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A method for calculating the correlation corrections to the results of the Landau phenomenological theory 
is described for the case of a displacement-type ferroelectric phase transition. First- and second-order 
corrections for the order parameter, the susceptibility, and the specific heat above and below Tc are found. 
The small parameter in powers of which the perturbation-theory series is constructed is in this case the 
quantity 'Y = v' a/ cqn, where v' a corresponds to an imaginary bare "gap" in the spectrum of the critical 
branch and cqn is the Debye frequency. A comparison of the derived formulas with their analogues for the 
Ising model [6] reveals a curious feature: The numerical coefficients of the dominant terms of the 
expansions (as T - Tc----'O) tum out to be equal for both models, which, apparently, is a reflection of the 
universality of critical behavior. 

1. INTRODUCTION 

The problem of the computation of the correlations to 
the results of the Landau phenomenological theory has 
been considered in quite a number of papers. Following 
the publication of Ginzburg's well-known paper[l], the 
first correction was computed by Levanyuk[2,3], using 
as an example ferroelectric phase transitions. Subse­
quently, VakS[4,5] calculated the correction in the frame­
work of a microscopic theory. Vars, Larkin, and Pikin 
in[6,7] and Thouless in[8] have worked out for the ISing 
and Heisenberg models iterative methods that allow the 
determination of the corrections to the Landau theory to 
any order with the aid of the corresponding diagram 
technique. 

From the point of view of the theory of ferroelectrics, 
the lsing model describes an order-disorder type of 
phase transitions. There is, however, a large number 
of substances that undergo displacive-type ferroelectric 
or structural transitions. The most important features 
of these transitions are reflected by a simple field 
model with the Hamiltonian 

l/= J dx [~(v<P)' - ~q;' + l.-<p'] 
2 ? 41 ' ,. 

(1 ) 

where cp (x) corresponds to the critical branch of the 
spectrum of the system, and the constants a and f3 are 
positive and small. The last restriction, which will be 
quantitatively defined below, is peculiar precisely to 
phase transitions of the displacive type. Indeed, if we 
allow a and (3 to be large, then, as is noted in[9], the 
Hamiltonian (1) becomes practically equivalent to the 
Hamiltonian of the ISing model. 

In the present paper we describe a method for com­
puting the correlation corrections in the model (1) on 
the basis of a diagrammatic expansion in the anhar­
monic-interaction constant {3. This problem is, in a 
sense, the alternative to the situation conSidered in[6], 
where the basis of the analysis is, roughly speaking, an 
expansion in powers of the constant c2 (in our notation). 
Accordingly, the small parameter determining the 
limits of applicability of the Landau theory will turn out 
to be quite different. It should be noted that a similar 
problem has been solved before in[4,51, but the use of an 
extremely complex model made the calculations very 
unwieldy even in the first approximation and above the 
transition point. In our case, however, the Simplicity of 
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the model (1) will allow us to find without any funda­
mental difficulties the first- and second-order correc­
tions to the susceptibility, the spontaneous polarization, 
and the speCific heat both above and below Tc , and to 
compare them with the analogous results for the ISing 
model. Let us also note the following circumstance. 
Several papers[l()-13] have lately been published in which 
attempts are made to go beyond the Landau theory in 
problems with Hamiltonians of the type (1) with the aid 
of the so-called self-consistent phonon approximation. 
However, an incorrect interpretation of the obtained re­
sults has led in certain cases to false or questionable 
conclusions (for a detailed diSCUSSion and a critique, 
see[14]). This, in our opinion, lends an additional 
methodological interest to the problem of the construc­
tion of the correct iterative scheme in the case in ques­
tion. 

2. THE ZEROTH APPROXIMATION 

Let us consider the thermodynamic Green function in 
the classical limit: 

1 . 
D(q, T)=yJ «q;(x)-U) (q;(O)-U»e;q'dx, (2) 

l' 

where U = < cp (x» is the order parameter. If we expand 
the polarization operator 11 (q, T) in the Dyson equation 

D-'(q, T)=Do-'(q)-Il(q, T) 

in a diagram series u in the bare propagators 

D,(q) = (e'q'-a) -', 

(3 ) 

(4) 

then each order of the corresponding analytic expres­
sions will contain diverging integrals. This is, in the 
final analysis, connected with the instability of the sys­
tem described by the unperturbed Hamiltonian. The 
perturbation (3 cp " which stabilizes the system, plays an 
extremely important role in the present case, and it 
should be taken into account in the construction of even 
the zeroth approximation. Bearing this in mind, let us 
take as the initial Green function the first-order-in the 
the constant tl-solution 0(0)( q, T) to the Dyson equation. 
As is easy to show[14], 0(0)( q, T) has the form 

D'O) (q, T) = (az;+c'q') -', 

, and the inverse dimensionless correlation length Ko 

satisfies the equation 
xo'=-1+t(l-1xo arcctg 1xo) +,,'/2. 
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Here 
T 4" VA ,,-t=- T~(O)=~, ~ .a T"" - u=U -, 1=-, 

~qD a CqD 
(7) 

QD ~ a-1 is the cutoff momentum. The order parameter 
can be found from the condition of thermodynamic 
equilibrium, i.e., by integrating with respect to U the 
relation[15] 

f)'Flf)ij'=D-'(O, T) (8) 

(F is the free energy) and equating the result to zero. 

In the case of a phase transition of the displacive 
type the parameter y « 1. Indeed, ra. corresponds to 
an imaginary bare "gap" in the spectrum of the critical 
branch, which4 has an anomalously small magnitude (see, 
for example,[ ]), while cQD ~ e/ll» ra, where e is the 
Debye temperature. Furthermore, as the evaluation of 
the diagrams for II (q, T) and the vertex part and cer­
tain qualitative arguments [14] show, the dimensionless 
constant of the expansion in the present problem is pre­
cisely the parameter y. Therefore, to find the dimen­
sionless order parameter u and the dimensionless 
susceptibility X = aD( 0, T) in the zeroth approximation, 
we must neglect in (6) and (8) the terms of order higher 
than the zeroth in y. After the integration of (8) with 
respect to U, this yields 

x,'=t-1 +u'/2, 

u(t-1) +u'/6=0. 

(9 ) 
(10) 

Introducing the variable T = I t - 11, we can write the 
solution to Eqs. (9) and (10) in the form 

(11) 

which, obviously, coincides with the results of the Lan­
dau theory. 

3. THE FIRST- AND SECOND-ORDER CORRECTIONS 
TO THE SUSCEPTIBILITY AND ORDER PARAMETER 

To find the corrections to the phenomenological 
theory, let us represent II (q, T) in the form of a dia­
grammatic series in the functions D(O)(q, T): 

n('1.r) ~ 0 :V + -e- + ~ +~ 
f 2 3 4 5 

(12 ) 

+\29+~+~+~+~+ ... 
6 7 8 9 to 

where the lines with pOints correspond to the order 
parameter U. In the expansion (12) there are no dia­
grams containing in the internal lines polarization in­
sertswith one vertex, which is easy to understand, re­
membering the definition of D(O)( q, T). The susceptibil­
ity X can be computed on the basis of the relation 

(13) 

where the polarization operator 1I differs from II by 
the absence of the first two diagrams in (12). The order 
parameter will be determined with the aid of the for­
mula (8) and the condition aF/aU = O. 

The distinctive feature of our problem consists in 
the fact that in each subsequent approximation in y the 
basic Green function D(O)(q, T), or, more exactly, the 
parameter Ko, should be redetermined. Therefore, 
D(O)(q, T) is, generally speaking, not the zeroth-order 
Green function; it only serves as the basis for the cor­
responding diagrammatic expansions. On account of 
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this, the choice of the diagrams in each order will be 
made not according to the number of vertices but ac­
cording to which power of y the contribution ~f the dia­
gram in question is proportional to. In particular, in 
computing X- 1 in the first approximation, it turns out 
to be necessary to take the two-vertex diagram 4 in (12) 
into account. This, however, does not mean that there is 
no connection at all between the number of vertices of 
a diagram and the power of y. As is easy to show, the 
increase of the number of vertices of a diagram leads 
to the monotonic increase of the power of y, to which 
the corresponding contribution is proportional; in this 
sense the expansion (12) is quite adequate for the formu­
lated problem. 

So, let us express K~ in terms of u2 up to the first 
order in y. Solving the equation 

(14) 

which is obtainable from (6) by expanding the arc tan­
gent, we have 

. u' 1Jtt ( u' ) 'I, 
xo'=-+1-1-- -+t-1 

2 2 2 . (15 ) 

The diagram 4 in (12) also gives a contribution of the 
order of y to X- 1 : 

(16) 
= T~'U> J dq ,., a1Jttu' 

2(2Jt)' (axo'+c'q') , 4%,' 

Since X -1 = D-1( 0, T)/ Q, the equation for the determina­
tion of u can be obtained by substituting into (13) the 
expression (16) for 11(0, T) in the first approximation 
and then integrating (13) with respect to u with allow­
ance for (15). This equation has the form 

u' 1Jtt (U' ) 'I, 
6+ u(t-1)-T u 2+t-1 =0. 

Iterating (17) up to first oder in y, we find u2 in the 
first approximation: 

(17) 

(18) 

Here we have introduced the parameter a = yrr/2, and 
have also dropped in the brackets the term that vanishes 
as T - O. Further, we can find the inverse susceptibil­
ity X- 1• Combining (13), (15), (16), and (18), and again 
neglecting the nonsingular-in the temperature-term, 
we obtain 

x--'=2..: (1 +cr/Y8..:). (19) 

The computation of X- 1 above the Curie point is elemen­
tary. From (13) and (15) we at once find 

x+ -'=..:(1-crd:r) (20) 

As was to be expected, the correction terms in (18)­
(20) are similar in form to the corrections found earlier 
in[2,4-8]. Of considerably greater interest, however, is 
the fact that the results obtained above for the field 
model also coincide quantitatively (Le., right up to the 
numerical coefficients) with the corresponding formulas 
for the ISing model[8]2) , the only difference being that 
the formulas (18)-(20) and the analogous formulas ob­
tained in[6] contain different small parameters (a and 
Q = 3 {6/2rrrg, where ro is the interaction radius) that 
are of different phYSical nature and that cannot be trans­
formed into each other with the aid of a transformation 
of the model constants. The question arises whether the 
coincidence of the numerical coefficients of the first-
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order corrections for the model (1) and the ISing model 
is not fortuitous. This question can be answered (with a 
definite degree of certainty) after computing the second­
order corrections to X- l and u2 for the field model and 
comparing them with the results obtained by Yaks, 
Larkin, and Pikin. With the same end in view, we shall 
also find the first- and second-order corrections to the 
specific heat. 

The diagrams that must be taken into account when 
determining X- l and u2 in the second approximation are 
given in (12). The diagram 3 has already been computed 
in(14); the corresponding analytic expression has, up to 
terms that are unimportant for T - 0, the form 

(21) 

The external momentum here has been assumed, in ac­
cordance with (13), to be equal to zero. On account of 
this same condition, the diagram 5 in (12) differs from 
the diagrams 6 and 7 only in having a different combina­
torial factor; their combined contribution is equal to 

5 T'~'U' 5 ,. 
----?--, S dqdq'D""(q)D,O'(q')D,O'(q+q')", - (20 ~. (22) 

4 (_,,) 6)(0 

It is conve nie nt to evaluate the inte gral in (22) not 
directly, but through the differentiation with respect to 
aK~ of the diagram integral (21) with allowance for the 
fact that an invariant-cutoff condition on the momentum 
qD is implied in both integrals. Differentiating in its 
turn the integral (22), we can also find the sum of the 
last two diagrams in (12). It is equal to 

(23) 

Finally, the evaluation of the diagram 8 in (12) yields 

"'-ao'u'/4xo'. (24) 

In the last three expressions, we have, as in (21), re­
tained only the terms that are dominant for T - O. 

The course of the subsequent computations remains 
the same as in the calculation of the first-order correc­
tions. The equation for the order parameter has the 
form 

_,::,_ Tll-OU V u' -1:+o'{~ln[h' (U' _ .)] + .u +2... u } =0 
6 2 3 ·2 3(n'/2-.) 6 . 

Solving it iteratively, we obtain 

( l/To' 0' ) u'=6. 1+0 -+---ln2.by' . 
• 2. 3. 

(25) 

(26) 

Further, we can find the susceptibility in the ordered 
phase: 

_. 2 ( 0 + 3a' o· b ') l(- =. 1 +-=- ---ln2T y . 
l'8T 8. 3T 

The computation of the susceptibility above the Curie 
point presents no difficulty; the result has the form 

(27) 

(28) 

We defer the discussion of the formulas (26)-(28) to the 
final section, and proceed now to the computation of the 
Singular part of the specific heat. 

4. THE SPECIFIC HEAT IN SECOND·ORDER 
PERTURBATION THEORY 

It is convenient in our case to compute the specific 
heat with the aid of the relation[l5] 

c= -£ [!:!..._ (~)'/~] c = 2T, (!!::..)' 
2 fia' fia au au" 0 ~ dT,' (29) 
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it being necessary in the determination of the specific 
heat above the phase-transition point to drop the second 
term in the square brackets. The derivatives of the free 
energy entering into (29) can be represented in the form 
of a sum of vertex diagrams of a definite type(15). Thus, 
a 2F / a a a V is expressible as a sum of diagrams with one 
angle: 

fi'F I 
--= - -SB(O,O,O)dU, 
fi(2 fiU il 

(30) 

~><tx +~+x0+><2~>~+~-4->« 
10 11 '2 13 14 15 16 

(31) 

-~+4+~+~+4+~+~-" 
17 18 19 20 21 22 23 

which can be easily verified by substituting (8) into the 
Ward identity 

fiD-' (0, T)lfia=-B(O, 0, O)/~. (32) 

The derivative a2 F/aa 2 is equal up to a constant factor 
to the sum of the diagrams with two angles: 

a'Flf)(2'=B(O, 0, O)/~', (33) 

where TB(q, q', q") includes the diagrams 2,5,9, and 
10 from the diagrams shown in (31). The computation of 
the specific heat thus reduces to the evaluation of the 
diagrams for B(O, 0, 0) and 13(0,0,0), the integration 
of B( 0,0, 0) over V, and the substitution into the ob­
tained formulas of the previously-foWld expression for 
u, 

It is not difficult to show that the evaluation of the 
first diagram (the bare vertex) yields the results of the 
phenomenological theory; the jump in the specific heat 
turns out in this case to be equal to 7'2CO• Allowance for 
the next two diagrams allows us to obtain the first-order 
corrections to the Landau theory. Finally, to find the 
speCific heat in the second approximation, we must take 
all the remaining diagrams in (31) into accoWlt. The 
principle by which the diagrams in (31) are chosen be­
comes clear if we notice that the power of y, to which 
the contribution of the diagram for B or B is propor­
tional, is connected with the number m of vertices and 
the number l of lines with points by the relation 

n=m-li2-1. (34) 

Let us briefly discuss the evaluation of the diagrams on 
the second and third lines in (31). Each of them can, 
generally speaking, be fOWld, say, with the aid of the 
Feynman parametrization method. It is more conven­
ient, however, to evaluate at once the sums of the dia­
grams on each line, noting that they are expressible in 
terms of (23). In fact, because the external momenta 
are equal to zero, the diagrams 13-16 on the second 
line are equal to the diagram 10, while the diagrams 11 
and 12 differ from the diagram 9 only in having differ­
ent numerical coefficients, the combinatorial factors of 
these eight diagrams being such that their sum is sim­
ply proportional to (23). In its turn, the contribution of 
the seven diagrams of the third line can be obtained 
from (23) by differentiating the corresponding integrals 
with respect to aK~. Finally, the sum of all the fifteen 
diagrams 9-23 is equal to 
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~502U'/6Xo'-o'u'/3xo'. (35) 

The computation of the remaining diagrams for 
B(O, 0, 0) is elementary. Integrating then B(O 0 0) 
over U with allowance for (15), and substitutin~ (26) 
into the resulting expression, we obtain 

c_=co('/,+o/1'2't-o'/2't). (36) 

The calculation of the specific heat in the disordered 
phase yields 

C+=CoO/41'T+O(O'). (37) 

Notice that the second-order correction to the specific 
heat above the Curie point is identically equal to zero. 

5. DISCUSSION OF THE RESULTS 

So, we have found the first two correction terms for 
the susceptibility, order parameter, and specific heat 
in the case of a displacive-type phase tranSition. As has 
already been noted, it is of interest to compare our re­
sults with the analogous formulas for the ISing model [6]: 

It is quite evident that in the first approximation the re­
sults for the field model and the Ising model coincide up 
to the replacement of a by the small Yaks-Larkin-Pikin 
parameter O!. Let us recall, however, that above we 
neglected everywhere the terms that were small for 
T - 0, and therefore the last assertion is valid only for 
T « 1. In the second order the corrections to u and 
x-\ besides terms of the type a2/T, also contain a 
logarithmic term, the numerical coefficients in front of 
r- 1 in T for both models being equal and those in front 
of T- 1 being different!). Since the region of applicability 
of the perturbation theory is limited by the condition 
T » y2, the second-order corrections to u and X-1 in the 
ISing and field models are Significantly different. How­
ever, the equality of the coefficients in front of r-1 in r, 
as well as the equality of the coefficients of the second­
order corrections to the specific heat, is, apparently, 
not accidental. The point is that as we approach the 
critical region the logarithmic term becomes dominant, 
and the coincidence of the coefficients of the dominant 
terms of the expansions for the different models prob­
ably reflects the universality of critical behavior. This 
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fact is also in accord with the possibility, first noted by 
Gor'kovand Pitaevskii[16J, of reducing the statistical 
sum for the phonon gas to the statistical sum of the 
ISing model in the strong-coupling case. 

In conclUSion, I should like to thank Y. G. Yaks and 
N. M. Plakida for a discussion of the results of the 
paper and A. A. Abrikosov for his comments. 

I)The technique employed here is described in greater detail in [14,15). 
2)Nontrivial here is, of course, the coincidence of the coefficients for 

the two models in only two of the three formulas (say, in the expres· 
sions for X~I and X:I), since the parameter a was introduced precisely 
on the basis of a comparison of the third formula (for u2) with the 
analogous relation for the Ising model. 

3)The coefficients in front of a21T contain ln32 orin 16, whereas those 
in front of a21T contain In 2b-y2 or In b-y2. 
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