
Magnetic moment oscillations in a domain walP 
I. A. GilinskiT 

Semiconductor Physics Institute, Siberian Division, USSR Academy of Sciences 
(Submitted May 21, 1974) 
Zh. Eksp. Teor. Fiz. 68, 1032-1045 (March 1975) 

The problem of small oscillations of the magnetic moments in a 180· domain wall of the Bloch type is 
solved. The intrinsic magnetic field of the oscillating moments is taken into account exactly. The problem 
is reduced to a set of integral equations which can be solved exactly in the long- or short-wave limits. 
Three modes of surface oscillations exist, one of which begins at the anisotropy frequency. It is shown that 
reflection of intradomain spin waves from the domain wall produces co-moving surface waves along with 
the reflected wave. A rigorous solution confirms the existence, against a background of a continuous 
spectrum, of resonance levels corresponding to surface magnetostatic oscillations [7]. The solution can be 

used to calculate the damping of the oscillations. 

Interest in spin-wave spectra in magnets having a 
domain structure is due to a number of causes. Reso­
nance effects in the presence of domains are much 
more varied than in saturated magnets. Experiment has 
shown, in particular, the existence of absorption bands 
consisting of sets of resonance lines(1]. The shapes and 
positions of the lines depend on the domain structure 
and on the applied magnetic field. It is difficult to inter­
pret such a spectrum on the basis of the available theo­
retical data. 

On the other hand, it is known that many important 
features of NMR in ferromagnets, as well as galvano­
magnetic and thermodynamic properties of magnets in 
a nonsaturating field, also depend significantly on the 
domain structure[2]. Homogeneous precession of the 
magnetic moments in the presence of a domain struc­
ture was investigated theoretically in[3]. The study of 
the spectra of inhomogeneous oscillations was initiated 
by Winter[4], who considered a solitary Bloch-type wall. 
The main difficulty in the investigation of inhomogene­
ous oscillations is how to account correctly for the in­
trinsic magnetic field of the os cillating moments. 
Winter[4] dispensed with attempts at a self-consistent 
allowance for the dipole-dipole-interaction energy, and 
introduced a demagnetiZing-field model in which it is 
assumed that 

Wdip~2ltM:, h,~h,~O, h.~-4ltM", 

OZ is the anisotropy axis, and the OY axis is perpen­
dicular to the plane of the wall. According to[4], there 
are two oscillation modes in the system. One consti­
tutes volume (intradomain) spin waves that are spatially 
modulated under the influence of the wall. The other, 
low-frequency mode describes surface oscillations 
propagating in the plane of the wall and localized near 
the wall. The magnetization oscillations in a magnet 
with a periodic domain structure was investigated in 
the Winter model[4] by Farztdinov and Turov[S]. The 
role of the external magnetic field in the same approxi­
mati on was considered in[S]. 

The Winter model[4] yields exact results for one­
dimensional oscillations that are homogeneous in the 
plane of the wall (M = M(y)). However, if the inhomo­
geneity of the oscillations in the XZ plane is small, it is 
necessary to take exact account of the dipole energy. It 
is therefore natural to attempt to go beyond the frame­
work of the assumptions made by Winter[4]. Mints and 
the present author(7] did not take into account the ex­
change interaction, and assumed the domain wall to be 
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a geometrical boundary. It turned out that there exists 
new surface-wave modes not observed by Winter[4]. 
However, those spectral modes whose formation re­
ceives an appreciable contribution from exchange inter­
action drop out of consideration in such an approach. 
Janak[8] started with an exact Hamiltonian but discarded 
a number of significant terms in the solution, without 
any justification, so that his results are at best hypo­
thetical. We note finally, a recent article by Kurkin and 
Tankeev l9 ], where an attempt was made to obtain the 
results of earlier studies[4,7,8] within the framework of 
a unified calculation scheme. 

Thus, in spite of numerous theoretical studies, the 
problem of determining the magnetic spectrum in the 
presence of a domain structure has not been rigorously 
solved. In this paper, the intrinsic magnetic field of the 
oscillating moments is taken into account exactly, Le., 
the linearized Landau-Lifshitz equations and the mag­
netostatic equations are solved in a self-consistent 
manner. The problem can be reduced to a system of 
integral equations that admit of an analytic solution in 
the limiting cases of long and short waves. In the inter­
mediate range of parameters, a numerical solution can 
be obtained if necessary. 

FORMULATION OF PROBLEM. DERIVATION OF 
INTEGRAL EQUATIONS 

Let the magnetic moments form at equilibrium a 
Bloch wall (The XZ plane) 

M,'~M, cos S(y), Mx'~M. sin Sty), My'~O; 

cosS(y)~th (y/6); sinS(y)~ch-' (y/6); 

Ms is the saturation magnetization; /) = (0./ (3 )1/2 is the 
thickness of the domain wall; a and i3 are respectively 
the exchange constants and the anisotropy. We put 

M~M'(y)+m(r,t), Iml<IM'I. 

The magnetostatics equations and the linearized Landau­
Lifshitz equations take the form 

h~-V¢, div(h+4ltm)~O, 

iJmx/iJt~-y(m.ll,'-M,'ll.), 

iJm,/iJt=-y[M,'llx+m,llx'-Mx'll,-mJ/,'], 

m;rM~o+m:Mzo=O. 

In (1) we have put 

H:~~M.:+a.t..M,', ll/=a.t..Mx', Hx=hx+a.t..m., 

ll,=h,+a.t..my, ll,=~m,+h,+at..m" 

y ;> 0 is the gyromagnetic ratio. 
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The last relation in (1) is the linearized first inte­
gralof the Landau-Lifshitz system, M2 = const, and 
can be naturally employed in place of one of the equa­
tions. It can be satisfied by putting 

m.=±mucosO(y), 1n.==FmllsinO(y). 

the plus and minus signs correspond to the possibility 
of two polarizations of the oscillation at a fixed fre­
quency. We choose, for the sake of argument, the upper 
sign. We assume that all the quantities are proportional 
to exp[i(kll·p - wt)](p are the coordinates in the plane 
of the wall) and confine ourselves for simplicity to the 
case kx = k and kz = O. This limitation is not funda­
mental, but simplifies the calculations greatly. Intro­
ducing the dimensionless coordinate ~ = y/ Band putting 

!J).=~yM., !J)M=4nyM" tj=kull, 

a=4nlny, b=4nmll' 1/'=/><1', 

we arrive at the following initial equations; 

i!J)a=!J).(L-L+-tj') b-iTj!J).,,<pth S, 
i!J)b=-!J).(L-L +-Tj')a+!J).,,<p', 

<p" -Tj'<p=iTjb th s+a'. 

The primes denote differentiation with respect to ~. 

The differential operators L± are equal to 

L±=dlds±th S, L -L +=d'lds'-cos 20(s). 

(2) 

The "effective local anisotropy" [41, which maintains 
the wall in a definite equilibrium position, is not taken 
into account by us, i.e., we assume the frequency of the 
homogeneous wall oscillations to be equal to zero. 

The system (2) depends parametrically on T/. The 
case of one-dimensional oscillations 11 = 0, as noted in 
the Introduction, is quite special. Indeed, at T/ = 0 we 
have cp' = a and the first two equations yield the solu­
tions[41 

b (th s-ik.) exp (ik.s) 
a, - 2n(k.'+1) =x ... , 

!J»[!J),(!J),+!J)M) 1,\ (3 ) 

a=O, b-1/2 eh S~x., !J)=O, 

k~ > 0 is the root of the equation 

!J)'-!J).!J)M (k'+1) -!J).' (k'+ 1) '=0. 

The continuous-spectrum functions Xk describe volume 
oscillations. The discrete-spectrum function XO yields 
in our case simply the displacement of the wall pOSition. 

We note that at T/ = 0 the functions Xk and Xk con­
tain only the wave incident on the domain wall. Yet even 
the solution of a second-order equation should in the 
general case contain both an incident and a reflected 
wave. The explanation lies in the fact that the system 
of functions Xk and XO satisfies not only (2) but also the 
simple first-order equation 

Thus, at T/ = 0 the system (2) is reduced, via the 
natural physical requirement that the solutions be finite 
and continuous, to a first-order equation. It is obvious 
that at T/ '" 0 this reduction is impossible and the solu­
tion becomes more complicated. What changes, in 
particular, is its asymptotic behavior. We note also that 
even at \ T/ \ « 1 the system (2) cannot be solved by 
iteration by putting q/ = a + O( 1/ ). This procedure again 
lowers the order of the system of equations, which leads 
to an incorrect asymptotic behavior of the solutions and 
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as a consequence yields an incorrect spectrum of the 
oscillations. For a correct solution of the problem it is 
necessary to separate (in our representation or another) 
the asymptotic behavior of the solutions. We proceed in 
the following manner; 

We introduce instead of the unknown function a(~) a 
new function u(~) = a(~) - iT/b(U. We multiply the 
second equation of the system (2) by i Tj, add it to the 
first, and use the resultant equation instead of the first 
equation of (2). We introduce next the Green's function 
G(~ - /J.) of the equation cp" -1/ 2 cp = 0; 

1 J e',II-·)dq 1 
G=-Z; . q'+tj' ""-2;e-'I'-.I, 

G""':tj'G=Il(s-J.L). 

(4) 

We designate from now on p = \1/ \. Determining cp from 
the third equation of the system (2) and substituting in 
the two others, we obtain 

i!J)u=!J).(1+Tj') (L-L+ -tj') b-itj!J),(L-L +-tj') u+2tj!J)b 

+itj!J)M J dJ.LL,-G dUd~) -tj'!J)M J dJ.LL,-GL.+b(J.L)' 

i!J)b=-!J).(L-L+-tj') u-itj!J). (L -£+-tj') b (5) 

J dG - S +!J)Mu+itj!J)M df L. +b (J.L)dJ.L+tj'w.v G (s- J.L) u (J.L)dJ.L. 

The subscript t; or /J. of the operators L± identifies 
the variable on which the operator acts. Here and 
throughout, unless otherwise indicated, the integration 
limits are - 00 and 00. 

We now expand u(t;) and b(t;) in the complete ortho­
normal system of functions Xk and X 0, first used by 
Janak[Bl; 

u(s)=u.x.(s)+ J a.x.(s)dk, b(s)=boxo+ J b,x..dk . (6) 

We multiply (5) by 21T(k2 + l)X,k(t;) and integrate with 
respect to ~. Using the conditlOn for the orthogonality 
of the functions Xk and xo[Bl we obtain 

{ inTj!J)Jlk(k'+1) 
T(k)b.=-i a(k)u,-- a. 

2 ch (k,,/2) 

1]!J)Ck (k'+ 1) f a. dp } 
+ 2 (p'+l)sh[,,(p-k)/21 ' 

ia(k)b.=[ k'+ (k'+ ')(k'+ '+1)1~ (7) 
k'+tj' !J)M !J). tj tj k'+tj' 

itj!J)M f pb.dp + ' !J)J( J u.[S(k)-S(p)]dp +-- -Tj-
2 (p'+tj')sh[,,(p-k)/21 2 (p'+l)sh[,,(p-k)/21 

. , !J)"S(k) 
-mtj 2 eh (kn/2) ao. 

Multiplying (5) by 2xo(t;) and integrating, we obtain a 
second pair of equations; 

i (!J)-Tj'!J).) Uo= [2Tj!J)-Tj' (1 + 1]') !J).] b., 

tj!J),.. J pb.dp 
i(!J)_tj3~.) b,= [!J),..(1-1.) +Tj'!J).]u.+ -2 ~ (p'+tj') ch ("pI2) 

+i ' 00,.. J u.s (p)dp 
tj 2 (p'+1) ch ("pI2) ' 

(8) 

is an integral in the sense of the principal value. In (7) 
and (8) we put 

a(k) =00 (k'+tj')-tj[!J)J(k'+CIl,(k'+tj') (k'+tj'+1)], 

T(k) =!J).(1 +Tj') (k'+Tj') (k'+tj'+1) +tj'!J)" (k'+1) -2tj!J) (k'+tj'), 

I_ n 'J dq . ,- 4Tj (q'+tj')ch'(qnI2) ' 

S(k)=_k_+~f dqcth[n(q-k)/2] 
k'+Tj' 2 q'+tj' ' 

(9) 
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C dqcth[n(q-k)/2] -N(k )=_~[_k_+<Il(k It)], 
J' q'+It' ' It It k'+It' ' 

I [( ,,-tk) ( ,,+tk)] <Il(k,It)-2 ¢ H·-2- -¢ H-2- , Relt>O. 

1jJ(z) = d In r(z)/dz is the Euler 1jJ function. 

If Re JJ. < 0, then JJ. is replaced by -JJ.. In the deriva­
tion we took into account the relation 

f q'~It' sh-' [~ (q-k) ] sh-' [ ~ (p-q) ] 

2 J' 46 (p-k) N(k,It)-N(p, lt) -n-J e-"'+'pIG(Y-6,fl)thy th 6dyd6=- k'+It' + sh[~(p-k)/2] . 

(10) 

Finally, we determine bk and bo from the first equa­
tions of (7) and (8) and substitute them in the second 
equations. Using (10), we obtain 

D(k) J u.[F(p)-F(k) ]dp inF(k) 
T(k) u.- (p'H)sh[n(p-k)/2] ch(kn/2) Uo, (11) 

Uo (Cil'-TJ'W,') +[2TJCil-TJ'(HTJ') Cil,j· [Cil.>J (1-J)uo-Q] =0. (12) 

In (11) and (12) we used the notation 

D (k) = (k'+'j') [Cil'-W,WM (k'+lj'+ 1) -Cilo' (k'hj'+l)']' 

Q=i J U~~~dP, (13) 

1=3:... TJ, r dp[oo.,(p'H)+oo,(HTJ') (Hp'-+;TJ')-2TJoo] 
4 J T(p)ch'(npI2) 

F(k) = TJooMk [(oo-TJCilM) (k'+1) +2TJ'oo-TJoo, (k'+TJ'+1) (k'+TJ'+2) ] 
2T(k) 

_ TJ'Cil" f~cth~(q-k)[oo.r<q'H)+w,(l+TJ') (1+q'+TJ')-2TJCil], 
4 T(q) 2 

Formulas (11) and (12) are the basic equations of our 
problem and are an exact consequence of the initial dif­
ferential equations (2). The character of the solutions 
of (11) is determined by the behavior of the coefficient 
D( k). D( k) = 0 is the dispersion equation of the spin 
waves inside the domain, far from the wall. If w2 > wg 
= wi( 1 +1/2)2 + wawM( 1 +1/2), then D(k) = 0 has a 
positive root k2 = ko > O. In this frequency region, 

. volume spin waves can propagate in the domain. Then 
(11) has a solution Uk = const 0 (k ± ko) + u~cat. If 

T/ = 0, then u~cat = 0 and u ~ Xko' i.e., it coincides 
with Winter's solutionl'J. On the other hand, if 1/ "" 0, 
then the integral term in (11) describes the scattering 
of spin waves on going through the domain wall. The 
coefficients Uo and bo are then determined by the am­
plitude of the wave incident from the domain on the wall. 

At w2 < wg, there are no volume oscillations in the 
domain. Then (11) has only an "induced" solution of the 
surface-oscillation type, in which Uk ~ uo. In this case 
(12) is the dispersion equation of the surface oscilla­
tions. 

An analytic solution of (11) can be obtained only in 
the limiting cases of long waves (p = (1) \ « 1) and 
short waves (p » 1). We present here, for future use, 
the expressions for T( k) and F( k) in these limiting 
cases. Let T(k) = wa(1 +1/ 2)(k2 + O~)(k2 + O~), where 
o ~,2 are the roots of the equation T( k2) = 0 taken with 
the negative sign. For the sake of argument we put O~ 
> O~. Putting (1 = sign 1/, we have at \ 11 I « 1 

6,'"" 1 +TJ'-21]oo/w" 6,'=1]'6', 
6).., CJ)CilJ( (a).II 

1l''''1+-+2TJ--, +.2TJ'-, (200'-000'), 
(Oil ({Jo 4J)a. 
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F(k)- CilM{ (l H )k } -PT k'+TJ'Il' +6<1l(k) , (14) 

<Il(k)""<Il(k,O)=~cth~k-~ 
2 2 k ' 

F'''---, (10,00,,+2100'-200') 1+2TJ- . 000 P (00 ) 

Wn W rt (Oa 

At p » 1 we need only the value of F( k) in the region 
k2 « 1/ 2 : 

(15) 

We now proceed to solve the problem. 

SPECTRUM OF SURFACE OSCILLATIONS 

We consider first the long-wave oscillations. The 
integral equation (11), with allowance for (14), takes the 
form 

p(l+TJ') ,+ 'S up (p-k) (kp-TJ'6')dp 
D(k)u·+--2-w,ooM (1+6) (k <'I,) (p'H) (p'+TJ'Il')sh[n(p-k)12] 

-P Cil,WM<'I (k'H) (k'+I]'6') J u.[<Il(p)-<Il(k) ]dp (16) 
2 (p'+1) sh [n (p-k)12] 

inpoo,w,,(k'+l) Uo 
= 2ch(kn/2) [(l H )kHk'<Il(k)], 

As seen from (16), Uk is an odd function of k. In 
spite of the fact that the integrals in (16) are preceded 
by the parameter p « 1, it is impossible to solve (16) 
by iteration, since the integrand in the first of the inte­
grals of (16) is large at small p2 ~ Tj2 and the integra­
tion makes a contribution ~p-l. However, the behavior 
of Uk at small I k I « 1 can be easily obtained, inas­
much as in this case the main contribution to the inte­
grals is made by small I p I « 1. Recognizing that at 
k2 « 1 we have D(k)""(W2_W~)(k2+1/2) and wg 
R;; Wa (wa + wM), we obtain 

inpAkuo 10,,(10'-000') 
Uk"'" A""----

2(10'-000') (k'+TJ') , 000-00, 
(17) 

Turning to the dispersion equation (12), we note that 
the integral Q which enters in it is also determined by 
the values of up at I pI « 1. 

Substituting up from (17), we obtain 

Q=iS upF(p)dp "'" n'poo,,(l H ) Au.. (18) 
p'+l 4(Cil'-oo.') (6+1) 

It is seen from (12) that the term with Q can be 
neglected if p « 1, I wI « wa, and I w « wM. However, 
at w"" aWa we have A - "", and the contribution of this 
term to the dispersion equation becomes significant. To 
obtain a unified dispersion equation that is suitable also 
in the region w '" (1Wa, it is necessary to determine the 
denominator of the coefficient A with greater accuracy. 
To this end, in turn, it is necessary to know the func­
tion Uk in the entire range of its variation, and not only 
at small k. We shall seek the solution of (16) in the 
form 

inp(k'+1)u. 
u= W 
• 2D(k)ch(knI2) " (19) 

W.=Ak+Bk'<Il (k) +pf(k) + ... 
We substitute (19) in (16) and neglect pf(k) under the 
integral sign, assuming that the expansion of f(k) at 
small k begins with terms ~k3. We calculate the re­
maining integrals, using (10) and the relations 

C qdq _, n _, n -k _ 2 {It + (Hit) -A(k )} 
J q'+It,ch q-Z-sh 2(q )- ch(nk/2) k'+It' ¢ 2 ,It, 

J (a-p) (p-k) l'l n 
P(k,a)= sh-'-(p-k)sh-'-(a-p)dp 

P'+112 2 . 2 
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=2 sh-' ~(a-k) { (a-k) (1-,,) + (,,'-ak) [(1J (a, ,,) 

2 " " 
-!II (k,,,»)+ (a+k) [A(a, ,,) -A(k, ,,») }, 

(20) 

Jp(1J(P)(P-k) sh-'~ sh-'~( -k)d =[ OP(k,a)] 
p'+,,' 2 p 2 P P Oa "~,' 

A(k,f.t)=,/.[",(H "~ik)+"'(H ":ik)], Rell>O. 

Comparing the coefficients of k24>(k) in the principal 
order in p, we express B in terms of A. Further, 
gathering, after integration, all the terms that contain 
the small parameter p and are proportional to k2 and 
to the higher powers of k at 1 k 1 « 1, we determined 
f( k). Stipulating that the coefficients of the terms linear 
in k vanish, we obtain A accurate to the terms linear in 
p in the denominator. The corrections ~1)2 in the de­
nominator can be obtained by taking into account pf( k) 
under the integral sign; we do not present the result be­
cause it is extremely unwieldy. We have ultimately 

1/!' = d1/!(z)/dz is the derivative of the Euler 1/! function 
with respect to its argument. The quantities ai and ki 
in (19) are determined by the expansion of lD(k>r1 : 

a,= (oo'-OO.'-OO.OOM) _'", (00'-000') -', 

1 
a, .• = 'F oo.'(k,'-k,') (k~., -TJ') , 

, OOM'1 ( "+4 ')" 
k,.,=1+TJ~+ 200. ±zTt;;J OOM- 00 " 

k,'=-ko' at 00'>00,'. 

(22) 

Substituting Q and A in (12), we obtain the dispersion 
equation for the surface waves at p « 1: 

2 " n'OOM'OO(J(OO(J+OO,) _ 0 (23) 
00 +2pOOMOO(J--1i oo.,OO"+TJ 2( + ) { R O( ')} - . 

(00 (i)a WO-Wa-pffiM - TJ 

Equation (23) determines the low-frequency (I wi 
« Wa, wM) modes and one low-frequency mode. The 
dispersion of the low-frequency oscillations is linear2): 

(24) 

The high-frequency mode begins with the frequency 
W = O'wa and also has a linear dispersion on the initial 
section: 

(25) 

The coefficient R in (25) is of the order of unity if 
wM/ Wa = >'0 ~ 1. At >'0» 1 and >'0 « 1, only the term 
with a2 remains in the sum and we obtain R ~ 1(2/4 at 
>'0» 1 and R;::j (>.0/2t 1/ 2 at >'0« 1. 

We write out also the solutions corresponding to the 
surface oscillations (24) and (25): 

ipu, (th ~-ik) e;" , 
u=u'x,(~)+-s {Ak+Bk (1J(k)+ ... }dk, 

4 D(k)ch(knI2) 

_ (Jpu, S (th s-ik) e;'! {Ak + OO(J Bk'(1J (k) 
b-b,X,(s)+-4- (k'H)D(k)ch(kn/2) ~ 

(26) 

+ 00 ... k'[oo,'+oo.'(k'+1) )+ .. . }dk, 
00. 
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As seen from (26), in the low-frequenc.y region there 
are excited, in the main, oscillations in the plane of the 
wall (I a 1 ~ p 1 b I). The contribution of the integral 
term at 1 ~ 1 :: 1 is small. However, the integrals in (26) 
contain a long-range part determined by the pole 
k = ±ip, to that at 1 ~ 1 » 1 the magnetization is deter­
mined by the integral term 

b""iTJ~u,~e-PI!I. 
4 00. 

At higher frequencies (the mode WIll), the form of the 
oscillation becomes more complicated, since the inte­
gral term in the region of the wall is of the same order 
as the term outside the integral sign. Indeed, as seen 
from (21) and (23), B - A ~ pA and A"" 2wi/7T21)2. 
Thus, 

ib,oo·'S (ths-ik)e'" k'dk 
b""b,X'(s)-~ (k'H)D(k)sh(nk/2) . 

Asymptotically at 1 ~ 1 » 1 we have 

We turn now to an investigation of the short-wave sur­
face oscillations (11) 1 » 1). Inasmuch as the right-hand 
side of (11) is proportional to lcosh-1(k7T/2)], it suffices 
to know the kernel of Eq. (11) and the function Uk itself 
in the region k2 «1)2 only. Using F(k) from (15) and 
estimating the integral J from (13), (J "'" 1 - 7'31) 2), we 
transform (11) and (12) into 

, _, . '., S u.[k(k'H)-p(p'+1) )dp _ inu,t.,k(k'H) 
(k 1 ~ )u'+ 12 (p'H)sh[n(p-k)/2J - 12ch(kn/2) , 

( , I.') iI.,S u, ~ -1- 3 = - 12 pu.dp, 

The equation .0. = 0 determines the boundary of the 
volume-oscillation spectrum. 

(27) 

If >'0« 1, then the first equation of (27) is solved by 
iteration, and from the second we obtain .0. 2 = 1 + >'0/3 
+ O(>.g) or 

(28) 

The result means that a small gap .o.w "" wa + wM/3 
exists between the frequencies of the short-wave volume 
and surface oscillations. This fact was already noted by 
Kurkin and Tankeev l9 ], but is proved rigorously here 
for the first time. 

In the opposite limiting case AO» 1, Eq. (27) cannot 
be solved. It can only be stated that .0. 2 ~ AO, and that at 
f/ 2 » AO the equation for the surface -oscillation frequen­
cies is analogous to (28), but with different coefficients 
of wM. The "gap" between the frequencies of the vol­
ume and surface oscillations is of the same order as 
between the different surface-oscillation modes. We 
note finally that at '1)2 ~ 1 all the terms of (12), includ­
ing the integral Q, are of the same order. The oscilla­
tion spectrum in the region 1 'I) 1 ~ 1 can therefore be 
obtained only by numerically integrating (11) and (12). 

We now compare our results with those oflS,9]. We 
neglect in (8) the integral terms and equate to zero the 
determinant of the remaining system of equations for 
Uo and boo The expression obtained in this manner for 
Wsur coincides with formula (24) of[S], provided we put 
in the latter kz = 0 and w~ = 0, and recognize that 
2 (1 - J 0) = J 2 (w~ is the frequency of the effective local 
anisotropy," and J2 is an integral introduced in[a,9]. 
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Of course, this procedure for finding the surface­
oscillation spectrum is incorrect in the general case. In 
particular, at I Tj I ~ 1 all the terms of (8) are of the 
same order, so that there is not sufficient justification 
for the conclusions drawn in[8,S] concerning the charac­
ter of the spectrum in this region of Tj. At II) I «'1 and 
W « wa, wM, however, the integral terms in (8) make a 
small contribution, and the corresponding expansion 
given in[8,S] for wsur coincides with our formula (24) 
(the mode wI). The results of these papers for the sur­
face oscillations are correct, as already noted, also in 
the region Tj2 » 1, provided that WM -< Wa. At the same 
time, the high-frequency oscillation mode WIll, the de­
cisive contribution to which is made by the dipole inter­
action, cannot be obtained at all without taking the inte­
gral terms into account. 

In concluding this section, we return to formulas (23) 
-(25), which describe the oscillation spectrum in the 
long-wave region, and discuss the symmetry of this 
spectrum. It is known[ 101 that in the presence of an ex­
ternal magnetic field (the role of which is assumed in 
our problem by the static magnetization MO ), the time­
reversal operation does not leave the equations invari­
ant. The invariance of the equations (and accordingly 
the transformation of the spectrum into itself) takes 
place under the simultaneous substitutions t - -t and 
Ho - -,Ho (or W - -wand MO - _Mo). On the other 
hand, if the distribution of the magnetization does not 
change, then simultaneously with the time reversal it is 
necessary to carry out a corresponding coordinate 
transformation. In our case the spectrum is not al­
tered by a simultaneous substitution W - -wand 
1) - - Tj, in agreement with the principles of magnetic 
symmetry [10 I. 

At the same time, the surface-oscillation spectrum 
(23) is not even in Tj (w(Tj)" w( -I)). The lack of sym­
metry of w(Tj) can produce magnon energy and momen­
tum flow along the wall following thermal excitation of 
the low-frequency states. But there should be no such 
states in the equilibrium state. The paradox in the re­
sultant situation was pointed out to the author by M. I. 
Kaganov. 

A discussion of this interesting and not quite clear 
question is beyond the scope of the present article. We 
note, however, the following circumstance: Assume 
that we have a system of alternating domains separated 
by walls. The question for the oscillation spectrum of 
such a system, in the wavelength region for which we 
can neglect the wall interaction (0 « A « d, where ,\ 
is the wavelength and d is the dimension of the domain), 
is simply the product of equations describing the oscil­
lations of the moments in each wall. Since these equa­
tions differ only in the substitution Ms - -Ms, their 
product is even in W and f), and there should be no net 
transport in the system. A similar situation takes place 
in real domain structures. Thus, the spectrum of the 
surface-oscillation frequencies in the domain structure, 
in the wavelength range 0 « ,\ « d, takes the form (24), 
(25) with a factor ±O' instead of 0'. In the short-wave 
region I Tj I » 1, the described difficulties, naturally, do 
not arise. A schematic form of the spectrum at II) I 
« 1 and I Tj I » 1 and W > 0 is shown in the figure. 

VOLUME OSCILLATIONS. QUASISTATIONARY 
STATE IN CONTINUOUS SPECTRUM 

We proceed to a study of the reflection and scatter­
ing of intradomain spin waves. Volume oscillations 
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Oscillation spectrum of a sys­
tem of "noninteracting" domain 
walls. kz = 0, kx5 = 1'/. Dashed­
boundary of the volume-wave spec­
trum. At W = Wa + wM we have a 
state-density singularity correspond­
ing to a quasistationary surface oscil­
lation. 

-/ 

exist in the frequency region w2 > w~ = wi (1 + 1)2)2 

+ wlllWM(1 +1)2). At these frequencies the equation 
D(k ) = 0 has a root k2 = k~ > O. The quantity I)/(k~ 
+ Tj 2 )1/2 = sin 9 0 determines the incidence angle of the 
"modulated" spin wave Xko on the wall, with Tj = 0 cor­
responding to normal incidence. We confine ourselves 
to the case II) I « 1 and k~ » 1)2, i.e., to almost normal 
incidence of the wave. 

The initial equation is (16). The solution of (16) at 
w2 > w~ consists of an induced part proportional to Uo 
in the form (19), and the solution of the homogeneous 

. equation. The latter takes the form 

(29) 

AUk describes the reflection and scattering of the intra­
domain wave xko with amplitude Co. We assume for the 
sake of argument that ko > 0 and that the incident wave 
propagates in the direction of positive y; we seek AUk 
in the form 

(k'H) (ko-k) I 3t 
~u,= sh- -(ko-k){C,k+C,+cp(k)+ ... } 

D(k) 2 
(30) 

C,pw.wMM' (k'+l) k 
+ 2(ko'+1)D(k)sh[3t(ko-k)/2J [flI(k,)-flI( )1. 

The expansion of cp (k) at I k I - 0 begins with terms 
~k2. In all the integrals containing [D(k)r\ the corre­
sponding poles at k = ± ko should be eliminated by add­
ing to ko a small imaginary part (ko - ko + la, a > 0), 
which is set equal to zero in the final result. This 
circling rule corresponds to separation of wave scat­
tered by the domain wall and diverging from it. We 
substitute (29) in the homogeneous equation (16), neglect 
the integral of cp (k), which makes a small contribution, 
and carry out integration by using formulas (10) and 
(20). Comparing, in the prinCipal order in p, terms 
containing k raised to the zeroth, first, and higher 
powers, we obtain 

W.,(W'-Wo') 
c,""-CoP2(wo_wJk,(k,'+1) , 

c. "" .E~ p' (_~)' WM (w'-wo') [wo-wa- (wo-wa)k,flI (k,) 1. 
- 2 Wa ko'(ko'+l) (wa-wa) (wo-wa-w,,,) , 

. _ 2waw,,(1+6) r ,~ 1 
Cf (k) - - -(w'-wo') (H-Il) C,k'\. (k,+k) f:t (k'+4m') (k,'+4m') 

w 1 

-ko'1: 4m'(ko'+4m') }. 
1lI=1 

The constant uo, determined by substituting (19) and 
(29) in (12), turns out to be of the order of Tj 2 CO• 

(31) 

Formulas (30) and (31) solve the problem of the in­
cidence of a spin wave on the domain wall. In particular, 
the wave reflection coefficient is determined by the 
pole of AUk at the point k = -ko. At -~ » 1 we have 

exp(~ik,s) -'-
Uref "" ,[ (k , k o) ~u.lh~-'" 

k,-t 
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The amplitude of the reflection coefficient is propor­
tional to the small parameter p. 

The poles of Il. Uk at the points k = ± ip determine the 
amplitude of the co-moving surface wave produced when 
the intradomain-magnon is incident on the wall. Closing 
the integral with respect to k in the expansion (6) of 
u( ~), we obtain at I ~ I » 1 

(32) 

The co-moving wave propagates along the domain wall 
and decreases exponentially as it moves farther away 
from it. A wave of this type is not a natural oscillation 
of the system and is produced only in the presence of a 
source (incident magnon!). 

We note for comparison that in the problem of the 
incidence of a spin wave on the interface between a 
magnet and vacuum (this problem was solved in a some­
what different formulation by Bulaevskii [11]), to co­
mOving surface waves are produced upon reflection. 
One corresponds to (32), and the other is determined by 
the pole k = ±i I kil. The modulus of the reflection coef­
ficient is equal in this case to unity, and the phase dif­
fers from zero, i.e., total internal reflection takes 
place. 

In our problem, owing to the smearing of the bound­
ary, the corresponding part of the solution has a more 
. complicated form, and therefore the second exponential 
co-moving wave is not formed. 

We call further attention to the fact that at wres 
"" a( wa + WM) we have C 2 - QO. According to the re­
sults of[7] in the model of the geometric wall, it is pre­
cisely at this frequency that a surface oscillation of the 
Dimon-Eschbach magnetostatic wave exists. Our solu­
tion (30) and (31) becomes incorrect in a small vicinity 
of wres. Estimates show that as W - wres the coef­
ficients C I and C 2 increase, and with them also the 
amplitude of the reflected wave, while the amplitude of 
the transmitted wave dec reases. This phenomenon can 
be naturally called the capture of a magnon into a bound 
state that e~sts at w"" wres. We shall not investigate 
the capture here, since the corresponding calculations 
are exceedingly cumbersome. We confine ourselves 
only to proving the existence at W ~ Wres of a quasi­
stationary state of the type of Dimon-Eschbach waves; 
we obtain the solution corresponding to this state and 
the level width that determines the decay time of the 
surface magnon. 

To this end, we turn to Eq. (16), put Uo == 0, and 
seek for this equation a solution even in k in the form 

(k'H) k 
u.=pC D(k) i sh{nk/2) {HO(p)+ ... }. (33) 

Substituting (33) in (16) and calculating the integrals 
with the aid of (10) and (20), we verify that (16) will be 
satisfied in principal order in p if we put 

w=O{W.+WM) +O{p) + ... -ir, . 

. r,",p3~ OWM(OO.+OOM)['/,n cth(nk.12) +k,-' {l+oo,,/oo.)"'] . (34) 
4. 00.[ 00,,'+4{00.+OOM)'l"'k.' sh'{nk,/2) 

At W < 0 it is necessary to replace the momentum ko 
in r by -ko. 
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Thus, the damping of the quasistationary state at 
iJ « 1 is proportional to the cube of a small parameter. 
It is easy to verify that the solution (33) indeed defines 
a surface magnon. In the coordinate representation we 
have 

pC k{th6-ik)e"'dk C dll { 
u{;)="2n' J- D{k)~h(nkI2) ... -~L,- J ch' Il exp{-pls-Ili) 

(35) 

At I ~ I » 1 we have 

um"'Csign;{exp(-pIW+P(ik,-l) Sh{:k,/2) eXP{ik,IW}. (36) 

The first term in (36) corresponds to the previously ob­
tained surface wave[7l. The second describes a volume 
wave that diverges from the domain wall, Le., the decay 
of a surface magnon, causing broadening of the level r. 
We note in conclusion that a generalization of the calcu­
lations for waves that propagate at an arbitrary angle 
to the anisotropy axis does not raise fundamental diffi­
culties but the results turn out to be quite cumbersome. 

The author is grateful to M. I. Kagnov for stimulat­
ing criticism, to R. G. Mints and V. L. Pokrovskii and 
to the members of the Theoretical Physics Laboratory 
of our institute for useful discussions. 

IlSome of the results were reported at the International Conference on 
Magnetism (Moscow, 22-28 August 1973). 

2lWithin the framework of classical oscillation theory, there are no 
grounds for discarding the negative frequencies, if only because the 
Fourier expansion of the solution of the initial-condition problem 
contains both positive and negative frequencies. 
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