
Anomalous absorption of an electromagnetic wave with a 
frequency close to twice the plasma frequency 

A. M. Rubenchik 

Institute for Automation and Electronics. Siberian Division. USSR Academy of Sciences 
(Submitted October 28. 1974) 
Zh. Eksp. Teor. Fiz. 68, 1005-1013 (March 1975) 

We consider the nonlinear stage of the instability of a monochromatic electromagnetic wave with respect to 
its decay into two Langmuir oscillations. Its coherence leads to a phase mechanism to limit the amplitude 
of the excited waves which determines both the induced scattering by ions and the Langmuir turbulence 
spectra. The distribution of the oscillations in k space is steeply anisotropic and consists of a succession of 
sharp peaks which extend into the small wavevector region from the maxima of the instability growth rate. 

INTRODUCTION 

It is well known that the absorption of energy from a 
powerful electromagnetic wave in a plasma is basically 
caused by collective effects. [1] It is thus necessary for 
an understanding of the processes which take place to 
construct a theory which conSistently describes the in­
teraction between the excited plasma oscillations, 
Recently it has been found possible to understand rather 
well the problem of the heating of an isothermal plasma 
by an electromagnetic wave with frequency Wo ~ Wp' [2-6] 
The basic features of the parametric excitation of high­
'frequency potential oscillations in a plasma with a mag­
netic field have been elucidated. [7] In all these cases 
the plasma oscillations were excited as a result of the 
conversion of an electromagnetic wave through scatter­
ing by ions: 

and their distribution was described by weak turbulence 
theory. 

In the present paper we consider the non-linear stage 
of the instability of an electromagnetic wave with respect 
to its decay into two Langmuir oscillations. This proc­
ess may, in particular, playa basic role in the absorp­
tion of energy by the plasma corona of a deuterium drop­
let. 

In contrast to earlier papers[2-7] we shall show that 
the induced scattering by ions is not the only important 
non-linear effect. The coherence of the initial wave leads 
to the occurrence of a specific phase mechanism to limit 
the instability. The quantitative results obtained below 
are not very different from the results from the paper by 
Pustovalov, Silin, and Tikhonchuk, [8] who did not take 
phase effects into account, but the distribution of the os­
cillations in k-space has an essentially different form. 
The Langmuir turbulence spectra turn out to be steeply 
anisotropiC and have the form of jets extending from the 
region of the maxima of the instability growth rate into 
the small wavevector region. 

1. BASIC EQUATIONS 

We consider a homogeneous isothermal plasma in 
which a linearly polarized electromagnetic wave 
E = Eocos{2(wot -I(' r)} propagates. Its interaction with 
the Langmuir oscillations which occur is described by 
the Hamiltonian 

Hp= S p(v.v)d'r. (1) 

Here v is the velocity and p the change in the electron 
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density in the Langmuir oscillations while Vo is the 
velocity of the motion of the electrons in the field of the 
electromagnetic wave: 

v.(t) =v. cos[2 (lIl.t-xr) 1. v.=eEoI2mlll.. 411lo'=1Il.'+4x'c'. 

Changing to the canonical variables for Langmuir 
waves [9] 

p.-k(p./211lp )''' (a.+a_") , v.= I~I (;;,) (a.-a_"). 

we can rewrite 11> in the form 

Hp= ! J [v.(x)a._.a.+.e"·"+C.c. 

v.(x) = (kv.) (xk)/lx-kllx+kl. 

(2) 

The equations of motion are, as usual, obtained by vary­
ing the Hamiltonian: 

(3) 

One checks easily that the zeroth order solution 3.Ic = 0 
is unstable with respect to a growth of the oscillations 
a,c +k' lie -k with maximum growth rate 

The oscillations which are excited as a result of the in­
stability are arranged near the surface 

1Il(x-k)tlll(x+k)=211l.. 1Il.=lIlp (1+'I,k'r/). (4) 

which consists of two spheres with radius 

and with centers which are at a distance 2K apart. Owing 
to the sharp angular dependence the magnitude of the 
growth rate changes appreciably along the surface (4). 
We introduce a spherical system of coordinates. We 
reckon the angle (J from I( and the angle cp from Eo. We 
shall assume in what follows that K/k « 1. The growth 
rate then reaches its maximum [10] 

_ xv. = 1'3 1Il (~)"'= 1'3 1Il.( Wft , )'1. (5) 
'1- 2 8 p 4nn.mc· 8 nome' 

in the four points cp = 0, 1r, (J = rr/4, 3rr/4. The sum of the 
phases of the excited waves is then equal to rr/2. 

In order to evaluate the growth rate of the instability 
of a wave with circular polarization we consider an elec­
tric field with two perpendicular components which are 
shifted in phase by rr/2. Chan~ing the origin of the phases 

Copyright © 1976 American Institute of Physics 498 



of the waves a,c:l:k -exp(ilPk/2)a.c:l:k (lPk is the azi­
muthal angle between E and k) we are led to Eqs. (2), (3) 
with the matrix element 

V.(x) ='/,xv. sin 28. (6) 

The maximum growth rate of the instability which has 
the magnitude (5) is reached on the parallels () = 1[/4, 
31[/4. The amplitude of the excited oscillations is limited 
by non-linear effects, the main one of which in an iso­
thermal plasma without a magnetic field is the scattering 
of Langmuir oscillations by ions. 

Adding the terms, which describe the interaction be­
tween the oscillations, [11] to (3) we get a non-linear 
dynamic equation 

c7a~+.1 at+ICIl.+.a.+'+la.+.--tV. (x) a:_.e .... • 

-I J l' x+., •• ,.".,a.:a.,a •• 11 (x+k+k,-k,-k,) dk, dk, aka, 

CIl/ 1 [ ( CIl •• -CIl .. ) 
1' ••••••• = 2n.T kk,k,k, (kk,) (k,k,)G Ik,-k.1 

+ (kk.) (k,k.) G ( ~::==j )] , 
G(~)=~ 

Ikl 1-L •• ' 

L •• =~Jkaf .. ~. 
Mn. c7V kv-CIl 

Before turning to a discussion of the non-linear 
effects we draw attention to the expression for the en­
ergy flux in the plasma 

(7) 

(8) 

(the angle brackets indicate here averaging over the 
random individual phases of the waves). It is clear that 
the absorption of the energy of a monochromatic wave by 
the plasma leads to the appearance of not only the usual, 
but also the anomalous correlation functions 
<7t = (a,,-ka.c +ke2iwot). Using the fact that" is small 
we put it everywhere equal to zero, except in the matrix 
element Vk(K) of the interaction with the external field. 
The problem then turns out to be completely analogous 
to the problem of the excitation by a uniform hirh-fre­
quency field of two oscillations (see the review 12] )1) be­
longing to the same branch of the spectrum. 

We neglect to begin with the transfer of energy to the 
small wavevector region due to scattering by ions. 
Averaging over the phases we get by analogy with [12,13] 

from (7) the follOWing set of equations: 

where 

'I ,dn.1 dt+yn.= 1m P.o.', 

P •. = V. (x) + J 8 •• '0.' dk', (a.a.,·}=n.1I (k-k')., 

fi)=2C1l.-2C1l.+4 J T •• 'n.' dk', 8 •• ,=1'.,-0,.',-.', 

Tu.'=Ttk.'tt" 

2. STATIONARY SOLUTIONS 

(9) 

Zakharov, L'vov, and Starobinets [14] have shown that 
stable stationary solutions of (9) are found on the sur­
face w = 0, Le., that oscillations are excited with eigen­
frequencies 

which satisfy exactly the decay conditions (4). The 
correlation of the oscillations with opposite wavevectors 
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is complete Oaki = nk) even in the transitional regime. [12] 

As all excited waves have the same frequency we can put 
G = 1 and we obtain 

1' •• , =CIlp'(kk') '/2noTk'k", 8 •• ,=21' •• ,. 

Taking into account the structure of the growth rate 
we symmetrize the problem with respect to the replace­
ment of k by k' and lP by lP + 1[. We get then again Eqs. 
(9) in which 

8 ••• = (8. k .-8 ... ,)I2, 0.=40., n.=4n., 

k'=k(<p+n), -n/2<<p<n/2. 

We have used here the fact that V-k' = -Vk' a-k' = -ak' 

If we are just above threshold four monochromatic 
waves are excited in the pOints corresponding to the 
maximum growth rate: 2 ) 

The threshold of the next group of waves is, as usual, [14] 

determined by the condition 

(10) 

We see that Sk~ ex: Vk and that it follows from (10) 
that the threshold for the production of the next group of 
waves is infinitely large. When we take into account that 
the magnitude of K is finite, the functions Vk and Skok 
are no longer the same and E/Eth ~ c/vT' In the case of 
the decay of a wave with circular polarization the 
Langmuir oscillations are also described by the set (9) 
where we have instead of Skk' its average over angles. 

We have also exactly Skok ex: Vk and for any excess 
above threshold waves are excited along the two paral­
lels () = 1[/4, 31[/4. 3 ) 

We neglected in the preceding section processes which 
transfer oscillations to other regions of k-space. The 
most important of these is scattering by ions which de­
creases the wavevector of the oscillations. We write ak 
in Eq. (7) as 

where Ak describes waves on the resonance surface (4) 
while ak describes waves which are scattered into the 
region of small k for which no anomalous correlations 
occur. The presence of waves outside the resonance sur­
face leads to the appearance of a term describing non­
linear scattering in (9): 

1.,=-Im J T .. ,N., dk', (fl.fl.,'}=;N.II(k-k'). 

We showed above that four waves (or two bands) are 
excited on the resonance surface, if we neglect scatter­
ing by ions. In the other points of this surface the energy 
flux in the medium is less than the damping. It is natural 
that the presence of additional damping only aggravates 
this inequality. The oscillations are thus distributed 
pronouncedly anisotropic ally on the resonance surface. 
Bretzman, Zakharov, and Musher [3] have shown that 
turbulent spectra excited as a result of induced scatter­
ing of parametrically excited waves are also steeply 
anisotropic and have the form of jets extending into the 
region of small wavevectors. We must therefore study 
in what follows the one-dimensional problem of the en­
ergy distribution along a jet. 
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In the case of a wave with linear polarization the dis­
tribution of the oscillations in the jet is, when we take the 
symmetry of the problem into account, described by the 
equation . 

aN.lat+rN.= J T .. ,N., dk'N.+T .. ,noN.. (11) 
o 

The fact that the problem is one-dimensional appreciably 
simplifies the form of the matrix element (7): 

T .. , =~lmG(3(k-k'») 
2noT 2kdi//' 

For no we have from (9) 

f dn. S 2dt"+ln.- T ... N.dkn.=V",n.sin~, 

f d~ (12) 
2& +11i=n. (V cos ~+Sn.). 

The form of the stationary solutions of (11) was stud­
ied in [5J for different forms of the growth rate. It was 
shown there that if the size of the growth rate is less 
than the diffusion interval, the solution has the form of a 
sequence of sharp peaks positioned at distances from one 
another. The stationary distribution of the oscillations 
has therefore in our case the form 

The energy balance condition in the m-th peak gives 

ro ' T =-P- max ImG 
2noT ' 

(13) 

and for the first peak excited as the result of the para­
metric instability we have 4) 

S'N,'=V • .'-(l+TN,)', N,=n •. (14) 

We proceed to determine the amplitude of the peaks. 
First of all we note that the amplitude of the penultimate 
peak is always equal to Nc = y/T. If the nwnber of peaks 
is even, 2m, the amplitude of the first peak is equal to 
mNc' 

We have from (14) for the amplitude N2 

N,IN,= [V'h'-(SIT) 'm'J'''-1. 

As we get further above threshold, the amplitude of the 
odd peaks becomes constant, and the amplitude of the 
even peaks increases until the magnitudes of the last and 
the last-but-one peaks become comparable. This occurs 
when the excess above threshold equals 

V'm+lh=[ (SIT)'m'+(m+1)'J"', (15) 

When we get further above threshold there appears 
the (2m + 1)-st peak, the amplitude of the odd peaks 
starts to increase, and that of the even peaks to be frozen 
in. As N2 = mNc we get for the amplitude of the first 
peak 

(SIT) ·(N./N.) '=V'/'rl- (m+1) '. (16) 

This expression remains valid up to the threshold V2m +2 
for the creation of the next peak: 

V'm+,/l-[(SIT)'(m+1)'+(m+1)'j"== [(V'm+'!1)'+(2m+1)~ r. 
We note that as siT = 2/(Im G)max < 1, the region of ex­
cesses above threshold for which there is an even nwn­
ber of peaks is larger than the creation for which there 
is an odd number of peaks. 

We now evaluate the energy flux in the plasma. Equa­
tion (8) gives 
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Q==4ro.N,V..,sin ~=4ro.NJ(1+TN,). 

For an even number of peaks 

Q'm=4mro pTN.'[V'h'- (SIT) 'm'J'" 

and for an odd nwnber 

Q'm+,==4(m+1)ro.'l'N>~ [V' -(m+1)']"'. 
S l' 

(17) 

(18) 

When the excess above threshold is large m »1, 
m ~ V/Y(1 + S/T)ll2 and we have for the energy flux in 
the plasma 

V' l' 8V' 
Q""4rop m'TN,'=4rop-- "" noT. (19) 

. -r' T "'pmaxlmG 

This result agrees with the estimate obtained by Galeev 
and Sagdeev.[IJ However, the peculiar behavior of the 
energy flux with a break in the derivative at the moment 
that a new peak is formed can not be obtained from sim­
pIe estimates. 

So far we have considered stationary solutions of (12) 
and (11), It was, however, shown in [5J that when we are 
well above threshold when the oscillations reach the 
region of Langmuir collapse, the trans-threshold behav­
ior of the system is essentially non-stationary. The re­
leased energy is transferred to the region of long wave­
lengths in the form of periodic pulses-solitons, propa­
gating along the jet. The released energy is then, as be­
fore, given by Eq. (19) and the picture of what happens is 
the same as that described in [5J. We note also that the 
change to the stationary solution occurs after a long time 
and only, if thermal noise is present. [4-6J 

All results obtained so far referred to the case of a 
linearly polarized wave. As we showed above, when we 
neglect transfer along the spectrum, for a Circularly 
polarized wave the oscillations are excited along the 
parallels () = rr/4, 3rr/4. The induced scattering by ions 
can be taken into account in exactly the same way and the 
distribution of the oscillations on the cone () = rr/4, 3rr/4 
has a similar form, while circular bands with different k 
play the role of the peaks. All results obtained earlier 
can be applied literally, except that the amplitude of the 
bands in Eqs. J13) to (19) is written in a spherical norm­
alization and T must be replaced by its angular average. 

CONCLUSION 

We explain now how an inhomogeneity of the plasma 
will affect the results obtained by us, It is well known 
(see, e.g., [IJ) that in that case the decay conditions are 
satisfied in a layer of width 

dk 
6-1.lvgrdx' 

so that after the time needed to pass through it the oscil­
lations grow to an amplitude 

• , dk 
WooW,e"" ~=1' IVgr - . . en 

If the amplification coefficient ~ ~ 1 the noise density 
in the plasma is limited by the non-linear mechanisms 
considered above and the corresponding value of the 
electrical field can be considered to be the threshold 
value for the inhomogeneous plasma: 

drop vr' Em' / drop , 
~=-r"lvgra:;-=--;; 8t1nT roP a:;-krd -1, (20) 

E/h2 c~ rd 
--. --(krd)-. 
8t1nT vr' L 

One verifies easily that Eth is rather small both in laser 
and in ionospheric experiments. 
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We now consider the effect of the inhomogeneity on 
the excited Langmuir turbulence. Oscillations propagat­
ing, say, in the direction of increasing density, decrease 
their wavevector and are removed to other regions of 
space. However, after a time T ~ (wpw/n~f1 ~e oscilla­
tion is scattered backwards and, propagating mto the 
region of lower density, decreases its wavelength. In 
order that the inhomogeneity does not blur the picture of 
sharp discrete peaks, it is therefore sufficient that the 
wavevector changes little over a time T compared to the 
diffusion spacing kdiff: 

W r,(m)'" -;;r>T M • 
( dlnn )-. 

L= -­
dx 

For the first peaks, where 

..!.._~(~)., .. 
nT c nT 

this leads to the condition, much weaker than (20): 

Another effect which was neglected above is the re­
verse effect of the Langmuir turbulence on the electro­
magnetic wave. We consider this, for the sake of sim­
plicity, in a uniform plasma. The amplitude of the elec­
tromagnetic wave when it penetrates into the medium is 
diminished and can become less than the threshold 
amplitude. Moreover, an inhomogeneous profile is, in 
fact, equivalent to a spectral broadening of the mono­
chromatic wave. If vgr/L > yo the dynamic regime of 
the decay instability IS shifted stochastically with a 
growth rate smaller by a factor yLlvgr• The relaxation 
length L can as to order of magnitude be found from the 
equation of continuity for the energy flux 

cEo'l cE2ro" c c1. L-----,----,. 
Q To nT W p Vr 

and the criterion for the applicability of our results, 
I' > vgr/L is very weak: 

E'lnT> (krd)'(vrlc) , 

and is practically always satisfied, even in a thermo­
nuclear plasma. We note also that the relaxation length 
is rather small (L ~ 10-3 cm for the plasma corona of a 
deuterium droplet) which indicates the essential role of 
the process considered by us. 

The estimates given above show that the Langmuir 
turbulence developing in a plasma through the action of 
an electromagnetic wave is practically always uniform 
and depends on the coordinates as variables through the 
spatial change of the electromagnetic field. We note that 
in this form the problem of the dissipation of the energy 
of an electromagnetic wave near a turning point was 
solved by yas'kov and Gurevich. [lBJ 

So far we have considered the case of not too strong 
electromagnetic fields, W/nT < krd(m/M)ll2. When we 
are well above threshold 

krd(mIM)"'<WlnT<(krd)' 

the oscillations are transferred to the collapse region, 
W/nT ~ (krd)2 due to the modified decay instability [17J 

'(mod-(wpw.'WlnT) "'. (21) 
and for yet larger excess above threshold 
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WlnT> (krd) , 

the oscillations start to collapse into the growth rate 
region. We note that the nature of such a strong turbu­
lence does no longer depend on the ratio of the electron 
to the ion temperatures. 

The author is grateful to Y. S. L'vov for useful dis­
cussions. 

I)When " * 0 there is a complete analogy with the parametric excitation 
of two different kinds of oscillation. [13] 

2) A more rigorous consideration shows that we have narrow packets 
~w ~ Sn because of the instability. [13,15] 

3)These results are connected in an essential way with the symmetry of 
the distribution of the oscillations. If this symmetry is violated, e.g., 
due to the inhomogeneity of the medium, the threshold for the pro­
duction of the next group of waves is finite, though very large: 
E/Eth ~ k/(d In wo/dx}. 

4)We note that as N I is excited on the resonance surface, we do not 
meet with any complications with the determination of the coordinates 
of the first peak and the energy flux in it (cf. [4]). 
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