom and ions do not overlap, and the probability 
of transferring of an electron from the atom to the ion or 
vice versa is practically excluded). Therefore the ex­
change interaction plays practically no role at all in 
this situation. Indeed, the cross sections of the transi­
tions due to the exchange interaction should be of the 
same order of or smaller than the charge-exchange 
cross section (charge exchange can, of course, also occur 
in collisions between atoms and ions, especially of the 
same element). Let us compare, for example, the cross 
sections obtained by us for the 1s2p3p o transitions in 
helium (see (4.2) and Table II below) with the cross sec­
tions of the charge exchange occurring when a helium 
atom collides with an He+ ion (see[U)), at an incident-
ion energy 0.1 eV. Our cross sections are of the order 
of 1031Ta~ (ao is the atomic unit of length), and the charge­
exchange cross sections are of the order of 301Ta~. 

4. It is of interest to investigate the opposite, adia­
batic case, when Po» v /BE. In this case the adiabatic 
perturbation theory is applicable. As is well known, it 
yields an exponentially small result if the terms of the 
states for the transition between which the cross section 
is sought do not intersect and do not converge asymp­
totically (the terms are taken as functions of the dis­
tance between the nuclei of the atom and the ion). 

An investigation, which we do not report here, shows 
that the terms coming from the sublevels 2Pl12 and 2P3/2 
indeed do not intersect and do not converge asymptotically 
(in the case of collision of excited and unexcited atoms 
of an alkali metal, the terms intersect and therefore the 
adiabatic cross sections are large, see[3, 8, 9)). For a col­
lision of an atom with an ion in the adiabatic limiting 
case, the cross sections of the transitions between the 
sublevels of the doublet 2p are exponentially small, and 
are of no interest to us. 
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TABLEr 

Term" :?:p spo 2p !p9 2p .lpo ~p lpo 2pl3p 2p3 .P1J 2p"P 2p5 spe 
(res) (res) (res) (god) (god) (met) (god) (god) 

,sT;;, em-I J.(X3'! n.3g 4.5 16 4;1.5 11 226 fl O5 

l'mjn' at. un. ;)·10-' :2..10-4 7·H)-4 :?:·to-~ 4·tO-1 0 1·10-' 2·10-' 

T min- K 111 30 i-1O·1 11.5·1()3 3·104 :i-loa 9.103 

llE, eV 1.111 1.85 2,1!-15 4,9'~ 4.tR !l.:H. 9.1:'!' e.6R 

t"max' at. un. ~.1O-3 4.10-3 6.5.10-3 3·1l)-· 2·10-2 1.10-1 1.10-1 2.10-1 

Tmax' I{ :'!'·1(}:1 3.104 7· to. :!. iU8 1.101 !dOT 4·1fJ' 2·10' 

"The abbreviations in the parentheses under the deSignations of the tenns 
are the following: res-resonant, gnd-ground, met-metastable. 

TABLE II 

I 1 
J' 

I 
0 

I 
I/,a (().+!) I/"a (0-+2) 

1 O.fiH2 'Iso (1-+2) 
2 2.169 3.i13 

3p' .Pt 
(god) 
878 

3·10-' 
4·1(1f 

8.81 
2·tO-1 

2·10' 

The foregoing pertains to the case R » 1. Therefore 
in the adiabatic limiting case the cross sections of the 
transitions between the sublevels of the doublets 2p are 
actually not small, but are of the order of 1T, which is 
small in comparison with the ballistic cross sections ob­
tained below. An analogous investigation shows that the 
terms from the sublevels 3pO, 3p" and 3P2 likewise do 
not intersect, but that some of them converge asymp­
totically. Adiabatic transitions therefore occur between 
them (these will be discussed elsewhere). 

2. FUNDAMENTAL EQUATIONS 

1. It is convenient to choose the coordinate axes in the 
following manner: the y axis is directed along the velo­
city vector of the incident ion, the x axis also lies in 
the scattering plane, and the z axis is perpendicular to 
the latter; the origin is aligned with the nucleus of the 
atom. Solving the problem by perturbation theory, we 
can show that the transitions between the different elec­
tron configurations of the atoms, and also between the 
different L and S terms, are negligibly small. Therefore 
the electron wave function of the atom can be written in 
the form (we consider 2p or 3p terms) 

'¥(t)= .Ea(/,I,;tll/,Uexp{-iEA, 
J,J, 

where IJ, J z> are the wave functions of the stationary 
states of the atoms with total electron angular momentum 
J and its projections Jz on the z axis (the principal and 
orbital numbers of the individual electrons, and the total 
orbital and spin angular momenta of the electron shell 
of the atom remain unchanged, and we therefore omit the 
symbols for these quantum numbers as well as the radial 
parts of the wave functions). EJ is the energy of this 
state; 

11,1,)= .E < I, M; S, S,II,I,) Y,MlCss" 
.u,s. 

where Y1 M is the angular wave function of the state with 
orbital quantum number L = 1 and with magnetic quan­
tum number M = -1, 0, + 1, XS Sz is a spin state with 

. spin S and projection Sz on the z axis, and (1, M; S, 
Sz IJ, J z> are Clebsch-Gordan coefficients. 

The Schrodinger equation for this function takes the 
form 
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WIjI/at=[Ho+V(t) ]1jI(t), (2.1) 

where Ho is the Hamiltonian of the free atom and V(t) is 
the operator of the interaction of the atom with the ion. 
Multiplication of both sides of (2.1) by (J, Jzi and inte­
gration over the configuration space yield 

00(1,1,) = \"1 <1,I,IV(t)II',1,')a(I',1,';t)exp{i6(/,J')t}, 
dt I...J 

J.J" 1(2.2) 
6(/, I) =EJ-EJ·. 

By virtue of the condition v / Po» Ii (J, J'), it can be 
assumed that exp{ili(J, J')t} = lover the entire time in­
terval in which the transitions take place. Equations 
(2.2) become simpler: 

da (I, I,) = \"1 <J,I, I V (I) II' ,1,')a (1',1,'; t). (2.3) 
dt I...J 

J ,I, 

2. An atom in the P-state can have no nonzero l-pole 
angular momenta with 1 f 2. Therefore the interaction of 
the atom with the ion is charge quadrupole. Its operator 
is given by 

V=ZQ"n,n.I2R', 

where n = R/R; R is the radius vector of the nucleus of 
the ion relative to the nucleus of the atom; Qik is the 
operator of the quadrupole moment of the atom. The 
latter is equal to 

0,. ='I,Q (L,L. + i.i,-· I ,6,,) , 

where L is the operator of the total orbital angular mo­
mentum of the electron shell of the atom with L = 1. Thus, 

2. We change over from the vector ~, the components 
of which are the coefficients a(J, J z ; t), to the vector X, 
whose components are the coefficients ~(t) = b(M, ±1/2; 
t) of the expansion of the wave function of the atom 

IjI (t)= E b(M, S,: t) Y'MX'I.S, 

over the states with definite projections of the total or­
bital and spin angular momenta of the atom on the z 
axis. Equations (3.2) are simplified even further: 

db ± ZQ 
i, d:' = 4R' (-b+ ,±+3e-';'b_,±), 

db_ ± ZQ . 
i--I =-(3e"'b ±-b_ ±) , dt 4R' +1 I, (3.3) 

. db,'" ZQ ± 
!-=-bo. 

dt 4R' 

The reason for the separation of the equation for bo is the 
vanishing of the matrix elements of the operator V(t) 
for transitions with AM = ± 1 and with ~z f O. 

We change from the vector X to the vector +', whose 
components are the coefficients C[ (t) = c (i, Sz; t) of the 
expansion of the wave function of the atom 

IjI (t) = EeU, S,; t) Y"X'I.,S,; 

here Y 1i are the angular wave functions, chosen in the 
form 

_ ( :J )'" r YI - - -
4)'[ r 

V='I,ZQ( (Ln)'-'I,)IR'. (2.4) (r is the radius vector of the "effective electron" that 
would have interacted with the electric field of the ion 

3. TRANSITION CROSS SECTIONS IN THE DOUBLET 
2p 

1. The total spin of the atom is S = 1/2, and its pro­
jection on the z axis is Sz = ± 1/2. Therefore the func­
tion IJ, J z> takes the form 

1/,1,)= E <1,M; II" S,I/,I,)Y,,<x'I.,s,. (3.1) 

Substituting (3.1) and (2.4) in (2.3), we obtain two similar 
systems of equations (the system (2.3) is separable): 

,da('I,,=F'I,) _ ZQ { ('I =F'I) 
! dt -"4iP -a " , 

+ 1'3 e±2i' [a ('1" ±'/,)±l'2a('/" ±1/2 ) n, (3.2) 
da('1 ±'/) ZQ - -

i --.~= 4R' [1'3 e~';'a('I" FF'I,) +a('I" ±'/,) =F 1'2a('/" ±I/,)], 

da(11 ±I/) ZQ 
i " '=±-_-[1'3e""'a('I,,=F'I,)-a('I,,±'/,»). 

dt 21'2R' 

Here cp denotes the angle between the x axis and the ra­
dius vector R. 

The reasons for the separation of the system (2.3) 
into two systems consists in the following. The operator 
V{t), as seen from(2.4), is quadratic in the orbital an­
gular momentum operator f.. Since the z axis is always 
perpendicular to the radius vector R, it follows that, by 
acting on the angular wave functions Y 1M, the operator 
V (t) changes the magnetic quantum number of the atom 
M by 0 or ± 2. Since the operator V(t) does not act at all 
on the spin variables, it follows that by acting on the 
state on the atom I J, J z>, it also changes the projection 
Jz of its total electron angular momentum on the z axis 
by 0 or ± 2. Therefore all the matrix elements 
(J, JzIV(t)IJ', J~>, where Jz - Jz f 0, ± 2, vanish. 
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in the same manner as all the electrons of the unfilled 
p shell of the atom taken together (in the particular case 
this can be a real p electron or p hole)). 

In addition, we make the change of variable 

'S=vt/R. 

As t changes from _00 to +'" , the quantity ~ covers the 
interval from -1 to + 1. We obtain the system of equa­
tions 

ie,' =B[ - (2-36') c,+3'S (1-'S') "c,), 
ic,,'=B[3'S (I-nc .• + (I-3;')c,], 

ic/=Bc z1 

(3.4) 

where the prime denotes differentiation with respect to 
~, and 

B=ZQI2p'v 

(we have left out the ± symbols of the coefficients C[). 
The solution for Cz is obtained directly: 

From Cx and cy we change over to u and v: 

From (3.4) we easily obtain a system of equations for 
u and v. It was first obtained and investigated by Val'n­
shtel'n and GalitskirE' 1. On going from ~ = -1 to ~ = + 1, 
the solution changes in the following manner: 

(~) -+ e~'), (~) ~ (f~~') 
Here 

( u(s) ) 
v('S) 

is the solution of the sys tem of equations for u and v, 
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while f, g, and qJ are real functions of the parameter B. 
The exact values of f, g, and qJ were obtained by numeri­
cal computer integration of the aforementioned system 
of equations for u and v. 

3. Let us express the results of the collision in terms 
of f, g, and qJ. The state >It out after the collis ion can be 
expressed in terms of the state >ltin prior to the collision 
with the aid of the unitary matrix S: 

The matrix S takes the form 

s= (~ ~) , 
where R is the unitary matrix 

( 
/eitB+,\ _ge iB 0 ' 

R= geo
i ., /e"'o-" 0 ). 

e-2iB 

The vector <Pin is transformed into <Pout by the matrix 
S': 

Here K denotes the unitary matrix that effects the tran­
sition from the vector cI> to the vector >It : 

'l'=Kfb, KK"=l. 

4. Let us consider the transition of a completely un­
polarized atom whose state is 2p1I2 into the state 2P3/2, 

and the analogous transition from the state 2P3/2 to the 
state 2p , / 2 • Averaging over the initial states and summing 
over the final states, we obtain 

w(J->-J') = 2J~ 1 I: Is' (J, J,; 1',1,') I', 
J t ,!!' 

where w(J - J') are the probabilities of the corresponding 
transitions; S'(J, J z , J', Jz) is the S' matrix element cor­
responding to a transition from the state I J, J z> to the 
state lJ', Jz>. 

The probabilities w(1/2 - 3/2) and w(3/2 _1/2) are 
given by 

w ('/,~'\I,) ='1, (1-j cos 38 cos '1'+1' sin' '1'); 
w('/,~'/,) ='1,(1-/ cos ?,B cos' q;+!' Sill' q;). 

The cross section of the transition J _ J' is equal to 

(I J') 2 S~ (' " IQZ[ S~ dB , a ~ =" w J-J ,p)pdp=--- --. w(J ..... J ,B). 
2 v B-

o " 

The integral 
~ dB 

1,= S ~(l-fcos 3B cos '1'+1' sin' '1') (3.5) 
o 

was calculated with a computer. As a result, the follow­
ing values were obtained for the cross sections of in­
terest to us: 

a ('/,_'/,) =4,800"e !ZQ I /fw, 
a ('I,~'/,) ='/,a('/, ..... 'I,) 

(in ordinary units). Although all the foregoing pertains to 
the case QZ > 0, it is easy to show that the final results 
are the same also at QZ < O. 

4. CROSS SECTIONS OF TRANSITIONS IN THE 
TRIPLET 3p 

1. The total spin of the atom is S '" 1, and its projec­
tion in the z axis is Sz '" -1, 0, + 1. Therefore the func­
tion I J, Jz} takes the form 
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(4.1) 
M,Sz 

Substituting (4.1) and (2.4) in (2.3), we obtain two sys­
tems of equations (the system (2.3) is separable). Each 
of them describes the time variation of the coefficients 
a(J, Jz; t), one of them with even Jz and the other with 
odd Jz. The reason for the separation of the system of 
equations (2.3) into two equations is the same as in 
Sec. 3. 

2. We now proceed as in Sec. 3. We arrive at the 
system (3.4). The only difference is that the matrix K 
is more complicated and cumbersome, and hence so is 
S' (these matrices like S, are not 6 by 6 as in Sec. 3, 
but 9 x 9). In addition to the integral I, (see (3.5)), we 
need in this case also the values of two other integrals: 

~ dB 
1,= S !i'g', . 

- dB 
1,= ~ R"f[f(H sin''I') - cos 3B cos cpl, 

which were also calculated with a computer. Each cross 
section is equal to 

a (J ..... l') =a (J ..... J')"e I ZQ I lliv (4.2) 

(we have used here ordinary units), and the values of 
a(J -J') obtained with the computer are listed in Table 
II. Just as in Sec. 3, the final results do not depend on the 
sign of ZQ. 

In conclUSion, the authors are sincerely grateful to 
V. M. Galitskii for suggesting the topic and for interest 
in the work, and also to V. M. Ermachenko for help 
with the numerical calculations. 
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