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The dynamic adiabats of water from initial states with different initial density (porous ice) are investigated
in the pressure region 30-500 kilobars, and also the isoentropic and double compressibility of water. A

thermodynamic description of the results is given.

1. INTRODUCTION

Interest in study of the compressibility and equation
of state of water is due first of all to its abundance in
nature both as an independent chemical compound and
as a component part of numerous natural compounds.
Of studies devoted to this question, we will cite here
the results of Bridgman,!!] Walsh and Rice,[®®] Scid-
more and Morris,!*] Kuznetsov,!®) Gurtman, Kirsch,
and Hastings,!®! and also investigations carried out with
participation of the authors of the present work.("®] In
the articles mentioned, shock compression pressures
of 1.1 Mbar were achieved in measurements by abso-
lute methods and ~15 Mbar in comparative measure-
ments. However, all of the measurements had the same
‘major deficiency: In the initial states before the shock
compression the density remained practically constant
and the possibility of its variation was not utilized. In
addition, a decrease of the initial density permits the
limits of measurement of thermodynamic parameters
to be extended substantially.

Since the maximum pressures at which ice melts
amount to 2 kbar, the dynamic adiabats at high pres-
sures, independent of the initial state, are character-
ized by the compressibility of the liquid phase and by
‘‘adiabats of ice’’ we mean the dynamic adiabats of
water, obtained from initial states of the solid modifi-
cation with various initial densities. Here it is not ex-
cluded that in comparatively small regions at low pres-
sures, other modifications of H,O may be realized in
addition to the liquid phase.[!]

In the present investigation the principal attention
was devoted to obtaining dynamic adiabats from initial
states with different initial densities and using these
data to determine the equation of state of water.

Studies of the double compressibility of water and
measurement of the velocity of sound in water, reported
in the present article, are devoted to solution of the
same problem—selection of a demonstrated form of the
equation of state.

2. EXPERIMENTAL RESULTS

1. Dynamic compressibility of ice. Investigation of
the dynamic compressibility of ice was carried out with
the reflection method and the electrical-contact meas-
urement technique.[®] The velocity of the shock wave in
the samples was recorded; its intensity was varied in
different series of runs as the result of use of a set of
explosive systems!'®»*!) based on acceleration of alumi-
num and steel plates to various velocities by the
products of explosion of powerful high explosives.

The shock wave was conducted to the samples
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through a screen from the accelerated metal plates.
Here the initial states of compression in them were
known. This permits us, using the measured value of
the wave velocity D, the P-U diagram method,®) and
the conservation laws, to find the remaining compres-
sion parameters of the material investigated: U—the
mass velocity of the material behind the shock-wave
front, and P—the pressure.

P=v6='DU, v=ves(D-U)D~* @.1)

(voo and v are the specific volumes before and after
compression).

The samples investigated were prepared from a
sieved powder of ice (the size of the particles did not
exceed 300 ) at a temperature of about —15°C by pres-
sing them to a given density (poo = 1/Veo): 0.35, 0.60,
and 0.915 g/cm?®. The experiments were carried out
under the same conditions (negative temperatures). In
each series of experiments the value of the wave
velocity was found from five to eight independent re-
sults. The number of recordings, as a rule, was deter-
mined by the requirement of obtaining a mean square
error in the average value of the wave velocity no
greater than +1.5—2%. The experimental results ob-
tained are shown in Table I.

The functions D(pgo) (Table I) are described by
smooth curves which permit calculation of any adiabats
of ice in the range of initial density from 1.0 to 0.35
g/cm?®,

In Figs. 1 and 2 we have shown the experimental

TABLE I
- Parameters and screen
material Average
density of | D, km/sec U, km/sec P, kbar vo/V
samples,
U, km/sec P, kbar g/em?
Al 0.915 9.69 5.67 503 2.205
397 1159 0.60 9.52 6.20 354 1.720
0.35 9.39 6.75 222 1.245
Al 0.915 9.35 5,24 448 2,081
3.65 1009 0.60 8.86 5.77 307 1.720
0.35 8.92 6.24 195 1.165
Al 0.915 8.52 4.84 377 2.118
2.32 878.6 0.60 8.35 5.27 264 1.626
0.35 8.12 5.72 162 1,184
0.915 7.39 4.0; fgg ? g};?
0.60 6.97 ° 4.4 R
272 66t {0.35 6.70 4.77 112 1.217
Cu 1,75 1034 0915 6.12 3.08 172 1.842
Al 0.915 5.02 2.36 108 1.726
15 298.6 0. 4.44 2,57 68 1.424
0.35 3.93 2.76 38 1.176
Al 114 211 0.915 4.19 1.84 70.5 1.631
Al 069 16 0.915 3.27 1.15 34.3 1,411
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FIG. 2. Shock adiabats and expansion isentropes calculated from

the equation of state: solid curves—shock adiabats, dashed curves—
expansion isentropes (left scale). On the right are the adiabat of water
and the double-compression curve (dot-dash curve—theory, O—experi-
ment) up to pressures of 1.5 Mbar. The numbers on the curves denote
the theoretical temperatures in K.

results in coordinates D-U and P-p. They correspond
to relations of the form

D=C/+iU, 2.2)

by which each of the z-:‘.ets of experiments for a given
initial density could be described. The values of the
constants are as follows:

C/=157 km/sec, A=1.465 for p,=0915 g/cm?®;
C/=074 km/sec, A=1.425 for pw=0.60g/cm?;
Cy'=0, A=1.425 for p,=035g/cm®.

2. Double compression of water. Useful information
on the thermodynamic properties of water can be ob-
tained also by measurement of its double compressibil-
ity,[*®13] j e., determination of the pressure and density
of water compressed by two consecutively passing
shock waves. The states arising here are characterized
by substantially lower temperatures of heating of the
water in comparison with single compression to the
same densities. The accuracy of the double-compres-
sion method depends directly on the differential in the
pressures and mass velocities in the shock adiabats of
the barrier and the water. The greater this differential,
the more accurately are determined the double-com-
pression parameters being recorded. In the present
work we used as a barrier samples of heavy metals—
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TABLEII

Parameters of incident waves |- Parameters of reflected waves
D, , P, Material of | p,,, AU, | P,
km/sec \ km/sec Kbar barrier Kkm/sec kmjsec | kbar vo/v
Tin . 10.16 2.46 943 2.902
8.50 464 394 [ Copper 10.97 2.83 1076 2.98
Tungsten - 10.9%4 341 1215 320
7.66 3.93 301 Tungsten 10.27 2,94 922 2.88
" C, km/sec
9 V4
o §/
FIG. 3. Comparison of the experi- ¢ /
mental (solid line, O—experimental 7 izt
points) and theoretical dependence s 5/
(dashed curve) of the velocity of 5 y
sound on the degree of compression '
of water. i
J 1
2 / i

-~

1.5 20 250

tungsten, copper, tin. The double compression of water
was determined for two different initial states. The re-
sults obtained are shown in Table II (see also Fig. 2).

3. Isoentropic compressibility of water.! An inde-
pendent parameter which can be used to check the cor-
rectness of the parameters chosen for the equation of
state is the velocity of sound C? = ~v%(8P/av)g, which
characterizes the slope of the isoentrope or the isoen-
tropic compressibility of the material. The methods
which have been develops for detection of this quan-
tity [*3!] have permitted the isoentropic compressibility
of water to be investigated in the pressure region up to
P ~ 600 kbar.

For the most part we used the method of lateral dis-
charge,? based on detection of the deformation of the
shock-wave front.

As shown in ref. 14, excellent uniqueness in interpre-
tation of the results is obtained with use of this method
for study of media (such as water) which possess low
dynamic strength with extremely small shear modulus.
In this case the quantities recorded are related directly
to the isoentropic modulus of hydrostatic compression
KS = C%. Comparison of theory and experiment is
given in Fig. 3.

3. CHOICE OF FORM AND DETERMINATION OF
PARAMETERS OF THE EQUATION OF STATE

In constructing the P-v-E equations of state in the
high-pressure region, in most studies, including those
for water,[*®) the Gruneisen coefficient (I') is intro-
duced as a coefficient of proportionality between the in-
crease of the thermal pressure and the thermal energy
density. Usually it is assumed that I" = const or is a
function only of v and for a given v does not depend on
the other parameters. This description is valid in the
low-temperature region and is supported by theoretical
considerations. At high temperatures I' is, generally
speaking, a function of two variables and in this case
the assumption I' = I'(v) is arbitrary, and a reliable
experimental check of this assumption with the existing
accuracy of experiments is quite difficult. Therefore,
as at low temperatures, the main premise in choice of
T' = I'(v) is theoretical, and in the high-temperature
region it is necessary to use model representations and
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to check the correctness of the various simplifying as-
sumptions under high-temperature conditions.

For this purpose we used the previously obtained
theoretical calculations('*] of the compressibility of
dense gases heated to high temperatures. The calcula-
tions were carried out with the free volume theory,
which gives a correct qualitative description of the
properties of dense gases in the region of interest here
and permits reliable quantitative predictions of the
equations of state in the high-pressure region.[*8) Ac-
cording to this theory the energy of elastic interaction,
its increase with thermal motion, and other thermody-
namic characteristics are calculated with averaging in
a specified volume of the potentials of pairing interac-
tion with the surrounding particles. Numerical values
of the constants of the pairing interaction potentials for
water were found in ref. 15 from its dynamic compres-
sibility. The approximate nature of the free volume
theory makes unjustified the use of the complicated
computational apparatus of this theory to determine
thermodynamic quantities. It is obviously more appro-
priate in the existing situation to use simplified forms
of the equation of state, and here the conclusions of the
free volume theory can be used to choose the most
realistic assumptions.

The results of calculations for water in the pressure
region up to ~1 Mbar and temperatures up to ~10* K
were used, in particular, to check the validity of the
assumption I' = I'(v). An analysis showed that this as-
sumption in the pressure and temperature range indi-
cated is poorly justified: I' turns out to be in identical
degree strongly dependent both on v and on P (or T)
for a fixed value of v.

The same method was used to check another assump-
tion, namely, that the derivative P(sv/8E)p is a func-
tion only of pressure, i.e.,

dv
P(35) =@
which is equivalent to the assumption made by Rice and
Walsh.t®] It turned out that in the high-pressure region
it is possible to assume that Eq. (3.1) is valid with high
accuracy.

(3.1)

Using Eq. (3.1), the equation of state in P-v-E co-
ordinates can be written in the form

E(P,v)—E,(P)= [v—u(P)], (3.2)

P
n(P)
where E,(v) and v,( P) are dependences on some
‘“reference’’ curve, for which it is natural to take the
well studied experimental shock adiabat of water.[?%"]
Here it is assumed that on all dynamic adiabats, states
of the liquid phase are realized. The adiabat of water
in D-U coordinates is well described by the function

(3.3)

which gives in P-v variables the shock adiabat in para-
metric form:

D=Cy+ArU+,U?,

_ U
Co+AU+A,U?
In addition to the conservation law

E\(P)=Eo+":P[v—v,(P) ]

vi=vo (1 ) P= vE(Co+A,U+}~,U“). (3.4)

(3.5)

Egs. (3.4) and (3.5) determine the functions v,(P) and
E,(P) entering in Eq. (3.2).

The values of the constants in Eq. (3.3) which best
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satisfy the experimental data are as follows:

C=1.50 km/sec, =20, A.=—0.107 sec/km (0<U<4.0km/sec);
Co=32km/sec, M=1.144, L=0 (U=40km/sec).

According to Eq. (3.2) the adiabats of porous mate-
rial and the adiabats of double compression are written
in the form
1(P) {2E,+P,[vo,—v, (P) ]—P(vo—v2) }

n(P) (P+P,)+2P
For the double-compression adiabat E, = 0, vgo = Vo;
P> and v are the coordinates of the initial point for
the second adiabat.

v=vi(P)= (3.6)

For the adiabat of a porous material we have P, =0,
V2 = Voo, and Eo = AH, where AH = -4.4 x 10 erg/g is
the change in enthalpy in transition of the material from
one state (ice, t = —15°C) to another state (water,
t = +20°C) at atmospheric pressure.

Together with Eq. (3.2), the condition of isoentropy
dE = -Pdv leads to a differential equation for determina-
tion of the isentrope:

dH M 2+ n E, Vo

—_— = (P)—— 2+ 2

T T E YR o wum sl e (P 2 ) 3.7)
(H = E + Pv is the enthalpy; Eo, and v, are the initial
values of the quantities in the initial state of the shock
adiabat of water). The temperatures on the isentropes
are determined by the obvious relation

P
B n(®) dP
T"T“e"p[! 1+n@) P 1’

if the temperature (T,) at any point on the isentrope is
known (for P = Py).

For sufficiently high pressures P 2 300 kbar the
value 5(P)= 0.2 follows from calculations according
to the free volume theory. However, at low pressures
the function n( P) is substantially nonconstant. In the
pressure region ~100 kbar, calculations according to
the free volume theory predict a maximum of n(P), and
at lower pressures 7(P) begins to decrease. A decrease
in n(P) at low pressures also follows from the thermo-
dynamic identity

(3.8)

PT
n(p)=—22)

__w (3.9)
oC*—PT (v)

which is easily obtained if we take into account the
definition of n from Eq. (3.1)and I = v(3P/8E)y. It can
be seen from this identity that for P — 0 we have
n ~ P, since at low pressures for a condensed medium
pCZ? >» P(T =~ 1). The value of
dn
ap

r QoPo

P=0 - PCz Cve

(ao =2.09 x 107* deg™! is the volume expansion coeffic-
ient, Cy, =4.18 x 107 J/deg is the heat capacity under
normal conditions) is found to be dp/dP|p=g =5
Mbar™,

In transition of the system to the state of an ideal gas,

we have pjq = I'id =y — 1 (y is the exponent of the
Poisson adiabat), which follows directly from Eq. (3.9).

The coefficients in the function n(P), which was

given in the form
1(P) =a(1—e~F) +bPe~*7, (3.10)

were determined with account of the location in the P-v
plane of the experimental points for porous ice (poo
=0.35 and 0.6 g/cm®), and also of the points on the
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TABLE III

r el & ] r H,
'k | 10-% k| 10-% 10—
10K | hore k| w0k | o
0.35 460 25 11335 | 5.0 2445
0.4 475 3.0 |1580 || 5.5 25.90
0.3 540 || 3.5 (1825 6.0 2710
1.0 690 | 40 [2060] 65 28.05
1.5 885 | 45 [2265| 7.0 28.60
20 11.00
Note. H= 0 for P=1 atm, T =293 K.

TABLE IV
5| 2 z £ 2 2
~ cEa M V.Ea :g' E o E >4‘ o M_ 3] M;
o & & & & & = H IS 2 & H &
10 | 0.8317| 300 [ 0.8e82| 48 | t.0144| 1286 | 1.1809| 2143 | 1.3309 [ 3000 | 1.5225| 3836
20 | 0'78t7| 313 | 0.8008| 447 | 0'9402| 13:2 | 111080 | 2237 [ 12008 | 3132 | 1.4350| 4027
%0 | 07058 338 | 07260| 483 | 0.8546| 1448 | 171080 | 2416 | 114771 ( 3382 | 1.3280 | 4348
60 | 06631 | 3ot | 0.6789| 516 | 07979 | 15i8 | 0.9406| 2581 | 10930 | 3613 | 1.2354 [ 4645
100 | ootz a0 | oetag| 5 | o7i76| 1725 | 0’8407 2875 | 0.9748 [ 4026 | 1.093% | 5176
200 | 0519 | 484 | 0.5192| 691 | 0'5924| 2073 | 0.6802| 345k | 0:7757| 4838 | 0.8618| 6218
500 | 00452 | 34> | 0439y | 774 | 0.3123| 2325 | 0:5753| 3871 | 0’6449 | 5419 | 0.709 | 6967
w0 | 0wz | 8% | 04173 834 | 04256) 2508 5018 | 4472 | 0.5518| 5840 | 05963 | 7509
500 | 0337 | 615 | 0.3904| 878 | 0'4i8i| 2634 | 0.4314 [ 4390 | 0:4877( 6146 | 0:5202| 7902
700 | 0356 | 653 | 0:33%0| 933 | 0.3729( 2799 | 0:39u8| 4665 | 0'4t03| 633t | 0:4278| 8396
900 | 0337 | 674 | 0.3373| 963 | 0:34e5| 2890 | 073570 4817 | 03684 | 6744 | 0.3786| 8671
1100 | 032 | 688 | 013222 s> | 0l3280| 2047 | 0:3349 | 4912 | 0:3413| €876 | 0.3502| 884l
1300 | 0,308 | 697 | 03089 | 95 | 0:3132| 2086 | 0:31%3( 4977 | 0.3239| 6968 | 0.3200| 89
4500 | 0207 | 704 | 0.2 | 1006 | 0’3014 | 3017 | 0:30501 5029 | 073086 | 7040 | 0:3137| 905t
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o]
0.4 20
/
o \ 1.5
02 <
N 1.0
A\.-
) 05 2
0 0.2 2.4 0.6 0.8 1.0 12
2 Mbar 700 200 300 4008 Kbar
FIG. 4 FIG.5

FIG. 4. Dependence of the coefficient n on pressure: solid curve—
calculation with Eq. (3.10), 0, 0—experimental points found from the
dynamic adiabat of water and ice with pgo = 0.35 and 0.60 g/cm3, &—
from the double-compression adiabat of water.

FIG. 5. Comparison of theoretical values of the temperature of
water (solid curve) with the experimental data (0, &) of Kormer. ['7]

double-compression adiabats relative to the shock adia-
bat of water. The description of the experimental values
nexp, calculated from Eq. (3.6), by the function (3.10)
with the determined coefficients a = 0.7, b = 4.4095
Mbar™*, o = 8.436 Mbar™*, 8 = 4.8202 Mbar ! is shown in
Fig. 4.

The location of the adiabats calculated from Eq. (3.6)
for ice (poo = 0.35, 0.6, and 0.915 g/cm®) and the
double-compression adiabats with the assumed depend-
ence 7(P)is shown in Fig. 2.

To determine the temperatures from Egs. (3.7) and
(3.8), it is necessary to know the initial values H(T, P)
along some line. As initial conditions in solution of Eq.
(3.7), we used the results of the calculations of ref. 16,
from which we determined the values H(T) for
P = 50 kbar, which are shown in Table III.

This description of the experimental data was used
to calculate the grid of isentropes in P-v coordinates
and to determine the temperatures on them. The theo-
retical values are given in Table IV, From the results
of these calculations we also found the velocities of
sound and the temperatures behind the shock-wave front
in water.
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4. DISCUSSION OF RESULTS

With known P-T-v functions on the isentropes, it is
easy to determine the isothermal P-v curves. Compari-
son of these curves with the isothermal data of Bridg-
man!*! corresponding to t, = 75, 125, and 175°C shows
that the difference in their relative position amounts to
2—4% in the specific volumes.

In Fig. 5 the calculated temperatures on the adiabat
of water are compared with the experimental deter-
minations of Kormer.['"] The figure illustrates the
satisfactory agreement (~10%) of the theoretical and
experimental data for this region of the P-T diagram.
This independent comparison is a confirmation of the
correctness of choice of the form and constants of the
equation of state. Another parameter which monitors
the correctness of this choice is the direct comparison
of the theoretical values of the velocity of sound C with
the corresponding experimentally determined values.
The comparison is given in Fig. 3. As in the preceding
case, the satisfactory agreement with independent ex-
perimental data indicates the adequate reliability of the
results obtained.

Thus, verification of the equation of state of water by
means of various experimentally determined parame-
ters indicates the sufficiently good joint description of
the thermodynamic properties of water over a wide
range of variation of pressure and temperature.

The authors take this occasion to express their in-
debtedness to L. V. Al’tshuler, who took part in the in-
vestigations of isoentropic compression of water, for
his constant interest in this work and for helpful discus-
sions.

DThese investigations were carried out by the authors of the present
article jointly with L. V. Al’tshuler.
IIn two experiments we also used the “overtaking” discharge method.
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