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The differential cross section has been obtained for ionization of the K shell of an atom by electron impact 
for incident-electron energies E much greater than the binding energy and for arbitrary momentum 
transfers q to the nucleus. In the region of large q the features of the cross section with respect to the 
momentum transferred to the entire atom have been investigated. 

1. INTRODUCTION 

Calculation of the ionization of atoms by fast elec­
trons is usually carried out in the Born approxima­
tion[l, 2] with plane waves as wave functions of all elec­
trons of the continuum (the graph of Fig. 1a). Here the 
cross section is expressed in the form of a product of 
the cross section for scattering of the incident particle 
by a free stationary electron and the square of the Four­
ier transform of the wave function of the bound electron 
as a function of the momentum transfer q to the nucleus 
(the impulse approximation). This factorization gives 
the possibility of direct measurement of the bound-elec­
tron wave function. [3] The bound-electron wave function 
is maximal for q ~ 11, where 11 is the average momentum 
of the bound electron, and therefore the region q ~ ." 
gives the main contribution to the total cross section of 
the process. However, the Born (impulse) approximation 
is valid only for small momentum transfers to the nuc­
leus, much less than the incident-particle momenta, 
q « p, and therefore the bound-electron wave function 
for q ~ p cannot be measured by this means. 

For large momentum transfers to the nucleus q» ." 
the process becomes essentially three-particle. This re­
gion gives a small contribution to the total cross section 
-of the order (aZ)~ relative to the contribution of small 
q -l1-and has a number of characteristic features.[4] 
In the lowest approximation in aZ the amplitude for the 
process is described by the four Feynman diagrams of 
Fig. 1a-d (minus the corresponding exchange diagrams 
in the case of electron scattering). For q» 11 all dia­
grams of Fig. 1 turn out to be of the same order of mag­
nitude in the parameter aZ, although at first glance the 
diagrams of Fig. 1b-d contain the exchange of an addi­
tion photon and should maintain a smallness ~aZ in 
relation to the diagram of Fig. 1a. This occurs for the 
reason that in the diagram of Fig. 1a the large momen­
tum is transferred to the nucleus only through the ini­
tial-electron wave function, and the latter is small[4] 
for large q. Furthermore, there is a kinematic region 
at large q where the diagrams of Fig. 1b-d give a larger 
contribution than the diagram of Fig. 1a. This region is 
due to the minimal virtualness of the intermediate elec­
trons. When their propagators become of the order of 
11 • in integration over the intermediate momenta these 
features do not disappear, and the amplitude acquires a 
factor 1/71. These features are associated with the 
higher Coulomb corrections to the wave functions of 
the continuum and are not contained in the diagrams of 
Fig. 1a. Their phYSical meaning has been discussed in 
detail in ref. 4. On integration over q the main contribu­
tion is provided by the diagram of Fig. 1a from the re-

444 Soy. Phys.·JETP, Vol. 41, No.3 

~ 
1 
1 
111"1 

~, II1"+F1 F 

• 'Q-F 
I 
I b 

~ . _ y '-:ZI K ··-F - ;/ p 

.~ ~ 
• I I' 

Q-F 1 I P-F I 1 Q-F 
I I ~-F 1 I I 

1 , I 

~~ 
c d 

FIG.! 

gion of small q ~." and the features indicated of dia­
grams 1b-d disappear. In measurement of cross sec­
tions in the region of large q, in addition to smallness 
of the cross section (of order (aZ)4 in comparison with 
the cross section for a free electron), difficulties arise 
in determination of the momentum q. Observation of this 
region, including the features associated with the inter­
mediate electrons, is possible with measurement of both 
the energy and the momenta of the two final electrons. 
Instead of measuring the energy of the two electrons it 
is possible to measure the energy of one of them and 
the K x-ray line produced on filling the vacancy in the 
K shell. Knowledge of the binding energy of the initial 
electron is necessary, for all of the calculations made 
here are valid only for deep-lying electrons for which 
the screening by the atomic shell can be neglected. The 
experimental possibilities of measuring this process 
have been discussed in refs. 5 and 6. 

2. AMPLITUDE AND CROSS SECTION FOR THE 
PROCESS 

The amplitude for the process for any momentum 
transfer q to the nucleus and for large electron momen­
ta Pi » ." in the lowest order of perturbation theory in 
aZ is determined by the difference in the sum of the 
four Feynman diagrams (Fig. 1) and the four exchange 
diagrams obtained from Fig. 1 by permutation of the 
final-electron lines. The shaded circle shows the wave 
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function of the K electron in the Coulomb field of the 
nucleus. With accuracy to terms of order ~aZ the 
wave function of the K electron in the momentum repre­
sentation has the form 

(f/1p,> = ( 1 + 2~) u, (11<p,>, (1) 

where f = (I • f, a is the Dirac matrix, Uo is the bispinor 
of a stationary electron, {fl<p~ is the nonrelativistic 
Coulomb wavefunction of the K electron, 

( iJ) 8nTjN 
(fl<p,>=N -"Ot) (fIV"IO) = (f'+Tj')' ' 

N'=Tj'/n. Tj=maZ. a='/",. 
(2) 

d'/ 1 J (2n)' (<p.Il> (11<p,>=1. (aIV.lb> E5 (a-b)'-v' 

(here we used the system of units ii. = c = 1). 

We will introduce the following designations: 
P = (E, p) is the four-momentum of the incident electron; 
P2 = (E2, P2), P , = (El, Pl) are the momenta of the final 
electrons; Q = (m, q), -q is the momentum transfer to 
the nucleus. Then the conservation of energy and momen­
tum can be written in the form 

P+Q=P,+P •. 

We introduce also the 4-vectors 

K.=P.-Q=P-P.= (e,-m, x.). 

K.=P.-Q=P-P, = (E.-m, x,). 

K=P+Q=P,+P.= (e+m, x). 

The contribution Aa of the diagram of Fig. 1a to the 
amplitude of the process is 

4na 
A.= (P_P.)' (ii •• l"u.)ii •• l"(ql1jJ,>, 

1=(1',1), 1=l'a 

(3) 

(4) 

(yO = (3; (3, (I are the Dirac matrices). Using Eqs. (1) and 
(2), we obtain 

a=q'+Tj', a, = (P-P,) '=K,'= (E,-m) '-x,', 

11 = (I 'q, ro = aim, uPi is the bispinor of an electron 
with momentum Pi. normalized by the condition 
uPi uPi = 2m. 

(5) 

In the diagram of Fig. 1a the momentum q is trans­
ferred to the nucleus through the wave function of the 
bound electron, and in the diagrams of Figs. 1b-d it is 
transferred through the Coulomb photon, which leads 
to an additional integration over the intermediate mo­
mentum f. The contribution Ab of the diagram of Fig. 
1b can be calculated in the following way: 

A 4na - J d'f - ,(-4naZ) K,+F+m f 
b= (P-p.) , (u.,l"u.) (2n)' u •• l (q-f)' (K,+F)'_m,l.< I",,>; 

F=1'm-1f. 

Integration over the intermediate momentum f can 
be carried out easily if we take into account that the 
main contribution to the integral is from the region of 
small f ~ 1'/ , since with increasing f the wave function 
{fl ~~ falls off rapidly. Therefore the second term in 
Eq. (1) gives a contribution -aZ relative to the first 
term and in our approximation can be discarded. Conse­
quently, as the bound-electron wave function {fl~d we 
can take the nonrelativistic wave function (f <Pd. With 
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the same degree of accuracy in the numerator of the 
electron propagator we can set f = O. The denominator 
of the propagator may be small and therefore we must 
retain the vector f there. For q» 1/ the integration over 
f is easily carried outY] 

4:rra aZ ~ 
Ab= (P_P,)' (Up,l"U')q;-[iip.1'(K,+m1'+m) 1.u,1 (-x,1 v •. I<p,>, 

• 4nN 
(-x.IVp.I'!',> =N<-x,lVp.+"IO> =, . )' 

x,-(p,+'Tj 
For q ~ 1'/ the integration over f is more complicated 
but the result differs from the above only in replace­
ment of the second denominator q2 by q2 + 1'/2. 

Using the equality 

we obtain for the contribution Ab of the diagram of 
Fig.1b 

(4n)'NTj _. _ _ 
Ab=r,---(llp,l Up) [uP. (2e,+qh"u,), (6) 

aa1b l 

b,=x,'- (p,+iTj) '. (6a) 

The denominator b, of Eq. (6) (see Eq. (6a» arises from 
the electron propagator and has the form of a Breit­
Wigner pole at the pOint K, = Pl + i1'/ , which approaches 
the phYSical point K, = P 1 as 1'/ -0. In what follows we 
will call this singularity the Coulomb resonance. The 
appearance of this pole is due to the structure of the 
wave function (2), which contains a multiple pole at 
e = - 1'/2, which is the consequence of the long-range 
nature of the Coulomb interaction. In the short-range 
case Eq. (2) would contain a unary pole, and Eq. (6) 
a logarithmic singularityYl The appearance of a pole 
singularity is due to the fact that the diagram of Fig. 
1b near the singularity (Kl = Pl + i1'/) can be represen­
ted with accuracy to a normalization factor N in the 
form of the four-angle Feynman diagram of Fig. 2, 
where the lower line represents the nucleus, A is the 
amplitude for scattering of the two free electrons, and 
B is the amplitude for scattering of the electron by the 
nucleus; the initial nucleus is at rest. The initial bound 
electron is taken with an energy Eo = m - 1/2/2m and 
zero momentum, and the wavy photon line is taken with 
mass 1'/. The occurrence of a pole singularity in the 
four-angle diagram is well known. [7] For a large nuc­
lear mass it is possible to close the integral over fo 
to the pole of the nuclear propagator, after which the 
photon propagator and the electron propagator adjacent 
to it turn out to be e + 1'/2, which also leads to a mul­
tiple pole in Eq. (2), and after performing the integra­
tion over d3f to a pole behavior in Eq. (6). 

In the diagrams of Figs. 1c and d, the intermediate 
momentum f enters also in the photon propagator. How­
ever, we are discussing the case in which the momenta 
of all free electrons are significantly greater than 1/, 
and therefore in the denominator of the photon propa­
gator we can set f = 0 since this denominator is not 
small: 

o P, 

z 

FIG. 2 
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(P-F)' = (e,-m)'-(p,-f)' "" - 2m(e,-m) '. 

Here calculation of the contributions Ac and Ad of the 
diagrams of Figs. 1c and d is similar to that of the con­
tribution Ab: 

(41')'NI"] 
Ac=ro [UP. (2e,+ij) "("up) (Up,"("Uo) , (7) 

ab 2et 

A (4n)'NI"] [- "(2 +-) W ) 
d=ro abc, U •• "( 8 q Up u~,"(,u" (8) 

b,=x,'-(p,+il"])', b=x'-(p+il"])', c,=-2m(e,-m). 

The sum of the contributions (5)-(8) with inclusion of 
the exchange diagrams gives the following expression 
for the amplitude of the process: 

(4 TT ) , 

A=ro--NI"]S, 
a 

s=(u .. "("u p ) u p .[L,"(.(2m+ij) +L,(2e,+Ij) ,,(.)u, 

+u .. [L,(28,+ij)"("+L,"("(28+ij) )up(up,"(.u,) - (P .. ~P,): 

L,=~, L,=_1_; L,=_1_, L,=_1_, 
aa, alb, b,c, bc. 

a=q'+I')'" a,=(8,-m)'-x,', c,=-2m(8,-m), 

b=x'-(p+il"])', b,=x,'-(p,+il"])', b,=x,'-(p,+il"])'. 

(9) 

(10) 

(11) 

The term (Pl =P2) in Eq. (10) signifies the contribution 
from the exchange diagrams, which is obtained from the 
expression written out by the substitution P l =P2• 

The denominators of Eq. (10) which contain a cor­
respond to the Coulomb photons, al and Cl to the prop­
agators of the photons which exchange with the electrons. 
The denominators b, bl , and b2 correspond to electron 
propagators and for q » 71 contain Coulomb resonances 
respectively in the regions IK-pl -71 and IKi-Pil ~,..,. 
For small q (p» q ~ 71), as follows from Eq. (4), b and 
bi are always small: b ~ bi ~ qp. However, in the region 
p» q ~ 71 the principal term in Eq. (10) is the first 
term, which contains a ~ q2 in the denominator; the 
remaining terms containing b and bi in the denominators 
are correction terms relative to the first quantity of 
order q/p. Thus, it is directly evident from Eq. (10) 
that for large q ~ p all terms of the amplitude corres­
ponding to the diagrams of Figs. 1a-d are of the same 
order. However, in the region of the Coulomb resonances 
(I K -pi ~ 1], I"i -Pil '" 71) the main terms are the second, 
third, or fourth terms, which contain a resonance. 

The differential cross section for the process, aver­
aged over the initial polarizations and summed over the 
final polarizations of the electrons, has the form 

1 1 1 ~ , d'p, d'p, .. 
da= 2m28 i-4" ~ IAI 2e,(21')' 28.(21'1' ·21'1l(8.+8,-e-m). (12) 

pol 

j = p / € is the incident-particle flux density. Substituting 
(9) into (12), we obtain 

r,' 1"]' 1 
da-~--ldr 

21'" a'mp • 
(13) 

I=~ E lSI', dr=_1- d8p• d'p,ll(e.+e,-e-m). (14) 
4 pol e.e, 

The general expression for the cross section is very 
cumbersome and we will not give it here. The awkward­
ness of the general formula is due to the necessity of 
calculating a large number of turns of the Dirac matrix 
in squaring the amplitude (10) and averaging over the 
polarizations. Existing programs for calculation of 
traces can be used for calculation of the cross section 
(12) by computer. Below we present a number of simple 
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formulas for the differential cross sections and some 
integrated distributions in limited regions of variation 
of the kinematic variables. 

3. KINEMATICS 

The phase space (14) contains differentials in five 
independent variables. One of the azimuthal angles after 
averaging over polarizations corresponds to rotation of 
a fixed system of vectors and can be replaced by 21T. For 
investigation of the region of the Coulomb resonances and 
large momentum transfers to the nucleus, it is con­
venient to use as the remaining variables q, K, Pi or q, 
"10 Pl' We will use the following sets of variables below: 

1) q,x"p.,!p., dr=21' p,q dp,dx,dqd!p" i=1,2, (15) 
e,p 

where qJi is the angle between the planes formed by the 
vectors Pi. q and p, Pj, which intersect along the vector 
"i (Fig. 3a). 

2) q, x, Ph!P, 
Piq 

dr=21' - dpi ax dq d!p, 
e,p 

i=1,2, (15a) 

where qJ is the angle between the planes formed by the 
vectors p, q and P2, Pl, which intersect along the vector 
IC (Fig. 3b). 

The angles qJi and qJ in Eqs. (15) and (15a) vary from 
o to 21T. The Jacobians of (15) and (15a) are easilyob­
tained by measuring the polar angle of the vector 
"i (I(), which lies in the intersection of the planes, from 
the fixed vector p, all the remaining polar angles from 
the vector lCi (IC), and the azimuthal angles from the 
plane formed by the vectors "i, p(lC, p). 

In the diagram of Fig. 4 we have shown the physical 
region (Dalitz plot) in the variables K1 and P1 for fixed 
q and 0 S qJ1 S 21T. The physical region is limited by 
the conditions: 

or by the three straight lines 

x,=p,+q, x,=p,-q, x,=q-p, (16) 

and the two curves 

x,=p-),(8-e,) (2m+e-e,), x,=p+l'(e-e.) (2m+e-e.). (16a) 

The curves (16a) in the nonrelativistic limit p, 
Pi « m degenerate into the half circle with center at 

-", I 
'f' / _____ -=-___ J/ 

b 

FIG. 3 

-p 
FIG. 4 
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FIG. 5 

the point Kl = P and PI = 0, and in the extreme relativis­
tic case p, Pi» m into two straight lines: Kl = PI and 
Kl = 2p -Ph 

For small q --0 the physical region degenerates into 
the straight line Kl = Ph The vicinity of this straight line 
lKI -Pll ~ lJ for large q is the region of the Coulomb res­
onance of the diagram of Fig. lb. It can be seen from 
Fig. 4 that for PI < q/2 the value of Kl cannot equal PI 
and their is no resonance. This is physically obvious, 
for an electron with momentum PI can transfer to the 
nucleus a maximum momentum q = 2Ph Resonance is 
impossible also for any PI if 2p < q < qmax = 2p[1 
+ 2m/(e + m)]1/2. 

The curves K2 = P2 and K = p, which correspond to 
Coulomb resonances in the diagrams of Figs. 1c and d, 
depend, generally speaking, on the value of the angles 
<{J2 and <{J and have a complicated form •. Therefore these 
curves are conveniently shown on the corresponding 
diagrams of the physical region in the variables K2, P2 
and K, p. However, the points of intersection of these 
curves with the straight line Kl = PI, where resonances 
arise immediately in the two diagrams, present interest. 
The regions of overlap of the resonances can be shown 
more readily in the variables K 1 , K2 for fixed PI and q. 
To find the boundary of the physical region on the plane 
K 1 , K2 we will use the vector diagram of Fig. 5. The vec­
tor P2 we will assume lies in the plane of the paper. The 
triangle formed by the vectors PI and q can rotate freely 
around the vector K1• For fixed KI the minimum and max­
imum values of K2 are obviously obtained when ABCD 
lies in the plane of the paper and respectively AADC 
= LADB ± LBDC. We therefore have from AACD: 

x: min=p'+p,'-2pp, cos (LADB+LBDC) . 

Thetrigometric functions of the angles LADB and 
LBDC are easy to find if we consider the triangles 
L.ADB and ABDC in which all sides are lmown. As a 
result we obtain the desired boundary of the physical 
region: 

".: . =p'+p , __ i_{(p'+x '_p ') (p '+x '_q') 
-::: .. :: 1 2x,Z I 2 1 I 

± ([ 4p'x,'- (p'+x,'-p,') '] [4p,'x,'- (p,'+x,'-q') ']) ';'}. 

The resonance regions IK2 -P21 'S lJ, I K1 -PII -s. lJ in 
the planes K1, K2 are bands of width ~lJ parallel to the 
coordinate axes (see Fig. 6, where we have shown the 
case P1 = q = 40 keV/c; the physical region is cross­
hatched). The region I K -~I ~ 1/ has the form of a ring 
of width ~ lJ and radius ..Jp: +p~ + q2. The latter is easy 
to see by setting I K -pi ~ 17 in the relation q2 +p2 +pr 
+ p~ = K2 +K~ +K~, which is easy to check by direct cal­
culation. The location of the straight lines K1 = P1 and 
K2 = P2 does not depend on q; the radius of the ring 
K = P depends on q in the manner indicated above. 

For q < 2po, where Po = minWI, P2}, all three points 
of overlap of resonances will be in the physical region 
independently of the values of p and Ph 

In the regions of overlap of the resonances it is 
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FIG. 6. Physical region of the pro­
cess in a hydrogen atom (light hatching). 
A-the straight line KI = PI; B-the 
straight line K2 = P2; C-the circle K 

= Po. The resonance region has been 
heavily hatched. q = PI = P2 = 40 ke V / c. 

necessary to take into account not two diagrams as in 
the case of a solitary resonance but four diagrams of 
Fig. 1 (including the exchange diagrams). Here there 
are alternatively two possible reaction mechanisms 
leading to a large cross section. Their interference 
produces a rise in the cross section in comparison with 
an isolated resonance by apprOXimately a factor of four. 
The interference does not permit the formula for the 
cross section to be expressed in simple form. In Fig. 7 
we have shown the shape of the cross section da/d01d3p2 
for the case P1 = P2 = q = 40 keV/c, where the straight 
line K1 = PI intersects the resonances K2 ~ P2 and K ~ p, 
distinct maxima are evident. 

Here we have also shown for comparison a plot of 
the cross section da/d01d3p2 as a function of K2 for fixed 
K1 = 25 keV/c (the nonresonance straight line). This 
straight line intersects the resonances at K2 ~ 40 and 
64 keV/c; here the cross section is smaller than for the 
case K1 = 40 keV/c, since here there is no overlap of 
resonances. However, in comparison with the nonres­
onance background the cross section in isolated reson­
ances rises roughly by a factor (P/lJ)2 ~ 100. 

For overlap of all three resonances, as can be seen 
from Fig. 6, it is necessary to satisfy the condition 

l'p,'+p,'+q'-¥p,'+p? ><; 3'1. (17) 
At the same time with decrease of q the diagram of Fig. 
1a increases rapidly, so that it is ncesssary to maintain 
q » TJ. Setting q ~ P1 ~ P2 » TJ in Eq. (17), we obtain the 
condition for observation of overlap of all three reson­
ances: 

0.3p.><;311, i.e., Tl<::q-P,><; iOll. (17a) 

In Fig. 6 we have shown the physical region for the case 
of the hydrogen atom where all three resonances over­
lap in the region K1 ~ K2 ~ 45 keV/c, and the contribution 
of the diagram of Fig. la is small. 

In Fig. 8, we have shown the form of the cross sec­
tion along the straight line K1 = K2 shown in Fig. 6. In 
this case there is no ninefold rise of the cross section, 
since the overlap is weak in view of the condition (17a). 

The calculations for Figs. 7 and 8 were carried out 
with Eq. (33), which takes into account all four diagrams 
of Fig. 1. 

4. FORMULAS FOR THE CROSS SECTIONS IN 
PARTICULAR CASES 

1. We will consider the region of small momentum 
transfers to the nucleus, q « p. In this region, as al­
ready pointed out, the first term in Eq. (10) is dominant. 
The remaining terms of Eq. (10) are corrections of or­
der q/p relative to the first term, and therefore with 
an accuracy to terms linear in q we can discard quan-
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FIG. 7. A-the cross section du/dol d3p2 along the straight line 
"I = 40 keY/c. B-the same for "I = 25 keY/c. q = PI = P2 = 40 keY/c. 

FIG. 8. The cross section du/do l d3p2 along the straight line "I = "2; 

q = PI = P2 =40keV/c. 

tities of order q/p in the numerators of these terms. 
Taking into account further the equality 

(1 +ij/2m) uo=u,+O_(q'/m') , 

the amplitude (10) can be represented in the form 

S=2(mL,+e,L2+8 2L,+eL,) (u p,1'up) (u p,l,u,) 

2m [ a (e, e, 8) ] -(P, "",P,)=- 1+- -+-+- S .. (q), 
a m b, b, b (18) 

1 4m' [ 2a ( 8, 8. 8) ] SI'=-, 1+-Re -+-+- IS .. (q) I', 
a m b, b, b. 

where 

(19) 

See(q) is the amplitude for scattering by a free electron 
with initial 4-momentum Q = (m, 'I). 

SubstitutiI!-g (18) into (13) and taking into account that 
(19) depends on the invariant variables 

QP,=me,-qp" QP,=me,-qp" 

we obtain with accuracy two terms linear in q the fol­
lowing expression for the cross section: 

da=l<qlcpo>I'ro' ;/0{1+ ~ Re(::+ ::+:) 

,+~~+1:.~}~ 
/0 me, /0 me,(2n)" 

2e'+2me-m' e' (e-m)' 
/0=/' (e" e,) =1 +, , ' (e,-m) (e,-m) (e,-m) (e,-m) 

ro'/.= ~l!.... e+m = doo L 
do, p, 8,+m de, 2nm ' 

(20) 

(21) 

(21a) 

where dO'o/dol(dO'o/dEI) is the distribution in the labora­
tory system of reference of the secondary electrons 
arising in scattering of the primary electrons by free 
electrons at rest, 

8-m , me, { 2e' m'-2me+(e,-e,) (e+m) 
f, =ro 1 + + ~-.,-----=--,---'.-'---;"" 

p(8,-m) (e,-m)' (e,-m) (8,-m) 8,-m 

_ -,(_e +_8...:,.:...) (.:...8.:...,-..,.m_);....) - , /.=/,(1""'2), 
(e,-m)' (22) 

2Re(~+~+~)=~ nq e, n,q 
b, . b, b . P (nq) '+Tj' p, (n,q) '+Tj' 

8. n,q 
p. (n,q) '+Tj' ' 

n=p/p, n,=p./p •. 
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Integrating over CfJI and q, we obtain the distribution in 
PlandKI: 

do 16, • mp, 1 +lz/m 
-d d =-3 ro Tj -,-/0 ( ,+ ,)" z='X,-p" p, 'X, P 8, Z Tj 

3 8, p, /, p, 8,-m /, (23) 
1=2";;---;:/:--;; 8,+m To 

+ 3 "+S·· d q ( z'+Tj' ) • 'So d (8 nq 
-;- I.: q -;- q'+Tj' 0· cp p (nq) '+Tj' 

8, n,q ) 
p, (n,q)'+Tj' (23a) 

The distribution of the scattered electrons in energy 
E2 and scattering angle cos O2 = P • P2/PP2 can be obtained 
from the distribution in PI and KI : 

00 pp,8, do 
~=2n'XtP' dp,d'X, . (24) 

The terms linear in x which arise from the terms 
linear in q in Eq. (20) lead to a shift in the quasielastic 
peak in the distribution in PI for fixed KI (or in the dis­
tribution in E2 for fixed O2 ). 

2. The region of Coulomb resonances is due to the 
existence in the amplitude (10) of the pole terms bi l 

and b -I, which are large for 

1]~q-p, I 'X,-pd -Tj, I x-p I-Tj, 

i.e., when the intermediate electron becomes almost 
real. The physical meaning of these singularities of 
the cross section has been discussed in detail in ref. 4. 

Let us consider the amplitude (9) and (10) for the 
process in the region of resonance behavior of the dia­
gram of Fig. Ib IKI -Pli ~ 1/. In this region only terms 
proportional to b~ I = [K~ - (PI + i1/ )2r I have a resonance 
behavior. Leaving in the amplitude only resonance terms 
and setting KI = PI everywhere except in the resonance 
denominator, we obtain for S the expression 

S=L,(U p.l'up) [up, (2e,+q) 1,uo]-M.[u" (2e,+ijj1"up] (u"l'uo) , 

M,=L,(i""'2) , L,=1/a,b" M,=1/b,C2. (25) 

Using the relation 

Up, (28,+ij)=up,1°(K,+m) = E up.l°u.,'u.,', 
, 

where KI = (EI, K1), U~I is a bispinor with 4-momentum 
KI and polarization A, and the summation is carried 
out over the polarization of the intermediate electron, 
the amplitude (9) of the process can be re~resented in 
the form of the product of the amplitude Aee for scat­
tering by a free electron with polarization A and the 
amplitude A~ for scattering in a Coulomb field (the 
two amplitudes are related to the total polarization of 
the intermediate electron): 

(26) 

,4naZ_ o , 
AC=-q-,-u •• 1 ax" q=p,-x" (26a) 

A .. '='=4na [ +-(iip,'r'Up) (u.,'y,uo) - ~ (u.,'y'u p) (iip,y,uo) ] , 

. t=a,=(P-P,)'=-2m(8,-m), (26b) 

u=c,=(P-Kt)'=-2m(e,-m). 

By means of the equality 

L, (u:: lOu:. ) (u:: 'r°up~') =2 (8,'+m'+p,'X,) 6,,·=48,' ( 1-4!:') 6,.·, (27) 
'. 

where the summation is carried out over the polariza­
tion of an electron with momentum PI, it is easy to 
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carry out the summation over all remaining polarizations 
for the square of the amplitude: 

~ \""1IAI,=~~\""1IAcI''V'' IA"I', (28) 
4 "-" 4 I h,l' "-" "-" 

\""1 IAcl'=4 (4ItaZ)' Il,'( 1_L) , 
"-" q" 41l,' 

(28a) 

T .,EIA"I'=4(4Ita) 'to (28b) 

(fo is determined by the equality (21)). 

Using the expression for the phase space (15), substi­
tuting (28) and (15) into (12) and (13), and taking into 
account that the cross section does not depend on CPI, we 
obtain the following obvious formula:[4] 

dx, 
da(x" p,) =R (x" p')--z;:;- doc do", 

() N' N,=2t 
Rx"p,=( )'+" ~' x,-p, '1 " 

doc=;c 2'XZ~ 1---, ( e )'( q') dq' 
p, 4e,' q' 

mde, 
do,,=2Itro'jo-.-, 

p-

(29) 

(29a) 

(29b) 

(29c) 

From Eqs. (29}-(29c) it is evident that the cross sec­
tion in the region of a resonance is ~r~(aZ)3. The total 
contribution to the cross section from the resonance 
region is found by integration of (29) over KI: 

do , .z,(2me,)' m ( q') --=ltr,a' -- - 1-- to, 
dq'de, pp, q' 48,' (30) 

The contribution from the nonresonance part will be 
a quantity of the order r~(aZ)5. Thus, for PI <=::: q/2 and 
any q » 7], and also for q <=::: 2p and any p» 7] the cross 
section will dropl) by a factor aZ. 

The expression for the cross section in the vicinity 
of the resonance behavior of the diagram of Fig. 1c 
IK2 -P21 ~ 7] differs from Eqs. (29) and (30) only by ex­
change of the subscripts 1 =2. The diagram of Fig. 1d 
has a resonance behavior in the region IK -pI ~ 7], due 
to scattering of the incident electron by the Coulomb 
field of the nucleus with formation of an almost real 
electron and subsequent scattering of this electron by 
a free electron at rest. Repeating the same discussion 
as in derivation of Eq. (29), we obtain 

dx 
do(x,p)=R(x,P)-2 do"doc, 

It 

R(x, p) =N'/[ (x-p) '+'1']' 

dOc=1t (2aZ : )' ( 1 - ::. ) ~. , 
and daee is defined in Eq. (29c). 

(31) 

( 31a) 

(31b) 

As already mentioned, kinematic regions exist where 
the pole singularities (resonances) are observed simul­
taneously in two diagrams. In these regions Eqs. (29}­
(31) are inapplicable, and the cross section has a more 
cumbersome form. 

3. We will obtain the cross section for small electron 
momenta. A momentum Pi will be assumed small if 
Pi « m but the limitation 7] « Pi remains in force. 

We will consider first the case in which the momentum 
of the liberated electron is small (7]« PI « m). The ex­
pression (10) for the amplitude is significantly simplified: 
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S=£,[Up,(2e+ql1'up] (up,l.uo) +£.[up,1'(2e+q) up] (u p,l,uo) 

(£,-lJ.-l/(e,-m), e,=e+m-8,""e), 

SOy. Phys.-JETP, Vol. 41, No.3 

The exchanged terms do not contribute. [1] The differen­
tial cross section (13) takes the form 

dOl 

do,d'p, 

=ro' 8'1'e' (l-L) I 1 + 1 I', (32) 
It'm'q'(e,-m)' 4e' x'-(p+i'1)' x,'-(p,+i'1)' 

'1<t:q, '1<t:p,<t:m. 

The differential cross section in the region 7]« P2 
« m is obtained from Eq. (32) by the substitution of 
subscripts 1 ~ 2. 

A simple formula for the cross section is obtained 
also in the case in which the momenta of all particles 
are small, Le., 

'1<t:p-p,-p,<t:m, 

The amplitude S (Eq. (10)) and the differential cross 
section (13) take the form 

where 

£=£,+£,+£,+£" M=M,+M,+M,+M" M,=£;(1~2), 

32'1'm'p 
do=ro' '( :)' {1£1'+IMI'-Re(£'M)}d'p, do" 

(33) 
It p q'+Tj 

In conclusion the authors express their gratitude to 
G. F. Drukarev for helpful discussions. 
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