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The structure of the zero-phonon lines (ZPL) is considered for A~E(e) and A~T(t2) impurity-absorption 
transitions in Jahn-Teller centers that interact weakly with the local oscillations. It is shown that in the 
absence of a frequency effect the ZPL comprise an equidistant set of lines spaced - B 2/hw apart. where B 
is the linear vibronic coupling constant. A weak frequency effect makes the ZPL structure less sharp but 
affects its envelope only slightly. The ZPL structure appears again in the presence of a strong frequency 
effect. the line intensity decreasing exponentially with frequency within each series. Effects due to 
interaction between Jahn-Teller centers and the continuous spectrum of the crystal oscillations are 
considered. It is shown that there is no temperature shift or broadening of the ZPL in second order in the 
linear vibronic-coupling with the crystal phonons. 

The theory of zero-phonon lines (ZPL) in crystals 
was developed for impurity centers with nondegenerate 
electronic states(1,2]. The generalization of the theory 
to the case of orbital degeneracy is not trivial, since 
the electron-vibrational interaction leads to the com­
plicated problem of the Jahn-Teller effect (JTE)[3-5], 
and the energy spectrum of the system cannot be ob­
tained analytically at arbitrary coupling. Yet it is well 
known that the change of the spectrum by the vibronic 
interaction leads to a peculiar type of broadening or to 
the appearance of a fine structure in the ZPL. ThUS, in 
systems with local oscillations a small change in the 
lattice-vibration frequencies in an optical transition 
(the "frequency effect,,[2]) makes the ZPL structure 
more complicated[ II. If we disregard the ZPL broaden­
ing mechanisms due to virtual processes in which a 
dissipative subsystem takes part (crystal vibrations), 
we can propose that specific mechanisms for the struc­
tural broadening of ZPL should exist in Jahn-Teller 
systems. In the case of weak vibronic interactions, the 
indicated peculiarities are due to the fact that the levels 
of the vibrations active in the JTE are multiply degen­
erate and are not merely shifted (as in the absence of 
the JTE), but also split by the vibronic interaction. 

The shape of the ZPL of the multiplet-multiplet 
transition was considered in[6-B], but the approximations 
assumed in those papers did not make it possible to in­
vestigate the ZPL structure due to the interaction with 
the local oscillations. We consider below the ZPL 
structure in Jahn-Teller systems with local oscillations 
in the case of a weak linear vibronic coupling. The re­
sults of the first two sections pertain also to the case 
of an interaction between a Jahn-Teller impurity center 
and optical vibrations of the crystal at negligibly small 
dispersion. The method of separating the effective mode 
that plays in this case the role of the local oscillation is 
described in[9]. 

The ZPL are investigated for impurity ions with 
cubic local symmetry for A - E and A - T transitions 
from the nondegenerate state A to the orbital doublet E 
or the triplet T (TI' T2). It is also assumed that the 
considered states are singlet in the spin, so that the 
problem is thus not made complicated by spin-orbit in­
teraction effects. 

In the Conclusion we consider certain consequences 
of the interaction with disperse crystal oscillations. 
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1. TRANSITION TO AN ORBITAL DOUBLET 

The Hamiltonian of the electron-vibrational system 
will be written in the linear-harmonic approximation: 

H(r,q)=Il,(r)+ L Vrr(r)qrT+H.h(q), (1) 
rT 

where r and q are the configuration coordinates of the 
electrons and nuclei, qry are the normal coordinates 
and transform in accord with row y of the irreducible 
representation r. The summation in (1) is over all the 
vibrational representations r and their rows y, which 
are active in the JTE. Going over to the matrix repre­
sentation in the basis of the electronic functions of the 
orbital doublet, and using the Wigner-Eckart theorem, 
we obtain the Hamiltonian of the Jahn-Teller system for 
the case of an orbital doublet in the form 

where(3.5J 

H=Ho+V, 

HO=£E·l +'/,nw (p.'+p,'+q,,'+q,') .1, 

V=B(q"o%+q,Oy). 

(2) 

(3) 

Here E:E is the energy of the E level, PI' and qy are 
the momenta and the normal coordinates of the degener­
ate E mode active in the JTE (the basis is chosen in 
standard fashion[IO); u ~ 3z2 - r2, v ~ l3(x2 _ y2) are 
the row indices of the E representation!, w is the 
oscillation frequency, B is the electron-vibrational in­
teraction constant, 1 is a unit matrix, and !Jx and !Jy 
are the Pauli matrices in the basis l/!± = '1'( I u )±i I v»/ f2 
of the orbital doublet. 

The Schrodinger equation with Hamiltonian (1), (2), 
does not admit of an analytic solution at an arbitrary 
coupling constant B, and reduces to a system of two 
coupled dynamic equations[3-s1• Subjecting the Hamil­
tonian (1) to a unitary transformation 

(4) 

we obtain, accurate to second order in the coupling con­
stant, 

1 
VI') = ?"' , [[Ho• V], VJ. 

~" w 
(5) 

Calculation of the commutators that enter in (5) yields 
B' 1 ] VI') = -h;;;' [1 + To,(q"p"-q,,p,) . (6) 
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Formula (6) was obtained by another method by Moffit 
and Thorson[lll. It makes it possible to find the energy 
levels which, as seen from (6), are characterized by 
the absolute value of the projection of the electron­
vibrational angular momentum. The canonical transfor­
mation 

1 1 
QI=-=(P.+q,), Q,=-=(p,+q.), 

l'2 l'2 

1 1 
PI = -=(p.-q,) , P, = -=(P.-q.) 

l'2 l'2 

(7) 

reduces the Hamiltonian (5), (6) to the form 

B' 1 ( B') H=8.--. +- nol"i--cr (P'+Q') n!J) 2 n!J)' I I 

i ( B') +2 n!J)·1 +~cr, (P,'+Q,') , 
(8) 

which is more illustrative and is convenient for the in­
vestigation of ZPL. As seen from (8), the system of 
coupled dynamic equations corresponding to the Hamil­
tonian (1)-(3) split into two independent equations, owing 
the unitary and canonical transformations carried out 
in second order in the coupling constant. The corre­
sponding potential surfaces are two identical elliptic 
paraboloids, turned through an angle 1T/2 relative to 
each other in the (Ql, Q2) plane. The states I/!+ and I/!_ 
correspond now to new frequencies of the lattice vibra­
tions, viz., the state I/!_ corresponds to the frequencies 
W<;:2 = w( 1 ± B2/fi2w2), and the state I/!+ to the frequen-

. cies W({,)2 = w( 1 'f B2/fi2w2). 

We write down the formfunction of the zero-phonon 
transition A - E in the form 

~ ~ ~ 

KZPL(Q)=2sh'-f I: ~ L,exp[-~o(nl+n,+1)l 
"1-0 "z=O +. -

x I <1jlAldll\l±> 1'1) [nQ+8A+n!J)o(nl+n,+1) - 8E (9) 

-n!J)I(±) (n1 +4-)-n!J);±1 (n,++) + :], 

where &1 is the frequency of the absorbed light, Po 
= tiwo/kT, and Wo is the frequency of the E oscillations 
in the electronic ground state. In (9) we have neglected, 
for the sake of simplicity, the small deviation of the 
vibrational overlap integrals from unity. The integral 
intensity of the ZPL was normalized to unity. Introduc­
ing the notation 

( B')/ B' x= nQ+8,,-8.+n!J).-n!J)+- n!J)., b=--, n!J) n'!J)!J). 

f.l=1-~, D=I <I\lAldl1jlE> I', !J)o 
we rewrite (9) in the form 

8D ~ ~ ~ 
KZPL(X)=~Sh'+e-~.~ ~ e-~·(n,+n,ll)[x+(f.l-b)nl+(f.l+b)n,l. 

n,_' n,_' (10) 

It is seen from (10) that the ZPL is a superposition of 
two equidistant spectra with intervals ~± = I J.I. ± b I 
within each of them; their intensities are determined 
by the Boltzmann factors contained in (10). Thus, in the 
case of weak dynamic JTE, the ZPL acquire a fine 
structure. 

At J.I. = 0, when the frequencies wand Wo coincide, 
we obtain 

_ 8D sh'(~/2)e-HIZ/'1 06 (X ) 
KZP1 (x) - n!J)lbl 1-e-~" kJ. I) "b- m . (11) 

In real systems, the local oscillations interact anhar-
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FIG. I. ZPL structure for A .... E 
transition and weak Iahn-Teller coup-
ling with allowance for the frequency 
effect: J.I = -0.08.10-2, (B/hw)2 
= 0.49.10-2, i30 = 0.26. 

I," 

J( 

.X 

monically with the crystal modes, which have a continu­
ous spectrum. Allowance for harmonicity of this type 
as is well known(11, leads to two phYSical consequenc~s: 
1) a change by a finite number of times in the Debye­
Waller factor (vanish.!ng of the Bessel function 10 ), 

2) decay broadening y of the electron-vibrational levels. 
The overall intensity of the ZPL for the considered 
problem is immaterial, and is assumed equal to unity. 
The decay broadening of the local-oscillation levels as 
shown by Krivoglaz(11, can be taken into account ph~­
nomenologically by introducing the natural width y. If 
Y 2 ~, the fine structure cannot be resolved spectrally, 
and the effect in question is manifest by a broadening of 
the ZPL. In this case the line shape is described by the 
envelope of a "fence" of equidistant lines (11) and con­
stitutes a symmetrical curve with exponentially de­
creasing wings. The ZPL half width on = 2kTI blln 
2/tlw increases in this case linearly with temperature, 
in contrast, e.g., to Raman broadening, where On 
~ T2Yl 

At J.I. = b (~- = 0) we obtain 

2D ( ~') . ( ~. ~o I x I) ( X) Kzpdx)=--sh - exp ---- - e--
61i!J), 2 2 2 Il. Il. 

(12) 

The distribution (12) is an equidistant fence whose en­
velope decreases exponentially to the right (J.I. < 0) or to 
the left (J.I. > 0), depending on the sign of the frequency 
effect. 

At ~ + » ~ _, each of the lines (12) constitutes a fence 
with spacing ~_; the line intensities within each series 
decrease like exp ( -{3x/ ~_). The cases of intermediate 
ratios of {3 and b yield more complicated ZPL pictures 
(see, e.g., Fig. 1). The damping constant y in Figs. 1 
and 2 is chosen such that the fine structure can be re­
solved. The scale along the ordinate axis is arbitrary, 
and only the relative intensity of the peaks is meaning­
ful. The scale along the x axis is the period of the fine 
structure of the spectrum (B/tlw)2. 

2. TRANSITION TO ORBITAL TRIPLET 

The modes active in the JTE for the orbital triplet 
(Tl' T2) are the E and T2 modes, the interaction with 
which in second order in the coupling constants yields 
additive contributions to the effective Hamiltonian. In 
this approximation, the interaction with the "adiabatic" 
E oscillations leads only to an equal shift of all the 
vibronic states (static Jahn-Teller effect). The dynamic 
Jahn-TeUer effect takes place in the T( t2 ) problem 
(active T2 oscillations), and the Hamiltonian of the in­
teraction with the T2 oscillations takes the form 

(13) 

where C is the coupling constant with the trigonal 
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FIG. 2. ZPL structure for A ... T transition and weak Iahn-Teller 
coupling in the absence of the frequency effect (Il = 0); a) f3 = 2.74, 
b) f3 = 1.45, c) f3 = 0.37. 

oscillations, and the matrices Ty in the basis of the 
electronic functions of the orbital triplet take the form 

""'<=(~ ~ -~), ""'"=( ~ ~ -~), ""'~=(-~ -~ ~). 
o -1 0 -1 0 0 0 0 0 

(14) 

With the aid of the unitary transformation (4) we obtain 

v(O) =~~(LS-2), 
2 hw 

(15) 

where w is the frequency of the trigonal oscillations in 
the excited electronic state, L = [qp 1 is the angular­
momentum operator of the three-dimensional oscillator, 
q and p are vectors with components qi;' qf/' qc and 
p~, P1j' PC, and S is the vector of the effective spin 
S = 1 acting in the space of the basis functions of the 
orbital triplet: 

Sf. = (~ g - ~)' , S" = ( ? ~ ~), S~ = ('~ -~ ~), (16) 
0, 0 -, 0 0 0 0 0 

so that [TTl = -is. The "spin-orbit interaction" (15) 
commutes with the total-angular-momentum operator 
J = L + S, so that the energy levels of the system, de­
fined by the expression[lll 

3 1 C' 
EnLJ=hw (n +~) +--[/(1+1)-L(L+1)-61+8" (17) 

2 4 hw 

depend on the quantum number of the total angular mo­
mentum J = L ± 1, L at L ~ 1 and J = 1 at L = 0, and 
the angular momentum of the vibrational system with 
speCified n takes on the values L = n, n - 2, 
n - 4, ... ,1 or O. 

The matrix element of the electron dipole moment, 
which enters in the expression for the transition proba­
bility, is calculated with the eigenfunctions I nLSJM ) 
made up in accordance with the rule for the addition of 
angular momenta[l21. Since the perturbation operator 
acts in one (electronic) subsystem, the transition prob­
ability is calculated by the standard procedure of the 
theory of angular momenta[l21 and leads to the appear­
ance of a statistical weight (2J + O. The expression 
for the form function of the singlet-triplet transition is 
of the form 
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K (Q)=~ (2.h~)3 ~ ~ ~ (2J+1)exp(-~,n)6{hQ+eA-eT 
ZPL 3 - 2 l...; l...; "'-" 

3'~' J 1 LC' (18) 
+h(w -w) (n+-) ___ [/(/+1)-L(L+1)-61}. 

, 2. 4 nw 

Neglecting for simplicity the difference between the 
frequencies Wo and w of the trigonal oscillations in the 
ground and excited states, we obtain after certain trans­
formations 

KzPL(Q) =K_ (Q)+K,'(Q) +K,(Q) +K+ (Q) ; (19) 

N m 1 C' ] 
K_(Q)=;) r. (2n-i)e-'" Ii [n(Q-Q')+Tii;"(n+1) , 

N"-' [1 C'] 
K o'(Q)=-;;-[3-e-'Ie-'[1-e-'I-'6 n(Q-Q')+Thw' (20) 

K,(Q)=N6[h(Q-Q,) I, 

N m 1e'] K+(Q) = ""3 r. (2n+3)e- n'6[ h(Q-Q')-""2ii;"n ; 
11 .... t 

8T-8A C' 
Q,=-----

h !t'w 

Thus, the ZPL is an equidistance picket fence with 
spacing C2/2hw. The integral intensities of the four 
ZPL components (20) depend on the temperature in the 
following manner: 

e-' e-'(3-e-') (1-e-')' 
1-=3' 1,'=3(1+e') ' 1,= 1+e-' , 

e-'(5-3e-') , 
1+= , 1-+1,+1,+1+=1. 

3(1+e-') 

(21) 

At T = 0, as expected, the ZPL consists of only one 
narrow Ko line of the 0 - 0 transition. An increase of 
the temperature leads to a decrease of its intensity 10 
and to a "flareup" of the wings. From an analysis of 
the temperature behavior of the relative intensities 
I~/Io and ri/lo of the spectral components closest to 
K~ and Ko from the left (K-) and right (K.) wings it 
follows that at kT;> tiw/ln 2 the intensity of the central 
peak K~ prevails. In the region kT ~ tiw/ln 2 the in­
tensities I~, 10, and II.l) are approximately equal. Since 
their intensities at all temperatures greatly exceed 
II!), the spectrum is asymmetrical. At hw/1o(}'s) 
< kT < fiw/ln ( %) the intensities of the lines of the left 
wing decrease monotonically with the number, whereas 
the right wing, starting with temperatures kT 
~ tiw/1o ( }' 5), has a maximum. Finally, at kT 
> tiw/ln ( '1'7), a maximum appears also in the left wing. 
The numbers of the corresponding lines are given by 
the integers closest to the expressions 

(-) _I 5e-'-1 1 (+) _1 3e-'-1 I 
nmax - 2-2e~a ' nmax - 2-2e-P • (22) 

Thus, three qualitatively different types of ZPL are 
possible: low-temperature (Fig. 2a), when the intensity 
of the 0 - 0 transition 10 predominates; intermediate 
(Fig. 2b), when the intensities 10, I~, and II!) are com­
parable; and high-temperature, when the line K~ is 
much higher than the other lines (Fig. 2c). In the case 
of extremely high temperatures, the intensity of the 
central peak I~ behaves like (2 - f3 2 )/6, in which case 
the ZPL intensity is equally divided between K~ and the 
wings K_ and K •. The wing widths, however, increase 
like kT, so that their peak intensities decrease with 
increasing temperature. At high temperatures, it is 
appropriate to speak of an envelope of the ZPL wings, 
which in this case takes the form 

1 4 (nw~) 2 {2!tw~} Kzn(x)=-6(x)+- - Ixl exp ---lxi, 
3 3 C C' 
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x=hR. - (hR., - ~~) . 
2 hw (23) 

:rhus, in the case of high temperatures, too, the ZPL 
~s ag~in transf~rmed into a narrow line, but its position 
is shifted by C /2fiw towards the long-wave region 
relative to the frequency of the 0 - 0 transition which 
comprises the entire ZPL at T = O. ' 

The frequency effect (wo ~ w) is taken into account 
in the same manner as for the A - E transition. The 
ZPL structure is in this case much more complicated. 
Without citing the corresponding results, we note only 
that a weak frequency effect causes broadening and 
asymmetry of the K~( n) line which is the most intense 
one at high temperatures. 

3. ALLOWANCE FOR THE DISPERSION OF 
JAHN·TELLER OSCILLATIONS 

The theory presented is based essentially on the as­
sumed model of interaction with a single degenerate 
local mode. It is known, however, that allowance for the 
dispersion of the oscillations leads to qualitatively new 
consequences in the ZPL theory(1] and therefore calls 
for a special analysis. In the case of a strong dynamic 
JTE, the problem is extremely complicated l ), but in the 
considered case of weak coupling we can use the method 
of cumulative expansions. Within the framework of this 
approach, we lose information concerning the fine 
'structure of the ZPL, resulting from the appearance of 
local and pseudolocal phonon states due to the electron­
phonon interaction. This aspect of the problem is dis­
cussed by us in[9]. Without touching in this communica­
tion on the indicated subtle details, we shall discuss 
only the general features of ZPL in Jahn-Teller sys­
tems, neglecting the vibrational spectrum. 

The transition to the crystal vibrations is effected 
by expanding the symmetrized displacements qr y (r 
is the vibrational representation) in the normal lattice 
coordinates QKlI (K and II are the wave vector and the 
polarization index): 

where the expansion coefficients aKII(ry) satisfy the 
orthogonality relation 

~ a". (r,) a". (f',')= b •• (r) 6rr,6yy" 
0" 

(24) 

(25) 

The sign of the sum denotes here integration over the 
directions of K. The operator of the Jahn-Teller inter­
action with the crystal modes takes the form 

V = Lr.,Q... r xv = L V"a .. (r'Y). (26) 
ry 

The unitary transformation (4) transforms, in second 
order, the Hamiltonian to the form (5), where 

V") = - .E 2h~ •• {r"'+i L p.,Q .. [r •• ,r •• ]}. (27) 
., ... 

Thus, also in the case of a continuous oscillation 
spectrum, the unitary transformation (4), (5) transforms 
the electron-phonon interaction Hamiltonian into a form 
quadratic in the Bose operators, i.e., it reduces the 
problem of the weak dynamic JTE to the problem of the 
''frequency effect." 

Performing now the calculations, we obtain for the 
E term 
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V(')=B' ~_1_{~ , ~ ~hw., 2 b .. (E) 1-(J,~P .. Q •• .. ... (28) 

x [a .. (Eu)a •• (Ev)-a .. (Ev)a •• (Eu)] }. 

Analogously, using the commutation relation 

[T" T,.] =-ie"""S,,, (29) 

for the matrices (14) and (16), we obtain for the T term 

V(')=-c'1:, h:" {b •• (T')'1 ++ L P .. Q .. ([a • .a .. ]S) }, (30) 
xv .. 

where aKIl is a vector with components aKlI( T2y)' 

The expressions for the shift and the broadening of 
the ZPL, with allowance for the electron-phonon inter­
action terms that are quadratic in the Bose operator 
were obtained by Krivoglaz[l]. The temperature shift 
which is the first term of the cumulative expansion of 
the generating function, takes the form 

&0= r.w .... cth(~ • .I2), (31) 

where w KII K'lI' is the coeffic ient of the "frequency" 
term in the Hamiltonian of the electron-phonon interac­
tion. 

It is seen from (28), (30), and (31) that for both the 
A - E and the A - T transitions we have <l~) = O. The 
absence of a ZPL temperature shift due to the interaction 
of the impurity electrons'with degenerate modes, is an 
essential specific feature of the dynamic JTE in the 
case of weak coupling. Thus, the ZPL temperature shift 
observed or weak electron-phonon coupling is due only 
to the fully-symmetrical oscillations, and therefore the 
experimental data make it possible to separate their 
contribution in this case. Cumulants of higher order 
lead to a temperature broadening of the ZPL. The cor­
responding formulas were derived in[7,8). 

4. CONCLUSION 
Summarizing the results of the study of the ZPL for 

the weak dynamic JTE, notice must be taken of the fol­
lowing: In all the considered cases, the ZPL has a dis­
tinctive shape and a fine structure. In the absence of 
the frequency effect, the ZPL of the A - E and A - T 
transition constitutes an equidistant set of lines, the 
intervals between which do not vary with temperature 
and make it possible to assess the dynamic Jahn-Teller 
coupling. The ZPL of the A - E transition, in contrast 
to the A - T transition, is symmetrical, and its en­
velope decreases exponentially in the wings. Allowance 
for the frequency effect leads to a complication of the 
fine structure, since the n-n transition lines cease to 
become superimposed on one another. The line intensity 
is transferred in this case to the left (J.l > 0) or right 
(J.l < 0) wing, and this leads to an appreciable asym­
metry of the ZPL. In the case of an extremely weak 
frequency effect I J.l I « (B/liw )2, each of the lines of 
the equidistant ZPL structure is slightly split; when 
account is taken of the natural line width, this leads to 
a broadening of the peaks of the equidistant structure. 
This broadening increases with the number of the peak, 
this being connected with the multiplicity of the splittings 
of the Jahn-Teller levels. At I J.l1 » (B/fiw)2 the ZPL 
constitutes a set of peaks due to the frequency effect, 
each of which is split by the dynamic JTE. Finally, at 
I J.l1 ~ (B/fiw)2 the ZPL structure is complicated and 
irregular, although in the particular case when the in-
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tervals of the structure due to the frequency effect are 
multiples of the Jahn-Teller splittings, the spectrum 
again becomes equidistant. 

All the discussed effects can be interpreted in other 
terms as a manifestation of the so-called electric 
modes[9,14 1, due in this case to the Jahn-Teller inter­
action, in the shape and structure of the ZPL. 

A comparison of the theory with experiment is a 
separate problem, which is not discussed in this article. 
We note only that the condition for the appearance of a 
fine structure of the ZPL, namely the weak electron­
phon:m coupling, is practically always realized for 
transitions inside the 4f shell of rare-earth ions, and 
also for the intraconfiguration (t~en - t~en) transi­
tions in d shells of transition metals (e.g., the ruby R 
line-the transition tA2g(d) - 2Eg(d) in Cr3T :AlzOs). 

Attention should be called in this connection to the 
fact that identification of the components of the ZPL 
splitting to Stark components of electronic levels may 
not be correct. As follows from the results of the pres­
ent article, this structure can have a Jahn-Teller 
nature and may not be due to the influence of the low­
symmetry crystal fields. Lowering of the temperature 
leads, of course, to a vanishing of the Jahn-Teller 
structure, leaving in the limit at T = 0 only one line of 
the 0 - 0 transition, but in view of the high multiplicity 
of the degeneracy of the excited states, the intensities 
of the other lines decrease with decreasing temperature 
relatively slowly (see, e.g., Fig. 2a). 

I)See in this connection the paper by Wagner (13). 
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