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The probabilities have been calculated for soft and hard (both spontaneous and induced) Vavilov-Cerenkov 
radiation by an electron traveling in vacuum parallel to a dielectric-vacuum boundary. The angular and 
spectral distributions of energetic Cerenkov photons have been found and estimates of the probabilities are 
given. Characteristic properties of hard Vavilov-Cerenkov radiation are noted, and the possibility of 
experimental observation of Cerenkov photons is discussed from a fundamental point of view. 

1. In several earlier articles[l-4] one of us has theo
retically predicted the possibility of energetic Vavilov
Cerenkov radiation as a two-quantum process in which 
on passage of a fast charged particle in a transparent 
medium two photons are produced, one soft with a re
fractive index n(w) > 1, and the other hard with n(w)!S 1. 

Let Wo be a frequency such that n(w) < 1 for all 
w > woo The frequency Wo lies in the ultraviolet region 
and corresponds to a photon wavelength ~o ~ 10- 5 cm. 
Ordinary one-quantum Vavilov-Cerenkov radiation be
comes impossible for photon frequencies w > woo How
ever, radiation of two photons, one soft with w < Wo 
and the other hard with w > wo, is kinematically possible, 
as was shown in refs. 1 and 2. This two-photon Vavilov
Cerenkov radiation, in contrast to the ordinary single
photon radiation, is essentially a quantum process (in 
ordinary Vavilov-Cerenkov radiation the quantum ef
fects give only small corrections to the basic classical 
formula [5,6]). 

We note several interesting features of the hard 
Vavilov-Cerenkov radiation: 

a) It is a nontrivial example of a two-quantum process 
with participation of optical and hard photons; 

b) hard Vavilov-Cerenkov radiation is related to 
bremsstrahlung: it can be considered as that form of 
bremsstrahlung in which the excess energy and momen
tum are transferred not to an individual nucleus but to 
collective excitation of the medium (photon with 
n(w) > 1); 

c) it can arise, in contrast to bremsstrahlung, on 
passage of an electron outside the material at a suffi
ciently close distance (of the order the wavelength of 
the soft photon) from the material boundary; 

d) hard Vavilov-Cerenkov radiation can be stimulated, 
in contrast to ordinary bremsstrahlung, by a flux of soft 
photons with frequency w < wo; 

e) stimulated hard Vavilov-Cerenkovradiation is 
similar to the inverse Compton effect; however, as a 
result of the participation of the medium it can not only 
be stimulated but also spontaneous. 

Hard Vavilov-Cerenkov radiation has not been ob
served experimentally up to the present time, since 
the loss of energy by electrons in a condensed medium 
is due mainly to bremsstrahlung, which strongly masks 
hard Vavilov-Cerenkov radiation. 
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The purpose of the present work is to study hard 
Vavilov-Cerenkov radiation under conditions in which 
the hard radiation is present in pure form, i.e., in the 
absence of energy loss by bremsstrahlung, transition 
radiation, and so forth. This becomes possible on pas
sage of fast electrons in vacuum near a dielectric boun
dary. In this case the energy loss of the electron is 
due to ordinary soft Vavilov-Cerenkov radiation and 
hard Vavilov-Cerenkov radiation (with w> wo). 

2. We will assume that in its initial state the electron 
is moving parallel to a plane dielectric boundary. In or
der to be able to speak of passage of an electron at a 
distance d from the boundary, it is necessary to take 
the wave function of the initial state of the electron in 
the form of a wave packet of width b, this wave packet 
being written in the form (d» b): 

'l',(X)=G(z) ll(p,) e;P"Y/l' v" X=(r, it), (2.1) 

where Pl = (Pl, iEl), Pl and El are the average momen
tum and energy of the electron in the initial state; 
Vo = bS is the normalization volume; S is the area of 
the boundary surface; U(Pl) is a bispinor normalized by 
the condition (u' , u) = 1; a(pz) is the weight of the dif
ferent eigenstates 

G(z)= S a(p,)e;P"dp" S IG(z) I'dz=b. (2.2) 

Since the motion of electron in the coordinates x and y 
is unlimited (the problem is uniform in these coordin
ates), we can assume that ~Plx = Aply = O. In addition, 
with no loss of generality we can assume that Ply = O. 
The values of Plz have been discarded in the interval 
~Plz ~ 1/b, in order to be able to speak of the parall
elism of the electron trajectory to the boundary plane, 
and it is necessary that the inequalities Plx» Iplz l 
or ,. « b be satisfied, where ~ = ii/Pl is the DeBroglie 
wavelength of the electron. 

The time of spreading of the wave packet (to a value 
of the order of its width) must be much greater than the 
time of the experiment te , i.e., the time of passage of 
the electron along the boundary must be much greater 
than the time of formation of the photons. We can assume 
that the lower limit for the formation time is of the or
der of 1/w, since the uncertainty of the frequency of the 
transition from the initial state to the final state must 
be much less than the frequency of the photon (the sof
ter of the two photons). 

A spreading of the packet to a value of the order of 
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its width occurs [7] in a time ~b2Eh Thus, it is neces
sary that the inequalities l/w « te «b2E1 be satisfied. 
Hence b» 1 v'E7W, i.e., b> lO-8 cm for El > 10m, 
w = 21T/A ~ 105 cm-1• For b ~ 10-6 cm « d '~~10~5 cm this 
condition is satisfied. The time in the system of units 
chosen for an ultrarelativistic electron coincides with 
the path which the electron travels along the boundary. 
For b R:I 3 X 10-6 cm and El R:I 10m, this path is te <>< 1 
cm and increases with increase of band Eh 

In what follows we will set (in view of the inequalities 
written above) E~ = pix + m2, i.e., we will neglect the 
weak dependence of El on P1z. This neglect leads to a 
negligible error, since ~1 ~ 1;b2El ~ 10-1~h 

It is also necessary that in the time te the electrical 
image force does not succeed in attracting the electron 
into the dielectric. The path traversed by the electron 
along the boundary before its attraction into the dielec
tric is, for an ultrarelativistic electron, 

x,=n [(e+1) md'/ (8-1) 2e'],/ (E,/m) 'I,. 

For £ R:I 2, d ~ 10-5 cm, and El ~ 104m ~ 5 GeV, this 
path is suffiCiently great, Xo = 10 cm. 

Generally speaking, the final state of the electron 
should also be described by a wave packet, but since 
the proposed measuring device localizes the electron 
in the final state in a region much larger than the size 
of the wave packet, we will write the final-state wave 
function in the form of a plane wave: 

qr,(X)=u(p,)e;P'x/l'V-;- p,=(p., iE,). (2.3) 

3. We will calculate the probability of soft single
photon Vavilov-Cerenkov radiation for an electron tra
veling in vacuum parallel to the separation boundary 
plane. 

The main difference of the problem with a separation 
boundary from the problem of an unlimited medium is 
the violation of the law of conservation of the z compo
nent of momentum, since part of the momentum is trans
ferred to the separation boundary. 

The probability of radiation of a photon of momentum 
q, frequency w, and polarization l is written in the form 

dw=IS):)I'V'dp,dql(2n)', h=c=1, (3.1) 

where 
S;:)=-e S d'X(N(W ,(X)A:v(X) qr, (X» )i' 

is the matrix element of the scattering matrix for the 
transition between the initial state i and the final state 
f, AM(X) is the electromagnetic-field operator in the 
presence of a plane boundary of separation of two media, 
which is a superposition of three waves-incident, ref
lected, and transmitted. The explicit form of this opera
tor is determined in an article by Garibyan. [8] 

After integration we obtain 

e' IQII' 
dw=----6(E,-E,-oo)6(p,p-p"'-\")dp,dq, 

(2n)' 200b 

dp,=dp"dp,,, dq=q'dq sin 8d8d41>, 

9 is the angle between Pi and q, ~ is the angle between 
the projection of q on the yz plane and the negative z 
direction; 

\"=(q..,q.), p=(x,y); 
(/) -

Q=u(p,)~(I)e'm u(p,)l¥g(l), m=1, 2, 3,4, 
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I=exp (-id(p,,-A,)} [exp (-ib(p,,-A,) }-11/i(A,-p,,), 

g(l)=1+la(I)I'+I~(I)I', 

a(l)= (A,e,-A,E,) / (A,8,+A,e.), a(') =(A.-A,) /(1.,.+1.,,), 

~(t)=2A,e,f (A,8'+A,e,), ~(')=2A' Ye,/e,/ (A, +1.,,), 

£1 = dz < 0) is the dielectric permittivity of the medium, 
£2 = l(z > 0) is the dielectric permittivity of vacuum, 
Al(A2) is the projection of the photon wave vector on the 
z axis in the incident (transmitted) wave. 

One I) function is removed by integration over dP2p, 
and the second by integration over dP2z' 

For reality of P2z it is necessary that the inequality 
P~z ~ 0 be satisfied. It is satisfied only for angles which 
satisfy the condition 

8 1 + 00 {n'sin' 41>-1) 
cos 8;;.cos 8., cos ,=- (3.2) 

~n 2p,n 

For these angles A2 is pure imaginary. The imaginary 
value of ;\.2 means that there is no radiation in the vacuum 
(the field in the vacuum is exponentially damped), while 
reality of Ai shows that Cerenkov radiation of a photon 
occurs in the dielectric. 

Taking into account the imaginary value of A2, the 
probability of radiation is written in the form 

dw= e' 4E,sin'(bp,.,!2) e-'''''IQI'd 1.,=11.. I (3.3) 
(2n) , (p,,,'+A')p,,, q" • 

It is evident from (3.3) that there is a sharp depen
dence on cos 9 of the factor 

sin' (bp"j2) 

(p".'+A') p ... ' 
P, .. = [2E,oo (~n cos 8-1) -A']''', 

which differs substantially from zerO for angles suffi
ciently close to 90 , and therefore in integration the re
maining factors are taken out from under the integral 
sign for 9 = 90 , and the integration over d(cos 9) redu
ces to integration over dP2z o with allowance for the 
fact that the region of angles giving the main contribu
tion to the integral is determined from the condition 

cos 8."'cos 8 ... cos 8,+00 (n' sin' 41>-i)/2p.n. 

Thus, there is a smearing of the Cerenkov cone by an 
amount of the order of the quantum correction (see 
ref. 9), in contrast to the unbounded medium, where 
the photon-emission angle is fixed and with allowance 
for the quantum correction is determined by the con
dition 

i 00 (n'-i) 
cos8,=-+---. 

~n 2p.n 

After averaging over the electron polarization in the 
initial state and summing over the electron and photon 
polarizations in the final state we obtain 

dw = 2e' A,' (1.,'£+\".') e-'" d41> doo. 
(2n)' 00'8(1.,,'+1.,'8') 

Substituting here the classical condition cos 90 = l/tln, 
we obtain an expression for the probability of soft Vavi
lov-Cerenkov radiation which agrees with the formula 
obtained classically. [9] 

4. We will calculate the probability of two-photon 
hard spontaneous Vavilov-Cerenkov radiation in which 
one of the two photons is hard (w > wo): 

dw=IS):) I' Pdp,dqdk/(2n)', 

s::)=e'S (W.(~,)[A·(X')K(X'-X,)A,,(X') (4.1) 

+A ... ·(X,)K(X,-X.)A (x.) 1'1' • (X.)d'X. d'X,) it, 
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A(X) is the electromagnetic-field operator of the hard 
photons (see ref. 10), K(X) is the electron propagator 
(see ref. 10). 

Omitting the further calculations, which are similar 
to the calculations in the single-photon case, we obtain 

e' E 
dw=---'-e-'" lu(p,)Qu(p,) l'dwdID dk, 

2(2n)' E,k~ 

R(I) 'j 'j) Q _ ( • I ,-m ~'(l., A'(I) I,-m . --=- eJ --e2m1e2m --e; 
Yg(l) j,'+m' j,'+m' 

1 k (1-~costt) 
j,=p,+k, f,=~p,+q, cos8=cos8o=-+ , 

. ~n w (1-kIE,) ~n 

(4.2) 

(4.3) 

(J is the angle between PI and q, .J is the angle between 
PI and k. Here as in the single-photon case, radiation 
of soft Cerenkov photons occurs only in the dielectric. 

The condition (4.3) is satisfied to terms of order 
~W/El« 1, i.e., we can assume with a higher degree 
of accuracy that the condition for appearance of hard 
Vavilov-Cerenkov radiation in an unbounded medium 
(4.3) is satisfied. 

Let us consider the ultrarelativistic case in which 

~=1-a'/2, a=m/E,<1. 

The probability of radiation of a hard photon is ap
preciably different from zero when .J « 1, 
1 - (3 cos .J '" (a 2 + .J2)/2, and the condition (4.3) takes 
the form 

1 I' a'+ii' 
cos8o=-+---, 

n i-r 2a\'n 

w 
v=-. 

m 
(4.4) 

Carrying out the summation over polarizations in (4.2), 
and retaining in the cumbersome expression obtained 
only terms of lowest order in a 2 , r2, and va, and as
suming E 1 » 103m.lr, we finally obtain 

dw= me' [1+(1-1')'] a' A.'(A'e+~.') 

2 (2:1)' (a'+tt')' w' (I., '+).',') (4.5) 
'e-'" v' (n'-1) dv dID diP dr. 

We will carry out the integration over diI>from -IT/2 
to IT/2 and over the spectrum of soft photons t.(r, .J). 
The region of integration over dv is determined from 
the condition cos (J 0 :s 1, which gives 

1(\')= l~r(a'+&';' /(\')=2a,,[n(\')-1]; 

we will deSignate this region by t.(r, .J). The size of the 
region t.(r, .J) increases with increasing El and decrea
sing.J and r. For r ~ rmin = WO/El, .J -;:; a, and EI » m, 
the region tor, .J) is determined essentially by the con
dition n (w) > 1; with increase of r, .J the region t.(r,.J) 
-0. 

The spectral and angular distributions of hard photons 
will appear as follows: 

dw =~ [1+(1-1')'] S v'(n'-1)dv. 
dr 2f2n)' r 

~(r.O) 

(4.6) 

(4.7) 

dw me' a' 1 (I' m= ) s "1 d 
dQ = 2(2;\' fa'+ii') n ;:;: v (n - ) V 

.1(rmln.~) 
(4.8) 

"I' , '(I" + ") x S r" .-' ~y- e-'" dID 
w'(1,,'+A',') , 

-M2 

r",,=/(v)/[a'+&'+/(v)], ttmo,=[j(v) (l-r)/r-a']. 
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From these expressions it is evident that the angular 
distribution of hard photons has a sharp forward direc
tivity: .J S a, and the radiation spectrum drops rather 
sharply with increase of r. 

Estimates show that the energy loss by hard Vavilov
Cerenkov radiation for wd < 1 and EI ::::. m2/2wmax 
~ 104_105m is of the order: 

( dE)V-C ''''s''' (dW) E, (eV) ,-- =E, ,r - dr~(O,i--1)- - . 
dx dr m cm (4.9) 

It was taken into account that for El > m2/2w hard 
photons with energy of the order EI c~n be raWi~ed 
and rmax ~ 1. For the maximum frequency of the soft 
photons we took the value ~ 106 cm -1 corresponding to 
a wavelength ~1O-5 cm. This loss coincides in order of 
magnitude with the energy loss by hard Vavilov-Ceren
kov radiation in an unbounded medium. However, in an 
unbounded medium the hard Cerenkov radiation is 
strongly masked by similar losses, mainly by brems
strahlung, which are of the order 

(-dE/dx) -e'Z'A·,k"o.!m'-lO'Et/m (eV/cm), 

for Z2No ~ 1024 cm-S, where No is the number of nuclei 
with charge eZ per unit volume (this estimate corres
ponds to light nuclei, which occur mainly in the compo
sition of glasses). On passage of electrons outside the 
medium, there is no bremsstrahlung (more accurately, 
there remains the weak background of bremsstrahlung 
in the residual gas and from eJ .:ctrons which accidentally 
hit the dielectric surface). This makes possible observa
tion of spontaneous Vavilov-Cerenkov radiation. 

The yield of hard Cerenkov photons can be estimated 
by means of Eq. (4.6) or (4.7). It is 

dU' 'mo_ d 
-= S ~dr-1O-7-1O-' photjcm 
dx dr 

(4.10) 

The yield of bremsstrahlung photons of comparable en
ergy for N~Z ~ 1024 cm-3 would be ~1O-2 photons/cm. 

Let us consider now stimulated hard Vavilov-Ceren
kov radiation by an electron traveling in vacuum paral
lel to the dielectric boundary, under the influence of a 
beam of soft photons which all have the same momentum 
ql and frequency WI and hit the dielectric boundary at a 
total-internal-reflection angle (Jl :s (Jo. The probability 
of stimulated Vavilov-Cerenkov radiation is 

(2n)' 
dw=IS("I'--N,6(q-q,)dqdkdp" 

2 
(4.11) 

where Nl is the number of soft photons per unit volume. 

Omitting the calculations, which are similar to the 
foregOing, and considering a moderately ultrarelativistic 
case in which a ~.J« 1, via « 1, we obtain for the 
spectral distribution of hard photons: 

dw e' N, [ ( I' )'] [ n,'-1" 1 -=---;-- 1+ i-- 1+--,-Slll 8, 
dr ·8(2,,)- E,{J) rm= 21, 

In the case of induced radiation, condition (4.3) is writ
ten in the form 

1 w, E,-k 
costt=costto=-- -(~n,cos8,-1)--. 

~ k~ E, 

Since (Jl and WI are fixed, the emission angle of the hard 
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photon is uniquely related to its energy. 

The spectrum (4.12) has an approximately rectangular 
shape-the probabilities for emission of any hard Ceren
kov photon are approximately the same, in contrast to 
bremsstrahlung, for which the emission of low-energy 
photons is more probable. The maximum energy is 
achieved for" = 0, and the minimum for" '" 1 and lies 
in the soft x-ray region. 

The dependence of (4.12) on 91 is characteristic. When 
cos "1 -1/ i'h11, the quantity y - 0 and the probability of 
hard radiation rises strongly, but simultaneously the 
energy of the soft photons decreases in accordance with 
the following formula: 

k=2oo,"(,/(a.'+~'+2a.v"(,). 

The probability of stimulated hard radiation in the 
problem with a dielectric-vacuum boundary is of the 
order 

e'N, e'N. w--, -,-kma:c---, 
,,(,E,oo, "(,m 

and is comparable with the probability of stimulated 
radiation in an unbounded medium, but in contrast to 
the unbounded medium the strongly competing effect 
of bremsstrahlung will be absent. For Nl '" 1018 pho-
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tons/em (this corresponds to the intensity of a beam 
of soft photons with energy iiw '" 2 eV amounting to 
"'1010 W/cm2) and Yl '" 0.1, the yield of hard photons 
will be w '" 10-4 photons/em. 
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