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Scattering of electrons by atoms in the energy range from a fraction of an electron volt to the first 
excitation potential is considered within the framework of the statistical model. It is of interest to assess the 
exerted on the scattering process by the energy levels that emerge into the continuous spectrum as the 
charge on the atomic nucleus is decreased. The quasistationary states thus formed, whose width is 
calculated in this paper, may cause a number of broad resonances to appear in the slow-electron scattering 
cross section. Curves of the dependence of the resonance-scattering cross section on the incident-electron 
energy are presented for a number of atoms (22::; z::; 26) and from these it is possible to trace the variation 
of the shape and position of the resonances with variation of the nuclear charge z. The behavior of the 
scattering length near the points of contact of s levels with the edge of the continuous spectrum is 
analyzed. 

The study of electron-atom elastic-scattering cross 
sections at low energies is interesting because of the 
presence in the cross-sections of numerous resonances, 
giving a wealth of information on the properties and 
structure of the atoms. In this paper we consider the 
theoretical possibility of the appearance of a special 
type of resonance, associated with the existence of 
quasi-stationary states of the negative ions of the cor
responding atoms. These resonances should be ob
served in electron-atom scattering experiments. 

Our approach is to trace how, as the nuclear charge 
Z is varied, the bound states of an electron in the effec
tive field of the atom emerge into the continuous spec
trum, where they become quasi-stationary and produce 
the resonances under consideration. Our aim will be to 
study the general trends in the behavior of the cross 
sections, without taking into account the effect of the 
specific structure of each atom considered. This enables 
us to apply the statistical Thomas-Fermi model to des
cribe the potential of the atom; this model has the added 
convenience, in our case, that in it the nuclear charge 
can be regarded as a continuously variable parameter. 
The latter circumstance makes it possible to apply the 
special modified Rerturbation theory proposed by Ostrov
skir and Solov'ev 1] for states with a small binding energy. 
The application of the statistical potential to describe 
the scattering process is fully justified if the energy 
of the incident electron lies in the range from a fraction 
of an electron-volt to several electron-volts (below 
the atomic excitation potential). At lower energies long
range forces play an important role (these forces are 
also important at high energies in small-angle scatter
ing). 

In our previous paper[2 J it was shown that for low 
energies the energy levels in the statistical potential 
are grouped in such a way that levels with the same 
value of the quantum number N = n + 1 emerge almost 
simultaneously into the continuous spectrum (the levels 
intersect the edge of the continuum simultaneously for 
the focusing potential -z/r(1 +ar)2, which is close to 
the statistical potential [3 J). As is discussed in detail 
below, this leads also to a corresponding grouping of 
the low-energy resonances. In the paper, scattering 
cross sections are presented for some of the most in
teresting values of z, and the electron-atom scattering 
length is also calculated as a function of the nuclear 
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charge for the model potential. In the latter case we 
have succeeded in correcting important errors in the 
earlier calculations of Tietz1'1, who used the same 
model. 

It follows from[2 J that, despite the neglect of the 
Coulomb interaction experienced by an electron in a 
neutral atom at large r, reasonable results are ob-
tained with regard to the sequential occupation of the 
energy levels. For the problem of scattering of an 
electron by a neutral atom the approximation of elastic 
scattering by the Thomas-Fermi potential is even more 
justified, since the Coulomb interaction at large distances 
is absent and the principal long-range term 115/r' in the 
potential corresponds to the actual polarization interac
tion a/2r' with a z-independent polarizability a = 230 
(a quantity which can be regarded, in the standard sense, 
as the polarizability averaged over a period of the Men
deleev periodic table). 

Of course, in a sufficiently exact calculation of the 
electron-atom scattering it is necessary to take into 
account the exchange interaction. This is especially 
important in order that the electron may not occupy 
those energy levels in the effective potential well that 
are already occupied by atomic electrons. Therefore, 
in these cases when the electron energy is comparable 
with the energy of atomic electrons, e.g., in the for
mation of a chemical bond, it is necessary to make such 
allowance for exchange. However, in the region of small 
positive energies, in which we are interested here, it 
may be assumed that representing the atom in the form 
of a local model potential is fully justified. 

1. Let znl be those values of the nuclear charge z of 
the atom for which the state with the corresponding quan
tum numbers has the energy Enl = O. Then for z > znl 
the energy Enl < 0 and in the well there are bound states 
with principal quantum number n and orbital quantum 
number 1. For z < znl the values n and 1 will correspond 
to quasi-stationary (I/: 0) or virtual (I = 0) states, which 
give rise to resonance scattering at low energies. The 
values znl were calculated in the Thomas-Fermi approxi
mation inI21 • 

To describe scattering for z S znl we can make use 
of perturbation theory, assuming the difference V(r) 
between the potentials U(Znl,r) and U(z, r) to be small. 
Perturbation theory for the case when the unperturbed 
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state lies on the boundary between the discrete and 
continuous spectra was considered in the paper by 
Ostrovskir and Solov'ev[I). Here we have applied the 
formulas they obtained to the determination of the po
sition and width of the ,resonance energy levels as a 
function of znl - Z in the Thomas- Fermi approximation. 

We have considered the Thomas- Fermi potential of 
a neutral atom, satisfying the equation 

~ d'(rU) = _ 8Y2 (-u)'" 
r dT' 3n 

with the boundary conditions 

-rz-'U(r)-;:::: 1, U(r):::, O. 

(1) 

(2) 

A characteristic feature of such an atomic potential is 
the fact that all numbers znl with the same value of 
N = n +l are close to each other. They coincide exactly, 
as was shown in[3), for the Tietz potential[6]: 

U(Z, r)=-zlr(1+ar)'. 

The additional degeneracy at E = 0 is associated here 
with the presence of a special symmetry group. 

(3) 

In[l] a general formula was derived for the width r 
of the quasi-stationary states in a low-energy approxi
mation. In our case the difference znl-z plays the role 
of the perturbation parameter. The perturbing potential 
in the Thomas-Fermi approximation is equal to 

V(r) ='/aZ.,-'[U,' (Z.', r) +4U(Z." r) J. 

Then rnl can be represented in the form 

where 

x [R (0)' ] -1-3/' [<P~~' (R)RI]' S <pnl dr (2l-1) l! . 
o 

The functions qJ~ol (r) satisfy the radial SchrOdinger 
equation with zero energy: 

d'<p!:) l (l+1) (0) U ( ) (0) 0 
~ - -r'- cpnl - Zfth r <Ptal == , 

and 

(4) 

(5) 

2. We can determine the position of the low-energy 
resonance if we know the derivatives of the energy with 
respect to the variable nuclear charge Z at the points 
znl. It was shown in [3] that in the case 1 lOa formula 
following from the Hellmann-Feynman theorem is 
valid: 

[ S- (0)' / S- (0). ] ( Enl = V(r)<Pnl dr <pnl dr Z-Z.,); 
o 0 

(6) 

for 1 = 0 we have the special case[3 1 

- , 
Eno=2 [ SV(r)cp.(:)'dr / !~~ cp~~' (R) ] . (Z-Zno) ' ... 2 (Z-Zn,)'T... (7) 

, 
Taking into account that we know the behavior of the 

wave-function in the field U =-a/2r4 , i.e., in the long
range part of the Thomas-Fermi potential, 

CPn(:'- const'rsin «aI2)'''Ir) 

we can determine the normalization constant in formula 
(7). For the case 1 I 0 the normalization integral in for
mula (6) breaks down into two integrals 
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- R _ 

S (O)ld S (0)2 S (0)2 cpnl r = <pnl dr + cpnl dr, 
• 0 R 

of which the first has been calculated numerically and 
the second analytically. In this we have used the asymp
totic behavior of the function at infinity. 

At sufficiently large distances r the Thomas-Fermi 
potential ceases to depend on the nuclear charge of the 
atom. Therefore, starting from a certain r = R, the dif
ference V(r) = U(Znl, r) -U(z, r) equals zero. This en
ables us to calculate the integrals in the numerators of 
formulas (6) and (7) with great accuracy. 

3. In Table I we give the calculated values of the co
efficients Ynl in formula (4), corresponding to definite 
values of znl (l I 0), and the values of aEnl/ az at the 
points znl. A comparison of the values of znl' calculated 
for the Thomas-Fermi potential, with the actual appear
ance of the states nl in the periodic table shows that 
agreement is fairly good for s-states, and the size of 
the discrepancy does not exceed 1-3. This agreement 
worsens with increasing l; nevertheless, for p-states 
and low Z the calculated values of znl are quite reason
able. 

It follows from (4) that 

r .1 [ E ] 1+1/' 

"-y,, (iJE.'/{Jz)'nl • (8) 

Therefore, as n increases (for the same value of I), 
which corresponds to a relative decrease of the h~ight 
of the potential barrier, the ratio Ynl(aEnl/az)1+1(2 
should increase. This is confirmed by the numerical es
timate given in the last column of Table I. 

The values of the derivatives aEnl/ az increase with 
increasing orbital quantum 1 for constant N = n +l, in 
agreement with the level-filling rule found earlier [31. 
For comparison, the values of the derivatives 
(aEnl/az)Tietz for the Tietz potential (3), where a was 
chosen to be O.643z1l3, are also given in the table. 
Because of the incorrect asymptotic form of this poten
tial at infinity (r -3) these values are always lower than 
the corresponding quantities calculated in the Thomas
Fermi potential. The difference is smaller, the greater 
is 1 and the smaller is znl. 

Table II gives the values of the coefficients T nO in 
(7) for the corresponding values of znO. They also de
crease with increasing n. 

4. From the data of Tables I and II we can construct 
an apprOXimate picture of the behavior of the energy 

I n 
\ 'n' 

I{ 
2 6,5 
3 14.5 
4 27.5 
5 47.5 
6 74,0 

2{ 
3 25,9 
4 43 .• 8 
5 68.7 

3 4 65.9 

TABLE I 

\ 
Ynl (~)nl \ (Wz)Tietz \ 

Y l(~t·,· nl liz nl 

0.013 0.027 0.023 2.9 
0.0044 0.011 0.008 3.8 
0.0025 0.006 0.003 5.4 
0.0016 0.0042 0.0016 6.3 
0.0)05 0.0017 0.0008 7.2 
0.013 0.096 0.11 4.6 
0,0046 0.047 0.043 9.6 
0.0008 0.023 0.021 10.1 
0.0034 0.18 0.21 12.9 

TABLE II 

'nO \<",'1(" n \ '''0 \<""10' 
2 \ 2.8 \ 8 a 8.2 2.6 

4 \ 17;5 \ 0,37 
5 33.5 0.27 
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FIG. I FIG. 2 

FIG. I. Behavior of the quasi-stationary (4p and 3d) and virtual 
(5s) energy levels. The energy is plotted in atomic units along the 
vertical axis, and the width of the "cones" corresponds to the width 
of the quasi-stationary states. 

FIG. 2. Cross section for elastic resonance scattering in the Thomas
Fermi approximation for atoms with different nuclear charges, as a 
function of the incident-electron energy. 

levels near the boundary between the continuous spec
trum and the quasi-stationary states of the atom, and, 
consequently, determine the cross-section for scatter
ing of low-energy electrons. Especially interesting is 
the case when we consider atoms with nuclear charge 
close to a value znl, and levels with the same number N. 

Figure 1 shows the behavior of the 5s, 4p and 3d 
levels in the range of z from 25 to 34. The pattern of 
the dependence of the resonance-scattering cross-sec
tion on the incident-electron energy, which varies from 
0.01 to 0.6 a.u., is shown in Figs. 2 and 3.The atoms 
from titanium (z = 22) to iron (z = 26) have been con
sidered. In this range the 4p and 3d levels move out 
into the continuum. The cross-section is defined ap
proximately as the sum of the partial cross-sections 
for 1 equal to 0, 1 and 2, which make the largest con
tribution to the scattering. 

In all our calculations we have not taken into account 
the polarization potential, which plays a fundamental 
role at large distances from the nucleus. However, for 
1 2: 2 a potential barrier already arises at the distances, 
not exceeding 2.5 a.u., which play the principal role in 
the calculations. Thus, with increasing 1 the calculations 
in the Thomas-Fermi potential become more and more 
justified. 

5. One of the principal characteristics of elastic 
electron-atom scattering at low energies is the scat
tering length. Knowing its value, we can always deter
mine the phase of the scattered wave and the scatter-
ing cross-section. A calculation of the scattering length 
in the Thomas- Fermi approximation has been performed 
by Robinson[7]. Of some interest, however, is the approxi
mate analytic expression obtained by Tietz E4 ] for the 
scattering length a for the model potential 

'z 
U{z,r)= r(1+cr)'(1+dr) ' (9) 

where c = 0.57z1l3 and d = 0.049z l/3 • In this approxima
tion, 

{ [ 3 1 ( 8Z) 'h 3 1 ( 8Z) 'I, c-d } a-- z,F, -+- 1+--' ,--- 1+-- ,3;--
2 2 c-d 2 2 c-d c 

{ [ 1 1 ( 8z ) 'I. 1 1 ( 8z ) 'I. c-d ] }-' 
X c',F, --+- 1+-- ,.--- 1+-- ,2;--

2 2 c-d 2 2 c-d c· 
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FIG. 3. Electron-atom scattering lengths in the Thomas-Fermi ap
proximation (dashed curves), calculated by Tietz for the potential (9) 
(the dots), and calculated in this paper for the same potential (the 
solid curves). 

Tietz noted the quasi-periodicity of the variation of 
a as a function of the nuclear charge z, playing the role 
of a parameter. However, the numerical data of his 
calculations appeared to us to be dubious. In particular, 
he cites [4] the following values of znl at which the scat
tering length takes values of the order of 1018 a.u.: 
znl= 12, 19, 31, 38,47, 58, 59,85,86,94,95. These 
values of z should correspond to the nuclear charges, 
at and above which the next bound state with 1 = 0 ap
pears in the atom. In the exact Thomas-Fermi poten
tial E7 ], znO = 2.5,7.5,33.5,17.5,57.0,57.0,90.0, i.e., 

. differs greatly from the values calculated by Tietz. 

Figure 3 shows the findings for the scattering length, 
obtained in our work using the potential (9). The findings 
of Tietz are marked by dots. A comparison of the two 
calculations, and also the irregularity of Tietz's data, 
show that his calculations were erroneous. 

Using the expression for the s-level energy inE8] 
and the effective-range approximation for the negative 
levels (2EnO)1/2 =-l/a(z) +O(EnO), we obtain 

res._ • ...a{z) = -lim._~cp' (z." r) I jcp.(z." r)O(z." r)dr. , 
Introducing the coefficients TnO by formula (7), for a we 
have 

a(z) =-'£.,-'/2 (z-Z.,) . 

If we trace isoelectronic sequences of positive ions 
with N electrons, neutral atoms and negative iOns, the 
energy required to detach an electron decreases mono
tonically with decreasing z and vanishes at a certain 
z = Zo close to N -1. For lower z this state goes over 
into the continuous spectrum. If Zo > N -1, we may ex
pect a low-energy resonance to appear in the cross
section for scattering of an electron by the neutral 
N-electron atom. An example is the alkaline-earth 
atoms, for which there are no negative ions and, there
fore, low-energy p-resonances are possible. 

Although the calculations based on the Thomas-Fermi 
approximation are rather crude, both with regard to the 
values of znl themselves and with regard to the quan
tities characterizing the slope of the terms, they give, 
nevertheless, a sufficiently realistic indication of the 
grouping of the resonances in accordance with the n +1 
rule and of the intervals of z in which these resonances 
must be sought. The available experimental data do not, 
as yet, enable us to confirm or refute these predictions. 
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