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A nonlinear theory of the absorption is developed for short-wave sound whose wavelength is much smaller 
than the electron mean free path in a conductor with an arbitrary electron dispersion law. placed in a 
classically strong magnetic field of arbitrary direction. It is shown that the nonlinearity mechanism can be 
ascribed to sound-wave-induced distortion of the electron trajectory in sections where interaction with the 
wave is is effective (i.e., sections near points where the trajectory is tangent to the wave front). Expressions 
for the absorption coefficient are obtained and its magnetic field dependence (which, as is well known. is 
oscillatory for weak sound) is analyzed under conditions of strong nonlinearity. The nonlinear behavior 
varies greatly. depending on the specific experimental conditions. It is shown that an increase in the sound 
intensity leads to a decrease in the absorption coefficient and also to a change in the oscillation pattern. 
Various manifestations of this are the appearance of additional oscillations peaks, a decrease in the depth of 
modulation, or the appearance of a stronger dependence of the amplitude on the field intensity. It is found 
that the nonlinearity can be removed by increasing the magnetic field. Nonlinear effects in crossed 
magnetic and electric fields are analyzed. The possibility of experimental observation of the effects is 
assessed. 

The present paper is devoted to the study of the ab
sorption of high-frequency sound of high intensity in a 
conductor placed in a classically strong magnetic field. 
As is known, [1-3] in the case of sound of low amplitude 
the absorption coefficient has a nonmonotonic OSCillatory 
·dependence on the magnitude of the field in such a situa
tion. We shall see that the increase in the sound intensity 
leads to a Significant change in the picture of magneto
acoustic effects. In particular, the nonlinearity can lead 
to the appearance of additional oscillation maxima in the 
absorption. 

We consider the propagation of shortwave sound 
(ql» 1, q is the wave vector of the sound, and l is the 
free path length of the electrons) in a conductor placed 
in a magnetic field H satisfying the conditions 

1 1 . ft 
qVP>7>-;' 7«8. (1) 

Here T is the period of motion along a trajectory in the 
magnetic field, vF the velocity of the electrons at the 
Fermi surface, T the relaxation time of the electrons, 
® the temperature. Let the wave vector of the sound be 
directed along the x axis and the vector H lie in the (x,z) 
plane. The conditions (1) allow us to speak of motion of 
the electron along a classical trajectory in a magnetic 
field, the characteristic dimension of which R is large 
in comparison with the wavelength of the sound. Its spe
cific form depends on the dispersion law of the electrons 
and the configuration of the experiment. In particular, if 
the trajectories in momentum space are closed, and 
q 1 H, then the projection of the trajectories in coordinate 
space on the (x,y) plane are closed (Fig. 1). In an oblique 
field (a is the angle between H and j, where j is the unit 
vector of the z axis) a drift appears along x that is con
nected with the nonzero projection of the velocity vH on 
the x axis (VH is the component of the velocity along the 
magnetic field). In the presence of trajectories that are 
open in momentum space, the electron has a drift trans
verse to the field, Le., drift along x can take place even 
at q 1 H. The drift along x naturally leads to an open 
character of the trajectories in the (x,y) plane (Fig. 2). 

We shall be interested below in the projections of the 
trajectories on the (x,y) plane in a set of coordinates 
connected with the wave. For simplicity, we shall define 
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as the trajectory that curve which characterizes the mo
tion of the electron relative to the potential relief of the 
wave (the case in which motion in momentum space is 
considered will be discussed separately). We note that 
in a set of coordinates connected with the wave, an ad
ditional drift appears, due to the translational velocity 
(which is equal to the sound velocity w). Within the 
framework of qualitative considerations, however, we 
shall neglect the motion of the potential relief and use 
Figs. 1 and 2 as illustrations (in the quantitative theory, 
the indicated drift will be taken rigorously into account). 

As is known, the electron interacts effectively with 
the wave only on trajectory intervals on which the com
ponent of the velocity along the wave vector of the sound 
is close to zero, Le., near the classical turning points 
in the x coordinate (the intervals AA', BB' on Figs. 1, 
2). The total contribution of the electron to the absorp
tion is determined by the sum of the contributions of 
such intervals over the entire trajectory, traversed in 
a time ~T, and naturally depends on the correlation of 
the phases of the wave on these intervals. Inasmuch as 
the indicated correlation is determined by the geometry 
of the trajectories, the sound absorption has a nonmono
tonic oscillatory dependence on the magnetic field H. 

If the displacement of the electron relative to the po
tential relief of the wave in a period T is equal to zero 
{Fig. 1)j geometric oscillations of the absorption take 
place,[l due to correlation of the phases at the points 
Xl and X2. If this displacement is different from zero 
(Fig. 2), then resonance magnetoacoustic oscillations 
take placeP' 3] They are due to the resonance depen
dence of the contribution of the trajectory to the absorp
tion on the value of the shift Bx. There are generally 
several turning points in the interval of the trajectory 
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which is traversed within the period. We shall denote as 
equivalent those points which are separated by one or 
several periods of the trajectory. Inasmuch as the shift 
Bx is not a multiple of the wavelength in the general 
case, the electron at the various equivalent turning 
pOints "feels" different phases of the wave (see the 
points Xl and xi in Fig. 2). As a consequence of the sum
mation over the periods and the corresponding summa
tion over the phases of the turning points, the contribu
tion of the trajectory to the absorption turns out to be 
small (of the order of the contribution of a single period). 
If the displacement is a multiple of the wavelength, the 
contributions of the periods are identical and the total 
contribution of the trajectory to the absorption increases 
by a factor -r/T. 

These phenomena, which represent a convenient 
method for the investigation of the Fermi surface, were 
studied in detail both experimentally and theoretically 
within the framework of the theory that is linear in the 
intensity. However, it is known [4, S] that in the case of 
short-wave sound, even for moderate intensities satis
fying the condition 

(2) 

the so-called momentum nonlinearity, which is connected 
with the effect of the sound wave on the motion of par
ticles interacting with it, becomes important. Here <1>0 
is the amplitude of the potential of the effective field of 
the wave, and EF is the Fermi energy. In an external 
magnetic field, such an effect should lead to distortion 
of the trajectory of the electron on intervals of effective 
interaction, which in turn leads to a Significant anhar
monism in the contribution to the electron distribution 
function and consequently to nonlinear effects in the ab
sorption. 

Owing to the motion along the trajectory, the magnetic 
field imparts a velocity Avx -v(qRfI/2 (v is the velocity 
along the trajectory, R the characteristic dimension of 
the trajectory) to the electron at a distance of the order 
of a wavelength near the turning point. In turn, the char
acteristic velocity given to the electron by the effective 
field of the wave is -v = (q,°/m)1/2. Therefore, the dis
tortion of the trajectory near the turning point is deter
mined by the parameter 

b=[ v( l!qR) "'/J-' l'=mvQ!qlP', 

n is the characteristic frequency of the motion along the 
trajectory. If b » 1, the effect of the sound wave on the 
trajectory can be neglected; this corresponds to the lin
ear theory. If b S 1, the wave strongly distorts the tra
jectory near the turning points. In particular a group of 
entrapped particles is separated, which execute a finite 
motion in the potential wells of the wave. The condition 
b « 1 means the impossibility of removal of these elec
trons from the well by the magnetic field. Here the ef
fect of the field on the motion of these particles is weak 
and their contribution to the absorption is calculated in 
analogy with the theory constructed in the absence of 
a magnetic field.[4] Inasmuch as the trapped electrons 
execute an oscillatory motion in the limits of the poten
tial well, this contribution is determined only by the 
energy balance with account of scattering processes 
(which remove the particle from the trapped group). At 
moderate intensities, it is small in comparison with the 
contribution of the remaining-untrapped-particlesY] 
(quantitative estimates are given below). In turn, the 
untrapped particles, which carry out motion above the 
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potential relief of the wave, can, at b « 1, have turning 
points only in the neighborhood of the crests of ridges 
of the potential relief. This leads to a significant break
down, at the turning points, in the phase correlation 
which is characteristic of the linear theory. These quali
tative discussions are clarified by Fig. 3, on which is 
plotted the dependence of the energy of the longitudinal 
motion of the electron 

E, (x) ='!,mv.'+1P (x) 

on the x coordinate. 

The nonlinear picture of absorption in the perpen
dicular configuration q 1 H was considered in Is] for the 
case of an isotropic quadratic electron spectrum. The 
purpose of the present research is the study of the non
linear effects in the general case of an arbitrary con
figuration and arbitrary electron spectrum. 

We shall see that in the regime of strong nonlinearity 
the increase in the sound intensity S leads to a decrease 
in the absorption coefficient. The qualitative reason is 
that the wave "synchronizes" the turning points of the 
electron trajectories. They all turn out to be distributed 
near the crests of the ridges. Therefore the contributions 
of the different intervals (for example, AA' and BB' on 
Figs. 1,2) are equal in value, but opposite in sign (by 
virtue of the different directions of the velocity of the 
electron) and the total absorption decreases. The char
acter of the falloff depends on the details of the electron 
spectrum. Along with the oscillating part of the absorp
tion, which falls off rapidly with increase in intensity 
(~S-3/2), in the case of a Significant departure of the 
spectrum from isotropic, a nonlinear monotonic contri
bution can appear, which falls off more slowly (-S-lI 2). 
This in turn can lead to a decrease in the depth of modu
lation of the oscillation picture. 

The nonlinearity also changes the very character of 
the oscillation picture. The picture of geometriC oscil
lations is preserved even in the nonlinear regime, while 
the period does not change in comparison with the linear 
theory, although the shape does undergo change. Decrease 
in the depth of modulation of these oscillations at reason
able intensities can take place only in the case of an ani
sotropic spectrum and thus the conclusion of[S] that the 
oscillations become "smeared" for the isotropic quad
ratic spectrum is in error. 

In the situation which corresponds to the investiga
tion of magnetoacoustic resonance effects (Fig. 2), the 
distortion of the trajectory leads to a breakdown in its 
periodicity. As a consequence, the phase correlation at 
the turning points separated by a period in the case of 
an unperturbed trajectory is no longer determined by 
a simple shift equal to Bx (c!. Fig. 2), but by a more 
complicated dependence, which takes into account the 
location of the points themselves. In turn, in the non
linear regime, the contribution of the individual turning 
point is no longer a harmonic function of the correspond
ing phase. A quantitative calculation shows that these 
circumstances lead to the appearance of additional res-

FIG. 3. Dependence of the energy of 
longitudinal motion of an electron on the 
x coordinate. The slant lines correspond 
to the set of curves E.(x) for different 
trajectories of the motion of the electron; 
the boundary points of the curves corres
pond to the classical turning poin ts in x. 
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onance peaks, located between the peaks of the basic 
system and smaller in amplitude (at sufficient intensi
ties, additional peaks should appear in the region of 
strong fields, beyond the extreme peak of the basic sys
tem). 

The dependence of the nonlinearity parameter itself 
on the magnetic field has a significant effect on the os
cillation picture. At larger field values the nonlinearity 
bel!omes significant at higher values of the sound inten
s ity-the magnetic field "removes" the nonlinearity. 
This phenomenon is due to "carrying out" of the elec
trons from the potential wells of the wave by the mag
netic field (Fig. 3). In the regime of high nonlinearity, 
such a circumstance leads to the result that the depen
dence of the height of the oscillation maxima on the field 
becomes much stronger. 

We have seen that the nonlinearity parameter is con
nected both with the details of the electron spectrum and 
with the values of the deformation potential in the neigh
borhood of definite points of the Fermi surface (given by 
the configuration of the experiment). Therefore the ex
perimental study of the nonlinear magnetoacoustic effects 
can give additional information on these important char
acteristics of the electron system. In particular, such 
information can be obtained by determining the relative 
height of the additional peaks in the regime of weak non
linearity. 

1. EQUATION OF THE TRAJECTORY 

For the construction of the nonlinear theory of mag
netoacoustic phenomena, it is first necessary to inves
tigate the motion of the electron with an arbitrary dis
persion law in a classically strong magnetic field, which 
satisfies the conditions (1), with account of its interac
tion with the sound wave. We shall describe the interac
tion with the deformation field of the sound wave with 
the help of the deformation potential, assuming the in
teraction energy to be equal to il>p(x) = Aik(P)uik(x), 
where uik is the deformation tensor in the sound wave, 
and Aik is the deformation potential tensor. On the basis 
of considerations analogous to[41, we can neglect the 
higher harmonics of the effective field if the condition 
(2) is satisfied, and set 

tIl, (x, t) = tIl,' cos (qx-cut). 

The equation of motion of the electron with allowance for 
its interaction with the sound takes the form 

ap a tIl e 
-=--i+-[vXHJ at ax c ' 

(3) 

i is a unit vector along the x axis. In coordinate space, 
it is convenient to transform to a set of coordinates con
nected with the wave, introducing the wave coordinate 
~ = qx-wt[il>(x,t) = il>(E)]. 

To solve the absorption problem, we first study the 
motion of the electron on intervals of effective interac
tion near the turning points (q. V = 0) and then find the 
connection of the coordinates of the turning point with 
account taken of the effect of the effective field of the 
wave. 

The characteristic width (in terms of the variable E) 
of the interval of effective interaction, in the regime of 
strong nonlinearity, is determined by the distance at 
which the electron gains a speed ~ (+o/m)1/2 due to its 
turning in its trajectory in the magnetic field and thus 
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amounts to ~1/b. Such an estimate corresponds to the 
qualitative considerations given above and, as we shall 
see further, is confirmed by the rigorous calculation. 
In comparison with the characteristic dimension of the 
trajectory ~qR, this quantity has the smallness ~1/bqR 
~.o/E F« 1. It is clear (starting from the character 
of the motion of the electron in the magnetic field) that 
this same parameter determines the relative dimensions 
of the corresponding intervals on the trajectory in mo
mentum space. Therefore, assuming the spectrum of 
the electrons E(p) to be a sufficiently smooth function, 
we can restrict ourselves, in the intervals of interest 
to us, to the quadratic expansion 

B (p(~.-~,) );"'B(p(~,» +(v(~,)dP)+ L.m,r'(;\)dP, dPI_ 
ti 

Here ~l is the coordinate of the turning point. We fur
ther require 

a.<1 (4) 

(i.e., the situation is close to the perpendicular configu
ration q 1 H), which allows us to make accurate quanti
tative estimates by reducing the problem to one dimen
sion. ll This condition, and also the smallness of vx near 
the turning point lead to the estimate Apy,z « APx, 
whence dvx = m;6cdPxI~~~l' At the same time, by virtue 
of 2) AVy = Vy(~) -vY(~l)1 ~ = ~l « vy, one can set Vy(~) 
~ Vy(~tl. Integrating (3) over ~ in the neighborhood of the 
turning point, with account of the foregoing arguments, 
we obtain 

Here 
v,=v.-w, Q=eH/m(s,)c, 

m(~.) =m=(~,), v(;.) =v,(s,), 

b,= I :;~ I.: ~,=sign ( ;;? )! ,.' 

(5) 

We note that near the left turning point (the point Xl on 
Figs. 1 and 2) of the unperturbed trajectory we have 
Ov> 0; near the right turning pOint (the point X2 on Figs. 
1 and 2) we have Ov < O. In contrast torSI, the quantities 
m, 0, v, and C)0 can generally be different for different 
turning points. In the case {3l> 0 and ~o/m > 0 we have 

v,>=2! :0 ! [(~_;,) b+cos ~,-cos sJ. (6) 

In the general case, the expression (5) reduces to (6) 
by means of a suitable change of the variable ~ in the 
interval of interest to us (~ --- ~ or ~ -- ~ +1T). 

Equation (5) is in correspondence with the qualitative 
discussions given earlier. The effect of the wave on the 
trajectory is determined by the parameter b. At b» 1, 
the terms ~c)/m can be neglected, and we obtain the 
equation of the trajectory near the turning point in the 
magnetic field in the absence of the sound. At b 'S 1, 
the effect of the effective field of the wave is important. 
By virtue of the natural requirement that the left side 
of (5) be positive, the electrons are classified as 
trapped, as mentioned in the Introduction. It is easy to 
see that for {3l> 0, m> 0, il>0> 0, the dependence of 
the one-dimensional energy El on x, shown in Fig. 3, 
follOWS directly from (5) (neglecting the sound velocity 
w). . 

Inasmuch as the contribution of the trapped particles 
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to the absorption is small in comparison with the con
tribution of the untrapped particles, as was noted above, 
we shall be further interested just in the contribution of 
the untrapped particles. The latter move chiefly along 
the ordinary trajectory in the magnetic field, experi
encing the effect of the wave only over small intervals. 
In the regime of strong nonlinearity b « 1, the un
trapped electrons can have turning points only on the 
crests of the potential contour of the wave. This state
ment also follows from (5) with account of the require
ment of positiveness of the left side for different!;, and 
is illustrated in Fig. 3. For the description of the loca
tion of the turning points on the "allowed" intervals, we 
shall reckon their ~ coordinate from the corresponding 
crest and denote this quantity by T/. It is not difficult to 
obtain from (5) that the boundary value (between the un
trapped and trapped particles) of the coordinate of the 
turning point T/ m, which characterizes the width of the 
allowed interval, amounts to ~ (41Tb)1I2. 

Thus, Eq. (5) describes completely the motion of the 
electron on those intervals of the trajectory where it in
teracts effectively with the sound. For calculation of the 
absorption of the sound, it is necessary to find the con
nection between the coordinates of the turning points, 
i.e., to investigate the general equation of the trajec
tory of the untrapped particles. 

For the description of the location of the electron in 
momentum space, it is convenient to transform from Px, 
Py, pz to coordinates E, PH, to connected with the trajec
tory of the electron in momentum space in the absence 
of the sound perturbation.[6J Here E is the energy of the 
electron on the trajectory, PH the projection of the mo
mentum in the direction of the magnetic field, and to the 
time of motion from some initial pOint to the point with 
the prescribed Px, Py, pz. The formulas for the trans
formation of the coordinates are: 

dp e iJe 
-=-[v:<H], v=
dt" c iJp . (7) 

Using the equation of motion (3), we get in the new vari
ables, 

dt' dt' a<l> . 1 iJe iJ<I> iJPH iJ<I> 
~VI= - dp,'""5f+--q' --aIVI=-V,~, O"f v,= --;}fsina. (8) 

It is seen from (8) that, with accuracy to within terms 
-cI>/E, we can neglect the change of E and, with account 
of (4), the change in PH also in motion along the trajec
tory. In other words, we can assume that E and PH are 
constant for the given trajectory and are its parameters 
(as in the absence of the effect of the sound wave). 

In order to study the effect of the sound perturbation 
on the location of the turning points, we introduce in 
place of to the variable X, which is the ~ coordinate of 
the point with the prescribed Px, PY' Pz on the trajectory 
in the absence of the sound pertur5ation: 

Transforming the first equation in (8) with account of this, 
we get 

dX dt' iJ<I> 
-=1-q--. 
ds dp, al; 

(9) 

We now integrate (8) along the trajectory: 

(I" dt' iJ<I> 
X2-X,=S2-S.-q S --ds· (9a) 

. n.> dp, as 
Here 1,2 are certain points of the trajectory; integra-
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tion along ~ is carried out on a contour which represents 
the interval of the trajectory which joins the prescribed 
points. The value of dtO/dPx, which is determined by the 
dispersion law, is a smooth function of the point on the 
trajectory (with a characteristic scale of change in 
terms of I; of the order aR); the quantity cl>p(tO) behaves 
similarly. Taking this into account, for integration along 
~ we separate intervals on the integration contour which 
corresponds to integer periods of the wave, bounded by 
the crests closest to ~1 and ;3. Expressing explicitly, the 
contribution of the ends of the integration contour, we 
obtain the following expression which determines the 
connection between the turning points: 

(
COS 6.-1) ( cos 62-1) 12 

B,,=s,-s,+~. -b-,- -~, -b-,- +P . (10) 

Here B12 is the distance between the prescribed points 
in the absence of the sound perturbation. The quantity 
p12 is the integral over an integer number of periods of 
the wave. Its dependence on ;1 and ~2 is due only to the 
integrand and is smooth (with characteristic scale of 
change -qR) so that p12 can be considered constant for 
a change of ~1 of the order of unity. 

As is seen from (5) and (10), the potential of the wave 
causes a displacement -lib of individual turning points 
(in comparison with the unperturbed trajectory). The 
periodicity here is, generally speaking, disrupted. We 
note an important fact, however. Along with the quanti
ties which are expressed directly in terms of the poten
tial of the wave, and which change significantly over 
distances on the order of a wavelength, in our calcula
tions there also appear quantities the dependence of 
which on ~ is determined only by the dependence of the 
parameters of the electron spectrum on the location on 
the trajectory in momentum space. This dependence is 
smooth, inasmuch as the characteristic interval of 
change is of the order of the dimensions of the trajec
tory -qR. When considering the behavior of such func
tions, we can neglect the distortion of the trajectory 
over small intervals under the action of the sound. Thus, 
the disruption of the periodicity, on the one hand, should 
lead to a nonlinear change in the picture of magneto
acoustic oscillations (inasmuch as these effects are 
determined directly by the periodicity of the distribu
tion of intervals of effective interaction), and on the 
other hand is unimportant for smooth functions. There
fore, we shall call an interval of the trajectory between 
two turning points separated by a period in the absence 
of sound perturbation, a quasiperiod. It can be shown (by 
using the periodicity of the integrand) that the integral 
p12 = 0 for turning points separated by a quasiperiod. 
Therefore, (10) in such a case takes the form 

B ~I ,=S'-61 +-(cos s.-cos s,), BI~q(B.-wT). 
b, 

(11) 

Equations (5), (10), and (11) completely describe the 
trajectory on the intervals of interest to us: knowing the 
location of one of the turning points, we can, with the 
help of (10) and (11), determine the location of the others. 
In this connection, a certain trajectory (for given E, PH) 
can be specified by specifying one of the turning points, 
for example, the right-hand one; we call this the defin
ing point. The trajectory itself is represented as a set 
of quasiperiodic intervals. We introduce the enumeration 
of the turning points on the given trajectory: the upper 
index will denote the corresponding quasiperiod, the 
lower the position of the point on this quasiperiod, and 
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the defining point of the trajectory corresponds to the 
symbol ~g. 

The following method of description of the trajectory 
(more accurately, of the distribution of turning points of 
interest to us) is convenient. In the neighborhood of the 
turning point, we carry out a transformation of vari
ables according to the formula 

i}=;+(1-cos ;)/b. (12) 

We call the quantity J. the "reduced phase." In the re
gime of strong nonlinearity b « 1, as we noted above, 
the turning points are located within narrow "allowed" 
intervals near the crests (Fig. 3). As is not difficult to 
see in (5), the change in the coordinate of the turning 
point in the limits of the allowed interval corresponds 
to a change of J. by 271 (or, with accuracy to terms ~b, 
in the interval [27m, 271(n +1))). In what follows, a con
tinuous change of J. corresponds to a "jump" in the 

. turning point to the neighboring interval. Thus, the con
tinuous quantity " describes the location of the turning 
points on the entire discrete set of allowed intervals. In 
order to express the value of the potential of the wave at 
the turning point in terms of J., we introduce the func
tion Z: 

Z!.",."".=lt-rr, Z(lt+2rr)=Z(i}). (13) 

Using the concept of the reduced coordinate 7] introduced 
previously, it is not difficult to show (by starting out 
.from (12) and (13)). that, in the case b « 1, 

(14) 

The quantity Z, which directly determines the location 
of the turning point on the crest of the wave and thus the 
value of the effective potential at the given turning point, 
we call the reduced potential. 

As a result, the connection between the turning points 
takes the simple form 

and, in particular, for turning points separated by a 
quasiperiod, 

2. THE SOUND ABSORPTION COEFFICIENT 

(15) 

(16) 

As is known, the electronic absorption coefficient of 
sound in conductors is expressed in terms of the reac
tive response of the electron system (see, for example,l']) 

1 2 '"acD 
r = pcu'u' K, K = 2rr(2rrli)'S d'p fa'f t(p, ;)d;. (17) 

Here p is the density of the crystal, u the displacement 
vector, f the electron distribution function, which must 
be sought from the kinetic equation 

at at eat acD at -
-+v-+-[vxH]----+I/=O 
i)t i)r' C ap ax a p. ' 

(18) 

where fis the collision operator. We set f = Fo(e: +~(~)) 
+ g, where F is the equilibrium distribution function; it 
is seen that contribution to the absorption is made only 
by the quantity g. With account of the fact that the trajec
tories of the electrons are the characteristics of the 
kinetic equation, we obtain for the function g(P(~),~), de
fined on the trajectory, 

d; dg 

g(;, so')lqT-G ' 
(19) 
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v~(~, ~g) is the value of the velocity of the electron, 
moving along the trajectory from the defining point ~g 
to the point ~. As was pointed out earlier, in the case 
of strong nonlinearity, we consider the untrapped par
ticles; the contribution of the trapped particles was 
analyzed in[4, 5]. The validity of the approximation of 
the relaxation time can be established similarly. [4,5] 
Integrating (19) along the trajectory, we get 

(I) ,G(s') 1 (I', ds" 
g= S ds (' ') exp (- J "') ) , 

(1_
00

) VI; ,s. qT (I) v,(s ,;. _ 
(20) 

We now transform the general expression for the ab
sorption coefficient (17). Carrying out a change of vari
ables in momentum space, we have[2] 

2 eH '"i)cD 
K= 2rr(2rrli)'-c-S dedpHS ar-dsJ dt'g(e,PH,t' ;)+K" (21) . 

Kt is the contribution of the trapped particles. Sum
mation over to reduces to the fact that at each point ~ 
summation should be carried out over all trajectories 
passing through the given point (Le., the projections of 
which on the axis take on the corresponding value). As 
defining points of the trajectories, it is convenient to 
choose the extreme right-hand turning pOints, which cor
respond to the quasiperiodic intervals to which the point 
~ belongs. Now, transforming from ~, to to the variables 
~, ~g with account of (9), we have 

dt'~- 1 [1+1.. sin s!] dso'. 
qv,(s,s.') b 110' 

(22) 

Summation over ~g, with account of what has been said 
above, is done over the extreme right-hand turning 
points of all the quasiperiodic intervals (corresponding 
to different trajectories) to which the point ~ belongs. 
Using the requirement of the nonperiodicity of g(~, ~g) 
= g(~ +271, ~g +271) (which takes into account the fact 
that the shape of the various trajectories for given e:, 
PH, the defining points of which are separated by an 
interval 271n, are the same)f we transform the summa
tion over ~g in analogy with 5]: 

where (T~g) denotes the taking of the integral over the 
quasiperiod of the trajectory to which the point ~g be
longs. rf1 = 271 in the case of an undistorted trajectory 
and 11m ~ ,t4iT6 in the case of strong nonlinearity. As a 
result, the electron response takes the form 

K = 2rr (;rrli). ~ de dPH {- ~ clioo [1 
om 

-1lo 

(23) 

In the case of strong nonlinearity, we transform from 
the variable ~g to the already introduced reduced phase 
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2 S ('S" , ') 10 of, K= 2n(2nli)' dedpH -, dft,2(ft,) qa;+K,. (23a) 

The integration in the argument of the exponential is 
connected with the contribution of the intervals of the 
trajectory of the order of qR. The result of this integra
tion is thus similar to the linear theory and is a smooth 
function of the points ~ and ~'. At the same time, with 
account of (5), we can see that the integrals of the quan
tities ~v~l~/a~ with respect to ~ and ~' converge near 
the turning points over distances lib « qR in the case 
strong nonlinearity); in particular, this proves the as
sertion made previously that the intervals of effective 
interaction (which are indeed the ones that make a con
tribution to the integral) are small. For this region, the 
integration along the trajectory reduces to summation 
of the contributions of the various turning points (and 
for calculation of these contributions, we can neglect 
the change of exponential within the limits of the inter
val of effective interaction). 

Using the expression for the velocity of the electron 
on the intervals of effective interaction (6) (making, if 
necessary, the corresponding transformation of the vari
able 0, we reduce the integral over the trajectory close 
to the turning point to the ordinary integral over .~. As 
a result, the contribution of some turning point q to 
the integration over ~ (or ~') takes the form 

~ d- ljl!>/o- . 
Ji=aiP,S (?1l!>'1 I[(~ ~')b+ 6 j _]}" ... -aiPi.9'"(lj/,bi).(24) 

'It'''' m -lli j COS 111 -cos b 

where (li = 1 for the boundary points of a quasiperiod, 
and (li = 2 for the remaining points; the factors Bi appear 
as a result of a transformation of the variable ~; Pi 
= Bi<l>ill/2Imi/<I>~1]1/2; 

~ sin ~ do 
.9'"(x,y) = So[ < ~ « )]'. (25) 

x cos x-cos 6 -r-y S -x' 

The integral §" is a function of the dimensionless para
meters '7J and bi. The problem is thus reduced to simple 
integrati6n. In the case b » 1 we have in the lowest or
der of lib, 

.9'"/"".9'"(Tj,i, b')"'(n/b,)"'sin (Tj/+n/4), 

and the results of linear theory follow from (23) and (24). 
In the regime of strong nonlinearity in which we are in
terested, we have x « 1 and y « 1 in (25). Asymptotic 
estimates give3 ) 

.9'"/-2+ [nb,- (Tj/)'/2J +b,.9'"log, 

.9'"log", 1'2 {In[ 'li: b,) , (41tb i -(Tj/)',)] -2}, 
2 'I:lb, 6:lb'-('lil 

(26) 

or in terms of the quantities introduced by us, 

.9'"/"'2+ (-b.)Z(ft/) + b,.9'" log 

We now transform the expression for the function g 
(23), writing down the integral over ~' in the form of 
a sum of the contributions of the individual turning 
pOints. Neglecting the contribution of the initial inter
vals of the trajectory, which constitute a fraction of 
a quasiperiod, with accuracy up to terms ~T/T (rela
tive to the basic effect), we get 

Here l is the number of turning points on a quasiperiod. 
We expand the reduced potential in a Fourier series: 
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~ I 
Z(ft)= ~ (--) sin(kft). 

~ k .-. 
Using this expression, we carry out summation over the 
index of quasiperiods with account of (16). Keeping terms 
which make a contribution to the absorption, with accu-
. racy up to ~T/T, we have 

_ \"1 _ n A. sin (kft,") 
-g= L a,jJ,b, L k 

+Ao [2 taIP,+.9'"IOg(o,O) ta,P,bt]. 
(27) 

i_V i_O 

Here 

[ 1 J '".=He ------ . 
l-exp(ikB,-I) 

(28) 

For k = 0, this quantity is near ly equal to TIT and does 
not have a resonance dependence. At k ., 0, the quantity 
Ak as a function of B~ has at B~ = 21Tn/k resonance peaks 
of height ~T/T and relative width ~T/Tk. 

Transforming the integration over ~ in (23) in similar 
fashion and further integrating, with account of the per
formed operations, with respect to "g in (23a), we get 

'" 
S dft,02(ft,Q)-fin+ffA , 

, 

.. (29) 
jj ... =Ao S [2.'! (xb") +t1 (;r.b'I').9'"log(ft,') l'dft,' 

, 
, 

,1 (;r.b') "" E (a,xN), 

We note that the neglect (which is important for us) 
of the contribution of the fractional portions of quasi
periods is permissible if we can neglect the contribution 
of a single turning point in comparison with the quantity 
(29), which includes the contribution of the integer num
ber of quasiperiods. Therefore, at A(xbl/2) = 0, the appli
cability of our calculations is restricted by the condition 
(T/T)b 2 » 1. 

3. NONLINEAR PICTURE OF MAGNETOACOUSTIC 
OSCILLATIONS 

In Eq. (29), which determines the sound absorption 
by the untrapped ele£!rons, there are two separate terms; 
the resonance term!i' R, which is connected with the har
monics of the reduced potential and the resonance fac
tors Ak, and the nonresonant part, which is proportional 
to Ao ~ TIT. The contribution of the trapped particles 
represents the contribution to the nonresonant term. The 
nonlinear picture of the absorption depends on the rela
tion between the resonant and the nonresonant parts. 

We first analyze the resonant term. First we note 
the rapid decay of resonance absorption with increase 
of the intensity ~S-3/2, which is connected with the quan
tities bi ~1/41i. We begin the study of the dependence on 
the magnetic field with the very simple case of perpen
dicular configuration q 1 H (and w « liT) and trajec
tories that are closed in momentum space. This case 
was considered for an isotropiC quadratic spectrum in[5].) 
The trajectory in coordinate space is closed (Fig. 1) and 
B~ = 0, as a consequence of which all the '\k are equal 
to one another. In the simplest case, when the trajec-
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tory has two turning points and bl = b2, XI = - X 2, we 
get from (29) (with account of (15)), 

I • 

. ?iR - J [Z(it.)-Z(it,)]'dit,-[(B.,')'+(2n-B,,')'l, 
o 

(30) 

] denotes the integer part. As is seen from (30), the 
contribution of the trajectory to the absorption has an 
oscillatory dependence on the size of the trajectory B12 : 
it is a maximum for BI2 = 2rrn and a minimum for 
BI2 = 1T(2n +1). This dependence, which is preserved in 
the general case (xi> bJ I- (-X2, b2) leads to geometric 
oscillations of the absorption as also in the linear theory. 
The period of these oscillations is determined by the size 
of the extremal cross section of the Fermi surface and 
does not change in comparison with the linear theory. The 
shape of the oscillations is somewhat changed, as is seen 
from (30). The depth of the modulation depends on the ra
tio of Y R to the nonresonant part !l A' The contribution of 
the nonresonance part will be analyzed in detail below. 
For the present, we note that in the case ~C,<bI/2) = 0, 
for example, for an isotropiC quadratic spectrum, we 
can neglect the contribution of the nonresonant part and 
the depth of modulation ~ (1/qR)1/2 just as in the linear 
theory. Thus the conclusion of[5] as to the "smearing" 
of the oscillations in this situation is in error already 
for b S 1 and is connected with the insufficiently de
tailed analysis of the expression (19) in[5]. 

It is seen from Eq. (26) that, along with the resonant 
dependence on the field, the quantity YR has a monotonic, 
but very sharp, dependence (~H3) connected with the fac
tors bi' With increase in the magnetic field in the region 
of suffiCiently strong fields, the condition b» 1 begins 
to be satisfied; from there on the absorption is described 
by the linear theory. Thus the strong magnetic field re
moves the nonlinearity. The reason is the increase in the 
curvature of the trajectories and the removal of the elec
trons from the potential wells of the wave. In this connec
tion, we recall that the manifestation of momentum non
linearity in the absence of a magnetic field is described 
by the parameter 4>°(ql)2/E .[4] As is not difficult to see, 
in the situation considered, the threshold of the momen
tum nonlinearity exceeds by a factor [Orql]2 in intensity 
the threshold of nonlinearity in the absence of the field. 
The strong dependence of the height of the oscillation 
peaks on the field significantly changes the oscillation 
picture. Thus, if the condition b « 1 is satisfied near 
the extreme peak of the linear picture (B~ = 21T), addi
tional peaks, corresponding to stronger fields (BE = 1T, 

... , 21T/n), exceed the amplitude of the basic peak 
(B~ = 21T). 

We now analyze the nonresonant~A (which appears 
only in the nonlinear picture). In the case of a complica
ted electron spectrum, the quantity ~(J(,,1/2) is generally 
different from zero and, as is easy to see, precisely this 
term gives the basic contribution (for a given PH) to the 
monotonic part of the absorption coefficient. The non-

We now consider the case of trajectories that are resonant absorption is here proportional to b and falls 
open_in coordinate space, B~ I- 0 (Fig. 2). First we note off with increase in the intenSity and with decrease in 
that2 R has resonant peaks at B~ = 2m. These peaks the field as S-1/2 and H2, respectively, i.e., much more 
correspond to the ordinary magnetoacoustic resonanceP' 3] slowly than the resonant term. As a result, the modula-
Moreover, in contrast to the linear theory, a set of ad- tion depth of the resonant picture falls off in proportion 
ditional peaks appear for B~ = 1T, ••• , 21TID/n, connected to b2. In particular, in the corresponding configuration, 
with the set of the various Ak' It is not difficult to prove this leads to the decrease in the depth of modulation of 
that these peaks have the relative amplitude ~ 1/n2 in the geometriC oscillation predicted in[5]. Thus, from the 
comparison with the basic system (for fixed bi), inas- change in the depth of modulation we can assess the ani-
much as the resonance condition is satisfied only for k sotropy of the quantity Xb1l2 and, in particular, the aniso-
that is a multiple of n. Their relative width is ~l/n. tropy of the deformation potential. 

In order to make clear the mechanism of the appear- If the same quantity ~(Xbl/2) is negligibly small for 
ance of the a'dditional peaks in the absorption, we return almost all the important values of PH (for example, in 
to the expressions (21)-(24). It is seen that the appear- the isotropic case), the nonresonant part of the electronic 
ance of the terms Ak with k ~ 2 in the nonlinear situation absorption is connected only with the contribution of the 
is. connected with the nonharmonicity of the quantities trapped particles or with the logarithmic term. Simple §l that describe the effective interaction of the electron estimates show that for the characteristic trajectories, 
WIth the sound. We estimate the parameter that deter- at moderate intensities, these contributions are small 
mines the appearance of this nonharmonicity. For this in comparison with the resonance term .4) 

purpose, we find the corrections to the integral§"j which 
take into account the finiteness of the sound amplnude in 
the case of relatively low intensity b » 1. With the aim 
of taking into account also the displacement of the turn
ing point due to interaction with the wave, we make the 
change of variable ~ - $ in correspondence with (12) and 
(16). Expanding the integrand in (24) in powers of l/b, 
we get, in particular, a term corresponding to the second 
harmonic: 

Simple calculations show that the relative amplitude of 
the additional peak associated with it is of the order of 
1/2b2 • Thus, from the relative height of these peaks, we 
can assess the values of bi and, in particular, the defor
mation potential, and indirectly also the intensity of the 
sound introduced into the crystal, and so on. 
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Intemation over .PH is carried out as in the linear 
theory 2] and leads to similar conclusions on the be
havior of the oscillation picture as a function of the 
mutual orientation of the vectors q and H and the singu
larities of the electron spectrum. In particular, if B~ 
does not depend on PH (for example, in the presence of 
trajectories that are open in momentum space or in the 
case of acoustic cyclotron resonance w = 2rrn/T), the 
resonance conditions are satisfied simultaneously for 
all electrons and the resonance peaks of 9'R correspond 
directly to the peaks of the absorption coefficient. In the 
case of a dependence of B~ on PH (which occurs, for 
example, if the Fermi surface is closed and the drift is 
created by an oblique field), resonant behavior of the 
integral over PH can be connected only with the extrema 
of B~(PH)' If there exis.!s an internal extremum (aB/apH 
= 0), then the peaks of.~R correspond to the absorption 
peaks. 
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Of great interest from the viewpoint of the study of 
nonlinear effects is the situation in which the extremum 
is connected with a limiting point. Actually, the vicinity 
of a limiting point corresponds to small values of the 
velocity along the trajectory and, consequently, to a 
large effect of the sound wave on the trajectory. First, 
we shall make some estimates for the linear picture of 
the specified effect. According to[S] the participation of 
the limiting point in the magnetoacoustic resonance re
quires a configuration close to the perpendicular: 

(1Iq/) '1·-:t>a.-:t>1IqR. 

Here, aB!;/apH near the limiting point is different from 
zero in the general case and we are dealing with a lim
iting extremum. For convex Fermi surfaces, such an 
extremum is the only possible one. The vicinity of the 
limiting point that makes an effective contribution to 
the resonance effect is determined by the width of the 
function A(PH): the characteristic angle of the corres
ponding segment of the Fermi surfaceS) is CPo ~ (aqlr1l2. 
Estimates of the integral over PH (of the type given in[2] 
for the study of the limiting extremum at (! ~ 1) give, in 
the linear case, 

AI' r n 1 [I signB\ (tlnT)] 
u .- ° -+---arctg --

Tqa. v.max[cpo,(tlnIB\+ltlnIB\I)'''] 2 nT' 

tl n "",B,-2nn .. 

Thus, the function r(l/H) is a set of the root peaks of 
decreasing amplitude (~roll-l(TiaqR/Trl' 2, which are 
limited on the high-field side by a strong discontinuity, 
and decay rapidly with increasing l/H down to values 
~ro/n. The region near the discontinuity (a sharp peak 
vertex of width ~ cpg/H1 ) corresponds to satisfaction of 
the resonance condition in the neighborhood of the lim
iting point, and the region of decay corresponds to the 
contribution of the intervals far from the limiting point. 

The specifics of the nonlinear effects for this situa
tion are connected with the dependence of the coefficient 
b on Vy and, consequently, on the proximity to the limit
ing pomt. ThUS, the nonlinear picture is "scanned" on 
the graph of r(l/H). With increase in the intensity, the 
nonlinearity becomes significant, beginning with the in
tervals corresponding to the contribution of the limiting 
point (and for intensities much less than those on the 
characteristic trajectories). This appears first in the 
decrease in the height of the basic peaks ex: b3. Additional 
peaks, which arise in the region between the basic peaks, 
are sharp, inasmuch as they are connected only with the 
contribution of the vicinity of the limiting pOint. With 
further increase in the intensity ,6) when the condition 
b ~ 1 begins to be satisfied for the characteristic trajec
tories, the oscillation effects corresponding to the lim
iting point actually disappear. 

We note that the drift of the electrons along the !; 
axis can be due (in the case of a semimetal or a semi
conductor) to the presence of an external electric field 
in the systemY] 

In conclusion, we give estimates for the possibilities 
of experimen tal observation of the cons idered pheno
mena. They are all connected with the parameter b: 

We note first that very pure materials are required with 
long mean free paths, which admit of large values of the 
parameters ql and qR~ For typical metals with open tra-
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jectories, for EF ~10~o, VF/Vi ~ 10 (i.e., when the basic 
contribution to the absorption is made by points near the 
inflection points of the trajectories) and qR ~ 200, the 
value b ~ 1 is achieve4 at sound intensities S ~4W/cm2. 
The situation for semimetals is more favorable. For 
semimetals with E F ~ 2000 and a constant deformation 
potential ~ 10 eV in the case qR ~ 40, the value b ~ 1 
is achieved on the characteristic trajectories at S 
~ 4W /cm2, and in the vicinity of the limiting point (set
tingql ~ 1Q3)atS -0.04W/cm2. 

I take this opportunity to express my deep gratitude 
to Yu. M. Gal'perin, V. L. Gurevich and R. Katilyus for 
detailed discussions of the work and valuable advice. 

APPENDIX 

The quantity §"(x, y) is a two-parameter integral (see 
(25)). In correspondence with our assumptions Yle have 
x « 1 and y « 1 (inasmuch as y = bi and x = 1]1 in (24); 
on the other hand, 1] "" 1]m '::I (41Tb)1/2). We make quanti
tative estimates, which have asymptotic meaning. For 
this purpose, we separate from the integration interval 
sections that are close to the crests of the wave and cor
respond to small values of the denominator. We take C 
in the interval y1/2« C« 1; then C2» (y, x2/2). We 
represent the desired integral in 1he form 

c 

fT=fT,+fT,+fT" fT,= S cp d~, 

$II-C %K(n+t}-C 

fT,= [ S +... S + ... ] cp d~, 
C 2:tn+C (A.l) 

2:.;+C bn+C 

fT,= [ S + ... S + ... ]CPd~, 
2;1:_C 2:'1:1!_C 

cp=sin ~/[cos x-cos ~+y(s-x»)"'. 

We note that because of the smallness of x we can expand 
cos x up to the quadratic term, and by virtue of the small
ness of C we can carry out expansion in Y 1 and Y 3 : sin!; 
= sin1J ~1]; cos!; = COS1] ~1 -1]2/2. As a result, we have 
for §"l 

fT.""2 [(I-COSC)'''- x'-yC yY2ln( C+Y+x~:-x')'" )]. (A.2) 
(i-cos C )'/. 

We now estimate Y 2 : 

w ,.-c sin ~ d~ 

fT,= 1: S [cos x-cos ~+y (~-x) +2nnJ'/. . (A.3) 
n_O C 

We now expand the integrand in powers of y(!; -x), 
keeping only the term giving a nonvanishing contribution; 

fT - ~ '"S-C sin~(-y(~-n» (A 4) 
,-~ 2(cos x-cos s+ny+2nny)'/,' • 

n=O C 

The integrand can now be summed over n. Carrying out 
the summations, and making use of the relative small
ness of the step of the summation (by virtue of the fact 
that y « C), we replace it by integration with the help of 
the trapezoid formula. It can be shown that such a trans
formation corresponds to the neglect of terms ~b2. Then, 
carrying out integration over ~, we finally obtain 

1 f! 2n;-0 1 2:1-C 11 

fT,""-~2Hcosx-coss) "Ie +-;- S (co~x-coss) "ds, (A.5) 
c 

whence 

4Y2 C ( x") - (C+y+(C'-X')'I') fT,+fT,""--+ , ny-- -yY2ln . 
n n (I-cos C) '" 2 x+y 

For the estimate of §"3, we perform the transformation 
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"" %,"'+c 
iT3= ~ S. sin~ f::: ... _c [i-cos ~-.x'/2+y(9-X)]'" d~ 

~ c 
- ~ S ~da 

. ~ -c [62/2-x'/2+y(~-x)+2nny]"" (A.6) 

Su~mation over n is done in two parts (1, [C 2/41TY]), 
[C /41TY] + 1, ao). For n within the limits of the second 
interval, by virtue of the condition x2 « C, we can carry 
out the expansion of the integrand in powers of (~y) up 
to the first nonvanishing order. We must then carry out 
the summation over n (replacing it by integration as 
above), and then integration over ~. 

In the first interval, it is convenient first to integrate 
over ~, obtain the following expressions: 

2 (.r _ -=: +2nny+ya )'J, I c -21'2 Y In I C+ (C'+4nny-x') 'I. I 
2 2 -c [2 (2ny-'/,x'+2n(n-i)y) J'" 

(A.7) 

Carrying out the summation over n, we can, as before, 
replace it by integration. We note that in this case 
generally speaking, the requirement of the relativ~ 
smallness of the summation step for the denominator of 
the expression lying under the logarithm sign is not sat
isfied. However, we can show (by means of direct esti
mates) that the difference between the integration and 
summ~tion is determined by a quantity ~b/24, which is 
numerIcally small. 

Finally, summing all the results, we obtain 

iT,+iT,+iT,'" [ 4Y2 +0 (C') ] +( ny-~) .~ +Y1'Z"{ln ( x+y ) 
n 2 n 1'4ny 

+In (4ny-x') -~ln(4nY)-i} +0 (l!-.) (A.8) 
6ny-x' 2 C' ' 

whence, neglecting terms that are symptotically small, 
we obtain the expression given in the text. 

I) As is seen from the qualitative discussions given above, the obtained 
results are valid, in order of magnitude, for arbitrary ~, in each case 
that is not too close to 7r/2. 

2)Most trajectories correspond to Vy - vF. For the vicinity of the refer
ence point of the Fermi surface (associated with small v) the estimates 
of the validity of such a consideration are given below. 
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3)The methodology of these estimates is set forth in the Appendix. 
4)Inasmuch as the contribution of the trapped particles rt - (qTy<I>O!mfl 

r 0' (4) it is comparable with the resonant part only when (qRT/T)2 
(<I>0/E)SI2 2: 1. In tum, the logarithmic term is important at lIn (47rb) I 
~ I, which also corresponds to very high intensities . 

S)We note that the trajectories associated with the interval of this neigh
borhood in the immediate surroundings of the limiting point (ApH 
:S PF~) do not contain (at least in the linear case) the turning point 
Vx = O. The boundary trajectory, on which the points Vx = 0 first 
appear, requires in general special consideration, inasmuch as Vy = 0 
at the points Vx = 0 on it. However, ifT/Ta2 ~ 27r, the contribution 
of this trajectory can be neglected in comparison with the contribution 
of the trajectories of the ordinary type, which satisfy (5). 

6)The description of the perturbed trajectories used by us (which does 
not take into account the change in Vy) in the vicinity of the limiting 
point is valid only for Avx - (<I>0/m) 1/2 ~ Vy - vF<Po. For (<I>0/m) 1 12 

2: vF<Po, almost all the electrons corresponding to these trajectories 
tum out to be trapped. 
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