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A two-level system in an intense field is considered by taking into account nonresonance processes by the 
Hill method. An equation is obtained which expresses in an explicit manner the quasienergy as a function 
of the parameters of the problem. The convergence of the expansion of the Hill determinant residue in 
powers of the ratio of the interaction energy to the energy of a field quantum is investigated. Approximate 
expressions for the quasi energy spectrum are derived and are valid with a large degree of accuracy even 
when the expansion parameter approaches unity. In particular, a formula is obtained for the quasienergy in 
the case of n-photon resonance. The relation to the results of the adiabatic approximation is discussed. In 
the case of extremely small values of the expansion parameter, the familiar results of perturbation theory 
and of the resonance approximation are obtained. 

PACS numbers: 42.50. 

A two-level system is the simplest model for the in­
vestigation of the various phenomena of the interaction of 
electromagnetic radiation with atoms, spins, and nuclei. 
However, the most exhaustive results concerning the be­
havior of a two-level system in a strong field are ob­
tained either in the resonance apprOXimation (this is 
sometimes called the "spinning wave" approximation) [IJ 

or in the adiabatic approximation. [2J Allowance for the 
non-resonant members greatly complicates the problem 
mathematically. Although by means of numerical me­
thods one can find the quasi-energy of a two-level sys­
tem as a function of the problem parameters, satisfac­
tory analytic results, where non-resonant processes 
would be taken into account, are missing from the litera­
ture. In this paper the behavior of a two-level system in 
an intense monochromatic field is studied by the Hill 
method. [3J The region of applicability of the formulas 
obtained for the quasi-energy extends far beyond the 
limits of perturbation theory and the resonance approxi­
mation. 

The initial equations describing the two-level system 
in a classical electromagnetic field and of the form 

iti=2Vb cos wt, ib=wob+2Va cos wt. (1) 

where a and b are correspondingly the amplitudes of the 
ground and excited states of the system, tiwo is the dis­
tance between the levels, the quantity -2tiV (the multi­
plier 2ti is inserted for convenience) represents the 
matrix element of the transition of the operator of the 
electric-dipole or magnetic-dipole interaction. From the 
system (1) we can obtain for a or b, a second-order 
equation whose coefficients are periodic functions of 
time but have Singular points. The latter situation indi­
cates that the Hill method must be applied directly to 
system (1). We represent the amplitudes in the form [4J 

(2) 

where tiE is the quasi-energy. [5J Substituting (2) in (1) 
we obtain 

an=-V---(bn+l+bn_l), b'=E V (a.+ 1+an- 1). (3) 
E-noo -noo-ooo 

We note first that system (3) breaks down into two 
systems. In the first, the an with even numbers com­
bine with the bn with odd numbers. The second subsys­
tem is obtained from the first by replacing E with E - w. 
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It is therefore sufficient to consider only one of them, 
say the first. We write down the corresponding deter­
minant 

D(E) =detl bm •• -(bm • n+1+bm • n-.l ~m I, 
~m=V/(E-moo) for m=O, ±2, ±4, ... , (4) 

~m=V/(E-moo-wo) for m=±1, ±3, ±5, ... 

The basic analytic properties of the determinant, proven 
in the Appendix, are: 

1) periodicity, i.e., D(E + 2w) = D(E); 

2) a series of simple poles at the points E = 2w, 
where n = 0, ± 1, ±2, ... , with a residue R/, and a series 
of simple poles the points E = 2nw - w + we, n = 0, 
± 1, ± 2, ... , with residue R; it will be shown below that 
R' =-R; 

3) ID(E)I is bounded in the vicinity of an infinitely 
distant point, apart from the poles; 

4) D(E) - 1 as Im(E) - 00, 

On the basis of the theorem on the partial-fraction 
expansion of a function [3J we can now write 

D(E)=D(Eol+R'r.(-1 __ --_1 ___ ) +Rr. ( -,-1---:-_ 
E-2noo Eo-2noo E-ooo+oo-2noo (5) 

where E is an arbitrary point at which D(E) is analytiC. 
Recalling the expansion of the cotangent 

(6) 

the expression (5) can be rewritten in the form 

D(E)-.D(E)+ ",R' ( ",E "'Eo) ",R [ ",(E+oo-wo) 
- 0 -- ctg----ctg-- +- ctg---'-'.· -;;---.:..:.. 

200 2w 200 2w 2", (7) 
'" (Eo+"'-ooo) ] 

- ctg 2", . 

If we now fix Re(Eo) and let Im(Eo) go to infinity, we get 
on the basis of the property 4) 

'" [ ",(E+",-ooo) , "'E] i'" , D(E)=1+- Rctg +R ctg -2 - +-2-(R+R). (8) 
2", 200 00 00 

Since D(E), R, and R' are real, we conclude from (8) that 
R' = -R. Finally, we get for D the expression 

D(E)=1+~ sineS 
00 cos {2,,+b) - cos {j 

(9) 

where 
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<5 = ~ (00-00 ) ].. = ~ (10) 
200 , • 200 . 

From the condition that the determinant vanish we obtain 
the spectrum of the quasi -energies 

nR 
cos (2].. Hi) = cos 6 - --sin 6, 

00 
(11) 

or, omitting the term 2nw in the right-hand side, 

E = -~ (oo-oo,)± ~arccos (cos 6 -.!!!!...sin (»). 
2 n 00 . 

(11') 

We will show how to obtain from (11) the result of 
perturbation theory. Let us suppose that all of the de­
nominators in R are large compared to V; then in the 
first-order approximation in V/w we have 

R",2w,V'/(oo'-ooo') , 
w V' 

cos (2],,+6)"" cos6-2n~-.--sin6. 
ffi ffiw-ffioz 

(12) 

We are interested in that branch of the quasi-energy 
which goes to zero upon disappearance of the interaction. 
This denotes that A « 1, and from (12) it follows that 

E=2",0 V'! (w'-w,'). (13) 

Formula (13) can be obtained by applying standard per­
turbation theory to the system (3), where in the zeroth 
approximation ao '" 1 and the remaining amplitudes are 
equal to zero. [6J 

The determination of the quasi-energy spectrum has 
thus been reduced to a calculation of the determinant R. 
Since it is impossible to get a closed expression for R, 
we will explore the convergence of the expansion in 
powers of V. It is more convenient, however, to con­
sider the determinants Ri(W) and R2(W) [Eq. (A.6)]. 
Obviously one could write 

R,(oo)=l-1:Ym+ L Ym"(m,+,+ ... +(-l)'"' L Ym···Ym'H, 
m,>m mll> ... >m 

lm=l-tml-tm+l' 
(14) 

Let us consider the relationship between two neigh-
boring terms with sufficiently large numbers k and k + 1: 

1 
R" k+1 I ~ 1'm" '1'"'k-l +k-l1'"'k+k I ~ ~')( V)' ~ 1 
R 1• k 1= ~ . < L...J Tm·-- 2", L...J rn, 

~ 1'1)" .. Ymk-l tk-l m=2k+l m=k 

=iGY· (15) 

In deriving the inequality we made use of the positive­
ness of )12k for sufficiently large k. From (15) it follows 
that the expansion parameter is the quantity 2(V/2w)2 
and the series converges at all values of this param­
eter. In addition, if w > Wo, all )1m > 0 and the series 
becomes sign-alternating, which allows us to obtain a 
better approximation if we limit ourselves to the first 
few terms of the series. We now calculate Ri(W) and 
R2(W), retaining in them the lowest-order terms in V/w: 

R,(w)""l-L Ym, R,(w)""1-L Ym. (16) 
111=1 

For 0 ~ 1 the discarded terms make a contribution of the 
order of 2(V/2w)4to Ri and R2 or, introducing the param­
eter 

a.= 12V!w I. (17) 

which is the ratio of the interaction energy to the energy 
of one quantum of the field, this contribution is of the 
order of 2(QI/4)4. Summing the series in (16), we obtain 
for R 

(18) 
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2fjw 

/' 
n=1 

11.5 

n·J 

1 or. 

This formula together with (11') determines the quasi­
energy spectrum. Far from resonance, when QI ~ 1, the 
value of R is determined accurate to ~ 10-3 • Close to the 
resonances, i.e., when w approaches the values 

(J)=UlO/n, n=l, 3, 5, ... , (19) 

at which R has poles, the product R sin 0 remains finite. 
In this case the value of R sin 0 is determined accurate 
to 10-2, i.e., the accuracy decreases near the resonances. 
Calculation of the more remote terms of the expansion R 
leads to rather cumbersome formulas. We note that 
when QI « 1 and 0 « 1 we obtain from (18) and (11) the 
usual result of the resonance approximation. [7J 

If condition (19) is satisfied, the computation is sig­
nificantly simplified and it is possible to retain the 
terms with Ql6 in the expansion. Putting 

. lim (noo-oo,)R = w'r,,, n = 1,3,5, ... , (20) 
nW-~()l"o 

we get 
w (n') 2w ( n -) E=±-arccos 1-:--;;-r. =±-arcsin -;-l'r •. 

.Tl ~ JT. 2 
(21) 

For r n, according to (14), (20), and (A.6), we obtain 

a' n' ( 3n'+1 
r'=4(n'-1)' 1-a'2(n'_1)']' 11=3,5,7, ... (23) 

The figure shows a plot of the quasi-energy against 
the field intensity for one-photon or three-photon reson­
ance. In connection with these results it is interesting 
to note the following: When n » 1, i.e., w «wo, Eq. (1) 
can be solved in the adiabatic approximation [2J 

(24) 
where 

w '[ V 2 1/2 

s(t)= 2' S 1± (1+16 wo' COS'oot') ] dt'; (25) 

and A(t) and B(t) are time-periodic functions with period 
21T/W. From (24) and (25) it follows that the quasi-energy 
in this approximation is equal to 

(i), [ •• ( (i)' 'I, d 
E=- 1± S 1+4a'-, cos'cp) ~]. 

2 0 WIJ- 2ft 
(26) 

It is easy to verify that when wo/w '" n » 1 the first 
terms of the expansion of the quasi-energies given by 
(21) and (26) in powers of QI coincide, but those terms 
whose numbers are commensurate with n give different 
results. This is natural, for since the resonant nature of 
the interaction is not taken into account in the adiabatic 
approximation, it follows that an important contribution 
to (21)-(23) is made precisely by the resonant pole 
terms. 

We can also note that in a degenerate two-level sys­
tem (wo'" 0) the quasi-energy vanishes, since R is an 
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odd function of Woo The degenerate case is considered 
in detail in [8J , where various corrections at small Wo 
are also computed. 

It is known that the quasi-energy determines the 
emission and absorption spectra of an atomic system in 
an intense monochromatic field, i.e., it can be directly 
observed experimentally. For Cl! ~ 1 the most fitting ob­
ject for the applications of our calculations is a particle 
with spin '12 in a magnetic field, for if the frequency w 
lies in the optical region the external field becomes 
comparable with the atomic field and the two-level ideal­
ization no longer has meaning. 

The author considers it his pleasant duty to thank 
M. L. Ter-Mikaelyan and the participants of R. Y. 
Khokhlov's seminar for useful discussions. 

APPENDIX 

Assume that in (4) the indices m and n take on values 
from -N to N. We designate the corresponding deter­
minant ~. It must be proven that as N - 00 the deter­
minant ~ tends to a particular limit, i.e., it converges. 
The result is obtained by applying to oN the main attri­
bute of the convergence of infinite determinants [3J , 
recognizing that ~ does not change its value when Y is 
replaced by -V. Actually, the product of the diagonal 
elements in oN = ~(E, Y)~(E, - Y) 

V' V' 
(E-nOl) (E-nOl+Ol+Olo) ] (E-nOl) (E-nOl-Ol+Olo) 

converges by virtue of the absolute convergence of the 
sum 

L.I (E-nOl) (E~nOl-Ol+Olo) I· 
The sum of all the non-diagonal elements also converges 
absolutely. A determinant that converges in the sense of 
this attribute has all of the properties of finite deter­
minants. 

To prove periodicity it is sufficient to note that re­
placement of E by E + 2w merely shifts the row numbers, 
i.e., D(E) remains unchanged. If one expands the deter­
minant in terms of the elements of some row, it will be 
discovered that D(E) has simple poles at the points 
where convergence of the sums written out above is vio­
lated. By virtue of the inequality 

IdetI6"+a,,ll.;;; II (HL.la"I).;;;exP{L.1a"l} (A.1) 
It i,h 

we have 
jD'j';;;e', 

s=4V'L.(1 1 1+1 1 I) 
(E-nOl) (E-nOl+Olo-Ol) (E-nOl) (E-nOl+Olo+Ol) 

(A.2) 
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from which the property 3) follows. Now let us expand 
D2 in powers of y2: 

(A.3) 

where Am ~ y2m, and we take into account the fact that 

(A.4) 

Actually, all of the terms of Am are contained in sm; 
furthermore, each of them enters m! times in sm; be­
sides, sm contains additional terms that do not appear 
in the expansion of the determinant. Since s - 0 as 
Im(E) - "", it follows from the inequality 

(A.5) 

that D2 - 1 as Iro(E) - "". Taking into account the con­
tinuity as Y - 0, we find that D(E) - 1. 

Let us consider now the residue of D at E = Wo - w. 
The value of R can be represented in the form 

V' v', 
R=--R,(-Ol)R.(Ol) ---R, (Ol)R,(-Ol), (A.6) 

(0-(00 W+Wo 

where Rl(W) has the following structure: 

fll 
fl, 1 fl' 

R,(co) = del fl. 1 fl. 
fl. 1 fl. (A.7) 

~1 .. =V/(coo-nco), 1l=1, 3, 5,.,., 
fln=(-Vlnco), , n=2, 4, 6, ... , 

R2(W) is obtained from Rl(W) by deleting the first row and 
the first column. 

1 M. L. Ter-Mikaelyan, Lektsii po resonansnol nelineinol 
optike (Lectures on Resonant Nonlinear Optics), Pre­
print IFI-74-11, Erevan, 1970. 

2 D. F. Zaretskil and Y. P. Krainov, Zh. Eksp. Teor. Fiz. 
66, 537, 1974 [Sov. Phys.-JETP 39, 257 (1974)]. 

3 E• T. Whittaker and G. N. Watson, Modern AnalYSiS, 
Cambridge, 1927. 

'V. I. Ritus, Zh. Eksp. Teor. Fiz. 51, 1544, 1966 [Sov. 
Phys.-JETP 24, 1041 (1967)] • 

5 ya. B. Zel'dovich, ibid. 51, 1492, 1966 [24, 1066 (1967)]. 
6 N. D. Sen Gupta, J. Phys. A., Gen. Phys. 3, 618, 1970. 
7 M. L. Ter-Mikaelyan and A. O. Melikyan, Zh. Eksp. 
Teor. Fiz. 58, 281, 1970 [Sov. Phys.-JETP 31, 153 
(1970)] • 

By. P. Yakovlev, ibid. 67,921, 1974 [40,457 (1975)]. 

Translated by S. B. Hutchison 
131 

A. O. Melikyan 612 


