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The conservative and dissipative terms in the Poynting equation are distinguished in accordance with their 
behavior under time reversal. The conservative terms are integrated over the time and a general expression 
is obtained for the energy of an electromagnetic field with an arbitrary time dependence. As the condition 
for the existence of the energy. symmetry properties of the parts of the dielectric-permittivity and magnetic­
permeability tensors that are even in the frequency are obtained. In the case when the spatial dispersion is 
neglected an expression is also obtained for the volume density of the electromagnetic-field energy. and a 
spatially nonuniform medium is considered. In the particular case of a harmonic time dependence of the 
field, the previously known result is obtained for the time-averaged energy density. In the case when there 
are no external field sources, normal field coordinates are introduced. the transition to operators is 
performed, and quantum values of the field energy are obtained. It is shown that, in a quantum­
electrodynamical treatment of the interaction with photons of charges introduced into the medium, as 
compared with the case of a medium with no dispersion. additional frequency dependences appear in the 
probabilities of the different processes. A generalization of the Planck formula is obtained. 

The expression 
1 

U=-(sE'+I!H') 
8n 

(1) 

for the energy density U is inapplicable if E or J.I. depends 
on the frequency w of the field oscillations. For the par­
ticular case of a harmOnically oscillating field the cor­
rect value of the average of U over a period of the os­
cillations was obtained in [1 ,2J; it differs from (1). The 
inapplicability of (1) is also obvious in cases when, in 
certain ranges of w, E (w) < 0 or J.I. (w) < 0 and it follows 
from (1) that the greater the field amplitude the lower 
the energy. Negative values of E(W) are encountered, 
e.g., in the Lorentz theory of the dispersion of a medium 
consisting of elastically bound electrons (with small 
damping), in a plasma, in a free-electron gas, etc. 
Analogously,. cases when J.I.(w) < 0 are encountered. 

The purpose of this paper is to obtain a general ex­
pression for the energy of an electromagnetic field that 
varies arbitrarily in time and in space. The treatment 
is carried out in the framework of phenomenological 
electrodynamics, without specifying the Hamiltonian of 
the medium and without using models of the medium. 

In the case of a spatially nonuniform medium, only 
frequency dispersion of E and J.I. is taken into account. In 
the case of a spatially uniform medium, spatial disper­
sion is also taken into account. 

We have not attempted to express the field energy in 
terms of the coefficients of the Fourier-integral expan­
sion of the field as a function of time. The point is that 
to determine the Fourier coefficients it is necessary to 
specify the field at all times, from -00 to + 00. But the 
energy of the field at a given time t should be determined 
only by the values of the fields at preceding times. The 
introduction, in the future, of new field sources, changing 
the behavior of the field, should not change the field en­
ergy at the time t (the causality principle); however, the 
Fourier coefficients do change. 

The situation is different with the Fourier expansion 
of the field as a function of the coordinates. In the case 
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of spatial dispersion it is necessary to specify the field 
in all space in order to determine not only the field en­
ergy but even the functions D and B at any space-point r. 
Then the Fourier coefficients are also completely de­
termined. Therefore, in the treatment of spatial dis­
persion below, we shall use the Fourier expansion of the 
field as a function of r. The above-mentioned feature of 
the case of spatial dispersion prevents us from introduc­
ing the concept of the energy density of the field, and en­
ables us, in this case, to determine only the integral 
energy over the volume. 

1. FIELD-ENERGY DENSITY IN AN ANISOTROPIC 
SPATIALLY NONUNIFORM MEDIUM WITH 
FREQUENCY DISPERSION BUT NO SPATIAL 
DISPERSION 

In this case the electric displacement D(r, t) and mag­
netic induction B(r, t) are determined by the values of 
the field intensities E(r, t') and H(r, t') at the same point 
r at all times t' ::s t. Assuming that the dependence of 
E(r, t') on t' is analytic for t' ::s t, we can expand E(r, t') 
in a Taylor series in powers of t' - t. Thus, E(r, t') is 
completely determined by giving the infinite set of 
derivatives E(fi)(r, t), n = 0,1,2,3, ... at the point t 
(n is the order of the derivative of E(r, t') with respect 
to t'). In the framework of linear electrodynamics, 
D(r, t) is a linear functional of E(r, t'), and therefore 
D(r, t) is a linear function of an infinite number of argu­
ments E(fi)(r, t): 

~ 

D(r,t)= L,sft(r)E<ft>(r.t). (2) 

Here the second-rank tensors En are the polarization 
characteristics of the medium. Since the medium is non­
uniform, the En depend on r. But the En do not depend on 
t, since the properties of the medium are assumed to be 
constant in time. It is important to emphasize that Em) 
and Din (2) are real; therefore all the En are real. 

The meaning of the tensors En becomes clear if we 
apply formula (2) to a field of the form 
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E(r, t')=Eo(r)e-'·". (3) 

It is then found that the usual complex dielectric-per­
mittivity tensor E(r, w) is equal to .. 

Il (r, OJ) = .E lla(r)(-iOJ) a. (4) 
a_O 

Thus, the En are the tensor coefficients of the expansion 
of E(r, w) in powers of (-iw). It may turn out that in the 
actual range of frequencies the infinite series (4) 
diverges. In this case we must retain a very large, but 
finite, number of terms in the infinite sum (4) and regard 
En(r) as coefficients of a polynomial (4) that approximates 
E(r, w) with arbitrary accuracy in the actual range of w. 
If in (2) also we retain only the finite number of corre­
sponding terms, then (2) will approximate the displace­
ment with arbitrary accuracy, provided that E(r, t) as a 
function of t can be expanded as a Fourier integral. 

In fact, formula (2) is also easily obtained in another 
way, e.g., by assuming that E(r, t) and D(r, t) can be 
represented by Fourier integrals. Thus, using the ap­
proximation (4), we have 

D (r, t) = J dr, OJ) E(r, OJ) e-'·' dOJ 

(5) 

Here, in view of the possibility of specifying arbitrarily 
the time behavior of the field after the time t, the Fourier 
coefficient E(r, w) of the electric field is not uniquely 
defined. However, the right-hand side of (5) is unique if 
E{r, t') depends analytically on t' for t' !S t. 

Formula (2) is easily inverted by expressing E(r, t) 
linearly in terms of D<n) (r, t). For this we can use the 
inverse dielectric-permittivity tensor 1) (r, w) and a 
transformation of the type (5). 

In this section we shall be concerned only with one 
fixed point r of the medium. For brevity, therefore, we 
shall omit the argument r in the formulas. 

The displacement current 
1 aD E(t) 

--=-+p(l) 
4n at 4n 

(6) 

appears in the Maxwell equations only in a sum with the 
conduction current J. However, in the case of alternating 
fields it is impossible to distinguish uniquely the term J 
and the polarization current p(l) in the total current. 
For example, the conduction-electron current induced by 
the field is a typical conduction current. But at the same 
time it can also be treated as a polarization current. To 
avoid ambiguity we shall assume that J is included in 
p(l) and that the total current coincides with the dis­
placement current. In this case, the Poynting equation 
has the following form:* 

dU +Q=-divS=_l_IED(t)+HB(I'), S ... ~[EH). (7) 
~ ~ ~ 

Here S is the electromagnetic energy flux denSity, U is 
the electromagnetic energy density, and Q is the rate of 
dissipation of electromagnetic energy per unit volume. 
Included in Q are, e.g., the Joule heat evolved, the 
dielectric losses, the work performed by the field in 
transferring electrons to higher energy levels, and so on. 

Inasmuch as Eq. (7) determines only the sum of terms 
dU/dt + Q, to determine each of them we need a clear 
criterion for distinguishing the conservative and dissi-
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pative terms in the right-hand side of (7), for an arbi­
trary time dependence of the fields. 

The separation of the electromagnetic part and the 
other forms of energy. in the energy of a body is not 
completely trivial. For example, the thermal optical 
phonons are usually included in the thermal energy. But 
they are also typical electromagnetic waves and we have 
an equal right to include them in the electromagnetic en­
ergy. Thus, the creation of optical phonons on absorp­
tion of a macroscopic electromagnetic wave can be in­
terpreted either as dissipation of electromagnetic energy 
or as conservative Raman scattering of light. The choice 
between these two possibilities is determined by the ac­
tual form of the constitutive equations. If the latter are 
linear, e.g., of the type (2), the system of Maxwell equa­
tions does not describe combination scattering at all. 
Therefore, the above-mentioned absorption of a macro­
scopic wave can only be described as dissipation. But if 
nonlinear terms are added to the constitutive equations, 
it will also be possible to describe the transformation of 
the energy of the macroscopic wave into optical phonons 
as conservative combination scattering. 

Below we shall start from the linear constitutive 
equation (2) and the analogous equation expressing B in 
terms of H(fi). We shall call those terms which violate 
the invariance of the Maxwell equations under time re­
versal, dissipative. When these terms are removed the 
evolution of the field in time becomes reversible. This 
means that if E = F(r, t), H = +(r, t) is a solution of the 
Maxwell equations, then E = F(r, -t), H = -+(r, -t) 
should also be a solution of them. 

By writing the system of Maxwell equations it is easy 
to see that reversibility obtains if we retain only terms 
with even n in the sum (2). Consequently, terms with odd 
n are dissipative. Separating in this way the conservative 
and dissipative terms in (7), we obtain 

where 

dU 1 (I) (\) 

dt = 4,;"'(EDeven +HBevenl, 

Q= L (ED~ +HB~), 
.. .. 

D ... ~. E"') even ~"'2P , 
D ~ E(··+l) 

odd - £..;. 8Zp +t . 

(8) 

(9) 

(10) 

Here, as in problems of linear mechanics, on reversal 
of the motion dU/dt changes sign and Q does not. 

Integrating the right-hand side of (8) by parts over t, 
we obtain a general expression for the electromagnetic 
energy density 

1 .. I. 
T! = ~ E L. (-1) m{E(m)Il.>E(··-m)+~(m)J.L .. H(·'-"')}. (11) 

p_O m_O 

It is possible to integrate Eq. (8) fully over t and ob­
tain explicitly an energy density U( ... Etn) ... H(l) ... ) 
indep.endent of t only if the tensors E2p and 1l2p are sym­
metriC: 

[e,.(r) ),,=[e,.(r»);., [J.L2p(r) L=[J.L2P(r»);" i,j=l, 2, 3: (12) 

In the case p = 0, i.e., for a static permittivity and 
permeability, the relations (12) are well-known in elec­
trostatics and magnetostatics. 

According to (11), U = 0 if at the given point in the 
medium E and H are equal to zero not only at the given 
time t, but also at all preceding times t' (-00 < l' ::s t). 
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In practice, it is sufficient that E and H be absent over a 
period of time considerably longer than the relaxation 
time of the polarization of the medium. 

If in the dielectric permittivity E(r, w) we separate 
out the part even in w, Eeven(r, w), consisting of the 
even terms in the sum (4), and the odd part Eodd(r, w) 
consisting of the odd terms, then 

(13) 

Analogous formulas can be written for B~~en and B6~d' 
As a result, the expression (9) for Q can be rewritten in 
the form 

Q=_1_[E~80dd(r i~)E+H~l!odd(r i~)H]. (14) 
4n at ' at at ' at 

Formulas (9), (13) and (14) are valid for a dielectric 
medium. But if the medium is a conductor and is char­
acterized by the static conductivity tensor u, then in the 
right-hand side of the expression (13) for D~dd we must 
add the term 41TUE, and in the right-hand side of (14) we 
must add the term EaE. 

For fields of the type of the real part of (3), oscillat­
ing harmonically in time, from (14) we obtain 

iro 
Q=--[Eeodd (r,ro)E+Hl!odd (r,ro)H). (15) 

4n 

If the medium is in thermal equilibrium, the time-aver­
age of the quantity (15) is positive, i.e., the principal 
values of the tensors -iwEodd(r, w) and -iwllodd(r, w) 
should be positive for all w. If there is no thermal 
equilibrium, e.g., there is an inverted population of the 
energy levels, then it is possible that the averaged Q < 0 
(amplification of the electromagnetic wave). 

If the dependence of E and H on t is of a more general 
form, then, even if the medium is in thermal equilibrium, 
it is possible that Q < 0 over particular periods of time. 
But, provided that E - 0, H - 0 as t - - 00 and t - 00, . 

I Q dt;;>O. (16) 

This inequality is easily obtained by expanding E and H, 
as functions of t, in Fourier integrals in (14) and using 
the positivity of the prinCipal values of -iwEodd and 
-iWllodd' 

It is now easy to show that the above separation of the 
conservative and dissipative terms in the right-hand side 
of (7) is the only possible separation for constitutive 
equations of the type (2). Indeed, in deriving the expres­
sion (11) from (8) it was proved that each term of the 
right-hand side of Eq. (8) can be represented as the time 
derivative of a certain function of ... Em) ... H(l) ... that 
does not depend explicitly on t and is invariant under 
time reversal. But not one of the terms in the right­
hand side of Eq. (9) possesses such a property, and, 
therefore, not one can be transferred to the right-hand 
side of (8). In order to show this, we shall consider an 
integral, of the type (16), of a general term of the right­
hand side of (9), when the field varies arbitrarily in time 
but tends to zero as t - ± 00: 

. -I EeZHIE('p+l) dt- (-i) p+l I E(p+l)e'P+IE(p+I) dt. (17) 

It is obvious that, generally speaking, this integral is 
nonzero, and consequently, the integrand is not a time 
derivative of a function of the above-mentioned type. 
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2. ELECTROMAGNETIC FIELD ENERGY IN A 
SPATIALLY UNIFORM MEDIUM WITH SPATIAL 
AND FREQUENCY DISPERSION 

In this case the electric displacement D(r, t) is de­
termined by the values of the electric field E(rl' t') 
(t' ~ t) not only at the same point r but also at all other 
space pOints rl f. r. In the linear apprOXimation we now 
have, in place of (2), 

D (r, t) = L I d'r, (1;. (r-r,) E(') (r., t). (18) .-. 
Here, for simplicity, it is assumed that the medium is 
spatially uniform. Therefore, the coordinates rand rl 
appear in the tensors Qln as the difference. A formula 
analogous to (18) can also be written for the magnetic 
induction. 

As in the preceding section of the article, the even 
terms in the sum (18) are conservative and the odd are 
dissipative. Since all the Em) are real, the tensors Qln 
are also real. 

The Poynting equation (7) is valid as before, since it 
does not depend on the constitutive equations. But it 
cannot be interpreted as an energy-balance equation if 
spatial dispersion is important. The pOint is that the 
Poynting vector S in this case is not the energy flux 
densityl). In fact, we shall consider, e.g., an almost 
longitudinal polarization wave in a crystal with an ionic 
lattice. This wave is electromagnetic and creates an 
energy flux. But for selected propagation directions in 
the crystal this wave becomes strictly longitudinal and 
does not produce a magnetic field (Since the electric field 
is irrotational), and, consequently, S = O. However, the 
energy flux density in this case is certainly nonzero. A 
more general example is a light-exciton (polariton) 
wave [4J: if it is accompanied by a longitudinal electric 
field, then H = 0 and, consequently, S = 0, but the energy 
flux density is nonzero. 

Inasmuch as (7) is not an energy-balance equation, it 
is not possible to determine the electromagnetic energy 
density from (7), as was done in the preceding section of 
the article. However, if we integrate (7) over an infinite 
volume, assuming that the fields fall off sufficiently 
rapidly at infinity, (or over the volume of the region 
defined by the cyclic boundary conditions), then S van­
ishes completely and equations are obtained for the 
volume-integrated field energy Wand dissipation rate R: 

dW 1'I (I) (I) dt'=4:t {EDeven+HBeven)d'r, 

R = L I {ED~ +HB:,:td )d'r. 

(19) 

(20) 

Here Deven and Dodd are respectively the sums of the 
terms with even and odd n in the right-hand side of (18). 
The quantities Beven and Bodd are defined analogously. 
Substituting these sums into (19) and integrating over t 
by parts, we obtain the desired general expression for W 
for fields varying arbitrarily in time: 

f - tp 

W =8;" L L (_1)m S I d'r d'r,{E(m) {r, t)a,.{r-r,)E(,·-m) (r" t) 
._. m_' (21) 

+H(m) {r, t)(I;,; (r-r,)H(Z.-m) (r" t)}. 

Here the Ql2p are the magnetic analogs of the tensors 
Ql2p' In order that the integration over t can be per­
formed, i.e., in order that the energy W exist, it is 
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necessary that a2p and a2p possess symmetry proper­
ties of the following type: 

(22) 

With no loss of generality, we can expand E and D, as 
functions of r, in Fourier series by imposing cyclic 
boundary conditions: 

E (r, t) =.-! ~ E. (t) elk', 
YV ...... 

• 
1 E . D(r,t)=-=: D.(t)e'"'. 

YV (23) 
• 

Here V is the volume of the "cyclicity region," E_k = Ek 
and D_k = ok. Substituting (23) into (18) leads to the re­
lations 

~ 

~ (n) f D.(t) = ~e.(k)E. (t), e.(k)= (Xn(r) e-<k, d'r. (24) 
n_O 

Application of formula (24) to a field of the type (3), 
harmonically oscillating in time, leads to the relations: 

D.(t)=e(61,k)E.(t), e(ro,k)--1:,e.(k) (_tro)n. (25) 

We note that in these formulas wand k are independent, 
i.e., are not related by any dispersion law. Moreover, 
one w can be associated with an infinite set of the vectors 
k necessary for the Fourier expansion of the field (3). 
E (w, k) is the usual dielectric permittivity in a medium 
with spatial and frequency dispersion, and En(k) are the 
tensor coefficients of its expansion in powers of (-iw). 

Since the an are real, it follows from (24) that 

e.(-k)=e:(k), (26) 

and from (25) we then obtain the well-known relation 

e(-ro, -k)=e'(ro, k). (27) 

From (22) and (24) we obtain 

[e .. (k) ],j=[e •• (-k) 1., [eeven (ro, k) ],j=[eeven(ro, -k) Js" t, j=l, 2, 3, 
(28) 

where Eeven(W, k) is the sum of the terms with even n in 
the expansion (25). Correspondingly, Eodd(w, k) below 
denotes the sum of the terms with odd n. 

If we substitute the expansion (23) into (21), VI can be 
represented in the form 

TV = 8~ L t t (_1)m{E~:)e2"(k)E~2p-m)+H~:)!! .. (k)H~"-m)},(29) 
.k jJ=V m=O 

where J.L2p(k) is the magnetic analog of E2p(k). 

For fields of the form of the real part of (3) we have 

(30) 

In this case we obtain from (29) 

W = - ~ E-.(t)eeven(ro, k)E.(t) +H _.(t) !!even(co, k)H.(t) 1 [ 
8" ~ • (31) 

Here the derivative of Eeven(W, k) and J.Leven(w, k) with 
respect to w must be taken at fixed k. 

From (18), (20) and (23) we obtain the following ex­
pression for the rate of dissipation: 

1 ~ 1:,011 ,,2P+2) 12])+2) 
R=--~ [E_.(t) e2P+1 (k)E. (t)+H-.(t)!!2H,(k)H. (t)]. 

4Jl 
It p""o 

(32) 
If the field is represented by the real part of (3), it fol-
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lows from (32), when (25) and (30) are taken into account, 
that 

iro~ 
R = - z;;;-~ [E_. (t) eodd( co, k) E. (t) + H_. (t) !!odd (co, k) H. (t) ]. (33) 

• 
On the basis of (27), this expression is real in the ab­
sence of any symmetry of the tensor Eodd' J.Lodd in the 
indices i and j. 

If the medium is in thermal equilibrium, then, in the 
case of a plane traveling monochromatic wave, the quan­
tity (33) must be positive. Hence it follows that the 
Hermitian tensor 

(34) 

should have positive prinCipal values. Here ~ denotes 
the transpose. 

As in the preceding section of the article, it can be 
shown that neither the quantity (32) nor individual terms 
of the right-hand side of (32) are time derivatives of 
some function of ... Ekn)(t) ... ~l)(t) ... that does not de­
pend explicitly on 1. Therefore, the terms mentioned 
cannot be included in the conservative part of the energy­
balance equation. 

If the medium possesses a static electrical-conduc­
tivity tensor a(k), we must add the term 

.E E_.(t)c;(k)E.(t) . 

• 
3. EXAMPLES 

In a spatially nonuniform medium without spatial dis­
persion the energy density of the electromagnetic field 
is determined by formula (11). 

We shall consider the case when the time dependence 
of the field is determined by the real part of (3) (an 
analogous expression is assumed for the magnetic field). 
Then, taking (4) into account, we obtain from (11) 

U = _1_ {E(r, t)eeven(r, ro)E(r, t) +H(r, t) !-teven(r, ro)lI(r, t) 
8:< 

+ ~Eo' (r)w aeeven(r, ro) Eo(r) + _~II" (r) roa!!even(r, ro) 1I0 (r)} 
2 aro 2 aro 

(35) 

If this expression is averaged over the period of the 
oscillations of the field, we obtain for the average energy 
density U: 

_ 1 {a a} u=-- E;(r)--(roeeven)E,(r)+H;(r)-a (ro!!even)lIo(r) , (36) 
16Jl Oro ro 

which, in the isotropic case, coincides with the result of 
Landau and Lifshitz [IJ • 

As a second example we shall consider a time de­
pendence of the following form for the fields: 

E=A(r)e"', II=A'(r)ea ". (37) 

In this case we obtain from (11) and (4) 
1 

U= 8Jl [Eeeven (r,ia)E+II!!even(r,ia')H]. (38) 

The superficial similarity of (38) and (1) is curious. In 
fact, these expressions coincide only if Eeven and J.Leven 
do not depend on w. 

As a third example we shall consider the fields 
E = A(r)e, H = O. From (11) we obtain 

1 
U = s,:;:-[Eeo(r)E+E(2)e,(r)E(2)]. (39) 

We note that the fields (37), and also those proportional 
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to e, cannot be Fourier-expanded as functions of t. 
Therefore, attempts to express U in terms of Fourier 
coefficients are doomed to failure. But even if the in­
crease of the fields as t - co is slowed down to the extent 
that the Fourier coefficients become finite, but very 
large, it is not possible to express U in terms of them at, 
e.g., the time t = 0, when U is not large and does not de­
pend on the behavior of the fields as t - co. 

As a last example we shall consider the field 

E=A (r) e-''', H=O. (40) 

For simplicity we shall confine ourselves to deter­
mining U at the time t = O. From (11) we obtain 

E· (2q)!(2p-2q)1 
Sp "" 

q!(p-q)! q-' (41) 
s.=I, s,=4, s,=28, s,=288, s,=3984. 

If in formula (41) the summation over p is taken from 0 
to co, this sum diverges because of the rapid increase of 
the coefficients sp' But for sufficiently small ..fif (by 
comparison with the "eigenfrequencies" of the medium), 
the terms in the sum decrease at first. Thus, the series 
is semi-convergent. In this case formula (41) gives a 
reasonable result if the series is cut off at the terms of 
smallest magnitude. 

4. CANONICAL FORMALISM. QUANTIZATION 
-OF THE FIELD 

Below we discard all the dissipative terms and, for 
Simplicity, put IJ. = 1. The quantity Eeven is assumed to 
be isotropic and can possess spatial and frequency dis­
persion. Because of (28), the terms with indices k and 
-k in (29) coincide. Therefore, in (29) we can double the 
coefficient in the right-hand side and perform the sum­
mation over the half-space kx ~ O. Thus, the energy of 
the system is decomposed into a sum of the energies of 
conservative noninteracting subsystems. Below we con­
sider only one of these subsystems, with energy Wkv' 
where the index v labels the two mutually orthogonal 
polarizations of the field (v = 1, 2). We have 

1 [~~ (m) i,.-m) ] W., =t;;' "'-.12-1 (-1)"'e%p(k)E_ .. E., +H-• .H." 
p_(l m_O 

(42) 

If we exclude from consideration the static part of the 
field and the longitudinal electric waves, then, introduc­
ing the vector potential A(r, t), we have 

- 1 1 E H=rotA, divA=O, E=--A(1), A(r,t)=--=. A.(t)e'"'. (43) 
c l'V . 

The system of Maxwell equations reduces to the equa­
tion 

k'A ... 1 (. i) ) I') ... 7eeven 'at' k A •• =0, (44) 

It might seem that (44) is a differential equation of infin­
ite order in t, inasmuch as the expansion of Eeven(ia/at,k) 
in powers of the operator argument ia/at can be cut off 
at a term with a derivative of arbitrarily high order. 
Such arguments, however, are incorrect. For example, 
let 

(45) 

where the constants a, bj and Wj depend on k. Then, act-
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ing on (44) with the operator 

we obtain for Akv(t) a scalar differential equation of 
order 2(s + 1), i.e., of finite order. It is equivalent to 
the initial equation (44) for all harmonics of the field 
apart from those whose frequencies coincide with Wj' 

But such harmonics are not considered below, since they 
possess an infinite rate of dissipation. 

Returning from the example to the general treatment, 
we note that (44) is a linear homogeneous equation with 
constant coefficients, containing derivatives of even 
order only. Therefore, it coincides formally with the 
classical-mechanical equation of motion for a set of 
elastically coupled points performing small harmonic 
oscillations. Such an equation is obtained in mechanics 
if we go over from the numerous second-order Newtonian 
equations of motion to one equation of high order. 

To apply the traditional methods of quantization de­
veloped in mechanics, we find it convenient, conversely, 
to go over from the above-mentioned high-order equation 
equivalent to (44) (let its order be 2(s + 1)) to a system 
of second-order equations of the Newtonian type. For 
this, in the equation of order 2(s + 1) for Akv we make 
the substitution 

, 
,2p) ~ 

At,. = i... M p,q" p=O, 1,2, ... , s, (46) 

where qZ(t) are the new unknown functions, from which, 
for simplicity, we have dropped the indices k and v; ~Z 
is any square matrix that is independent of t and has an 
inverse. For qz a system of second-order equations, 
containing no first derivatives, is obtained. We shall call 
these the equations of motion of the field and qz the gen­
eralized coordinates of the field. 

Differentiating the last of Eqs. (46) with respect to t 
any even number of times and expressing the qt that 
arise each time in the right-hand side linearly in terms 
of ... ql' ... from the equations of motion, we can express 
any even derivative of Akv linearly in terms of qz: 

1") ~ 
A .. = "'-' Mp,q" p=s+1, s+2, ... (47) 

Here MpZ is a non-square augmentation of the matrix 
introduced earlier. 

In order that the qz be normal coordinates, a special 
choice of the matrix ~Z is necessary; for this choice 
the particular integral of the problem has the form 

(48) 

Substituting (48) into (46) and (47), we obtain 

(49) 

Substituting (46)-(49) into (44), we obtain the dispersion 
equation 

(50) 

in which k is fixed. The roots ± Wo, ± Wi' ... , ± Ws of this 
equation are the discrete eigen-frequencies of the con­
servative subsystem k, v under consideration, and the 
number of these roots defines the true order of Eq. (44). 
Thus, if Eeven has the form (45), then, as was proved 
above, (44) is equivalent to an equation of order 2(s + 1). 
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The number of roots of the dispersion equation in this 
case is also 2(s + 1). 

Expanding Eeven in (50) in powers of -iwZ' we obtain 
an equation which, when we add to it the infinite set of 
identities 

00.'1:, e'CNO') (k) (-00/) 0 (-00,,') p' 

0-' (51) 

leads to a certain relation. If in the latter we inter­
change the indices Z ;:!: Z', P ;:!: p' and subtract the result 
from the original relation, we obtain the useful "ortho­
gonality condition" 

tioned in the half-space kx 2: 0 (see (42) and the preced­
ing text). The two operators qZkv and qZkv' defined in 
the above-mentioned half-space of k, can be expressed 
in terms of the two operators aZ,kv and aZ,-kv defined 
in complementary half-spaces: 

(') 1/ 1ioo.. + 
q .. , =-1 v--(a, ... -a,,-.v), w,.>O. m,. 

(56) 

From the commutation relations for qZkv' qZkv and qZk ' 
q (1)+ we obtain v 

Zkv 

1:, e'CNP') (k) (-00,') p( -00,,') p' =0, 
p,p'_O 

Thus, aZkv and aZkv are ordinary Bose creation and 
(52). annihilation operators. Substituting Eqs. (55) and (56) 

into (42), we obtain 
If we first divide the relation mentioned by wi, and then 
make the interchange of indices and the subtraction, we 
obtain another "orthogonality condition," used below: 

c'k' - .E 8'(P+P'+t) (k) (-00,') p+' (-001")"+'=0, (53) 
p,p'=:) 

We shall return now to that stage in the treatment in 
which the q1 were not yet specific functions of t, of the 
type (48), but were the unknown functions-the general­
ized coordinates of the field. In the expression (42) for 
the energy we substitute (43), (46), (47), (49) and (50), 
taking into account that A-kv = Akv' and introduce the 
notation 

oot' f) k 2 1 f) 
m(oo,)""m,=~----8even(oo,.k)+--",,-----

211C' f) (oo,') 211OO( 211C' f) (00,') 

[oo,'eeven(oo"k) J. 
(54) 

As a result, the energy is written in the form 

1 ~ Cl)' Cl) 
W .. =T+V, T=T ~m,qi q, , 

,-, 
1 • 

V - ~ ,. -T ~m,oo,q,q,. 
(55) 

Here T and V must be interpreted as the kinetic and po­
tential energies, respectively. The real and imaginary 
parts of qz are the real normal coordinates of the sys­
tem. Because of the condition (52), mixed products 
qt*qzP with z' ;, Z have not appeared in T, and, because 
of (53), mixed products qiql' have not appeared in V. 
The system of equations of motion that can be obtained 
from the Lagrangian L = T - V is equivalent to the 
Maxwell equation (44). 

To quantize the field it is necessary to introduce the 
canonically conjugate momenta, transform to operators, 
and write down the well-known commutation relations 
between the coordinates and momenta. From these fol­
low commutation relations for qz' qt' qY) and qt+. For 
brevity, we shall not write out either of these sets of 
relations. 

Having disposed of the treatment of an individual 
conservative subsystem with fixed k and v and energy 
Wkv' we turn to consider the whole assembly of such 
subsystems with all possible k and v. It is now neces­
sary to attach the indices k, v to the quantities qz and 
q~l), and the index k to the quantities s, W z and mr We 
recall that for all these quantities the index k wa& posi-
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'k , 

W = 1:, 1:, 1:, lioo,.a,:va .. " (58) 
t /".,,0 """,,1 

where the summation over k must be performed not over 
the half-space but over the full space. 

From the dispersion equation (50) there follows an 
expression for the density of vibrational states. Thus, 
in the simplest case of no spatial dispersion, the number 
of values of the vector k in the frequency interval dw 
and within the solid angle dO is equal to 

l'eeven(w) 59) p(W)dOldQ=V-4-,-m(w)oo'doodQ, ( 
)'IC 

where V is the volume of the basic region of cyclicity. 
In an unbounded medium there exist waves with real k 
only, for which Eeven(W) 2: O. Consequently, p(w) = 0 in 
the frequency ranges in which Eeven(W) < O. 

In the case of thermal equilibrium, for the spectral 
density of the energy of the electromagnetic waves we 
obtain the generalized Planck formula 

(60) 
dW=O, if 8even(OO)';;0. 

When the quantity (60) is integrated over w, the Stefan­
Boltzmann formula, generalized to the case of a disper­
sive medium, is obtained. If Eeven(W) has the form (45), 
then as w - Wj spatial dispersion becomes important 
and formulas (59) and (60) are inapplicable. 

If we introduce additional charges (electrons, impur­
ity molecules) into a dispersive medium and consider 
their interaction with photons on the basis of quantum 
electrodynamics, the probabilities of the different proc­
esses are expressed in terms of matrix elements of the 
quantities (56) and in terms of the density p(w). The fac­
tors m(w) and E~~en appearing in these quantities intro­
duce extra frequency dependences into the above­
mentioned probabilities, as compared with the case of a 
medium without dispersion. The probability of one­
photon processes is proportional to 

p (c.») I (n!kv+ 11 q'h I n'b> I '. 

In this product the factor m(w) cancels out, but the 
factor E~~en(W) remains; because of this, in the proba­
bility there appears the singularity ~ (Wj - Wfl/2 when 

Wj - W - +0, if Eeven(W) has the form (45). In the region 
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Eeven(W):::; 0 the probability of the process is equal to 
zero. 

5. IMPROVEMENT OF THE CONVERGENCE 
OF THE EXPANSIONS USED 

The final results (15), (31), (33), (35), (38), (39), 
(47)-(50) and (54)-(60) do not contain infinite sums over 
the index n or p, although such series were used for 
their derivation. These series diverge for many forms 
of the electromagnetic field-in particular, for many 
normal vibrations of the field. We shall show that the 
final results are applicable far outside the limits of the 
class of fields for which the above-mentioned series 
converge. For this we shall obtain the same results 
using other expansions which are somewhat more com­
plicated but always convergent. 

The fact that D(r, t) is a linear functional of E(r, t') 
(t' :::; t) can be written, in the general case, in the form 

D(r, t)= S t{-t')E(r, t-T)d't EE J t('t)dTe-"/OIE(r, t), (61) 

where the tensor f(T) - 0 as T - "". If we expand the ex­
potential in (61) in powers of a/at, an expression of the 
type (2) is obtained, with 

(62) 

(the argument r of En and f is omitted for brevity). So 
long as the series (2) converges, formulas (2) and (61) 
are equivalent. But (61) also remains meaningful when 
(2) diverges. Thus, if E ~ e-1wt, from formula (62) we 
obtain 

. -
D(r,t)= e(<Il)E(r,t), e(<Il)'" f t('t)e'·'d't. (63) 

This integral is finite even for very large w, which can­
not be said of the right-hand side of (4). Thus, formula 
(61) gives a convergent result if the field is expressed 
by an arbitrary linear combination of exponential har­
monics. 
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All the results of this paper are easily followed 
through by applying formula (61), in which we must first 
sum the series and then integrate, in place of formula 
(2). Ultimately, expressions are obtained that differ 
from those obtained earlier in that, in place of the ten­
sors En' we have the tensors f(T)(-T)n/n! (which fall off 
much faster with increasing n), and after summing over 
n the integration is performed over T from 0 to "". 

Completely analogously, in the case when spatial dis­
persion is taken into account we must use, in place of 
formula (24), the formula 

-
D.(t)= J t('t,k)dTe-"N!E.(t), 

S- (-1'). 
e.(k)= t('t,k)d't--. 

n! 
o 

(64) 

In those cases in which it was possible, when using the 
original expansions, to contract them and represent the 
result without the sum over n, when the expansions (61) 
or (64) are used it is possible, in addition, to perform 
the integration over T. Thus, all the final results listed 
at the beginning of this Section of the article conserve 
their form exactly. 

l)This fact was not taken into account in [3), in which, for a plane 
monochromatic wave with frequency wand wave-vector k in the 
presence of spatial dispersion, it was proposed that the electromag­
netic energy density be determined from the formula proved for the 
case offrequency dispersion only, by first substituting into the di­
electric permittivity €(w, k) the explicit w-dependence of k obtained 
in solving Maxwell's equations. 
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