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Results are reported of numerical experimental investigations of the resonant three-photon interactions of 
narrow light beams in the case when there is strong energy exchange. A number of new phenomena were 
observed for the first time in experiments with initially nondivergent Gaussian beams. Parametric diffusion 
of the beams and anomalous diffraction, in the course of which the wave with the higher frequency 
acquired a converging wave front, were observed in the linear parametric-amplification regime. The 
phenomenon of simultaneous mutual focusing was discovered under conditions of strong energy exchange 
between the beams. The field intensities at the nonlinear focus exceeded the initial field intensity of the 
fundamental wave by one or two orders of magnitude. The Gaussian beams acquired a ring structure in 
mutual focusing of quasiperiodic nature. The conditions for self-capture of the beams into coupled 
waveguides have been established and the structures of some stationary waveguides have been found. 
Estimates are given of the fundamental-wave intensity threshold for the observation of these effects in laser 
experiments with crystals. 

INTRODUCTION 

Three-photon resonance interactions playa major 
role in wave propagation in nonlinear dispersive media 
the frequencies and wave vectors of the waves are con­
nected by the relations WI + W2 = Ws and kl + k2 = ks ). 
Such interactions are studied in plasma physics in the 
analysis of decay instability, in nonlinear optics in the 
analysis 'Jf stimulated scattering and parametriC am­
plification and generation, and in hydrodynamics in the 
analysis of turbulence development. Three-photon in­
teractions have been sufficiently thoroughly investi­
gated only in the geometrical optics approximation (see, 
for example,ll-S1). The diffraction phenomena that occur 
during the resonance interaction between modulated 
waves-in particular, between wave beams-have prac­
tically not been studied before. At the same time, as 
shown in the present paper, the diffraction of coupled 
waves acquires qualitatively new features. 

The propagation of three light beams in a medium 
with a quadratic nonlinearity was studied in numerical 
experiments. At high field intenSities, instead of the 
diffractive spreading of the beams, the following phe­
nomena were observed for the first time: anomalous 
diffraction, in the course of which the wave with the 
higher frequency acquires a converging front; the para­
metric diffusion of the subharmonic beam; the mutual 
focusing of all the three beams, which participate in a 
synchronous interaction; the guided propagation of the 
light beams in the form of coupled optical wave guides. 
It should be emphasized again that these effects occur 
in media in the absence of cubic nonlinearity, i.e., with­
out the participation of self-focusing. The physical es­
sence of the phenomena of anomalous diffraction and 
mutual focusing consists in the following. 

During the propagation in a quadratiC medium of the 
three waves 

there arise in the medium at the same frequencies the 
polarization waves 

9",=xE,E,', 9",=iE.E,·, 9".=XE,E,. 
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It is not difficult to see that in the field E3 of an intense 
pump wave the diffractively diverging wave E2 excites 
a polarization wave 9 1 that has a converging front and 
that, in its turn, tends to focus the wave E 1, and, con­
versely, a diverging El wave exerts a fOCUSing influ­
ence on the E2 wave. This effect is more important for 
the wave with the larger wave number (such a wave ex­
periences the usual diffraction to a lesser degree). 
Thus, in a parametrically active medium, the beam with 
the higher frequency acquires a converging front and 
can become focused after emerging from the nonlinear 
layer. 

Under conditions of strong energy exchange when the 
intensities of all the three waves become of the same 
order of magnitude, the anomalous diffraction leads to 
the simultaneous mutual focusing of the three beams. 
As the numerical experiments Showed, the cooperative 
focusing of the waves is accompanied by nonlinear aber­
rations that manifest themselves in the formation of a 
ring structure in the beams and in the existance of 
several foci. 

The waves for which the phase-asynchronism inte­
gral is negative are captured and coupled into generally­
oscillating waveguides or solitons. We find in the paper 
the structure of some stationary waveguides with con­
stant cross sections and plane wave fronts. 

The above-enumerated phenomena obviously have an 
intensity threshold, since the characteristic nonlinear­
interaction length, which is inversely proportional to the 
intensity, should be less than the diffracti ve beam 
spreading length. 

1. QUASI-OPTICAL EQUATIONS AND THE 
INTEGRALS OF THE MOTION 

The interaction between nearly plane waves is de­
scribed by the system of parabolic equations 

8A/8z+iD,.1.-LA ,=-i"(,A,A,"e-"', (1) 

8A,18z+iD,.1.-LA,=-i"(,A,A, 'e-iA', (2) 
aA,I8z+iDJil-LA.=-i"(.A,A,eiA,. (3) 

Here Aj = AOje-icpj is the slowly-varying complex am-
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plitude of the wave's electric field 

.E,= (8n/en,) 'l'e,A; exp i( w,t-k,z). 

Z is the coordinate along the axis of the wave beams, 
.11 = a2/ax2 + a 2/ay2 is the Laplace operator in the 
transverse coordinates, Dj = 1/2ki is the coefficient of 
the transverse diffusion of the amplitude, 

'(,=4nl' 2nxw,![cl'en.n,n,], 'Y'='Y'+'Y'. 

X. = elxeae s, nj is the refractive index, and .1 = ks - kl 
- k2 is the wave-vector detuning. Obviously, the wave 
intensity Sj = AOj ' while the power 

P,= SSAo;'dxdy. 

The system (1)-(3) has integrals of the motion that 
remain constant during the propagation of the waves, 
i.e., that do not depend on the coordinate z. These in­
tegrals are first and foremost the Manley-Rowe rela­
tions for the powers: 

P, p, p. P, 
1 •.• =--+-. 1.,=-+-

1, '(. . 'Y. 'Y' 

p. P, 
113 =---, 

. '(. 1· 
(4) 

from which follows the law of conservation of the total 
energy of the waves: 

I.=P.+P,+P,. (5) 

To the law of conservation of the transverse momentum 
of the wave beams corresponds the motion integral 

, D 
1,= JS (1: '(: A.1 V.L'Pi )dxdy. (6) 

j=1 

For beams with axial symmetry this integral is trivial: 
h'" O. 

A greater amount of information on the nature of the 
interaction between the waves is provided by the phase­
asynchronism integral 

1,=SS [~Di'IV.LAil'-~A03'-2A"A"A03COSIll]dXdY. (7) 
""'- '(J '(, 
j=1 

where <I> = cP 1 + cpa - cP s - .1 z is the phase difference, 
which determines, first, the direction and rate of energy 
transfer between the waves. In fact, from (1) we can 
derive the expression 

dP./dz=2'Y. S S A.,A"A" sin III dx dy. (8) 

Clearly, to the coherent process in which the energy­
transfer rate is maximal corresponds q. = ±1T/2. Ac­
cording to (7), the coherence of the three-photon inter­
action is destroyed because of the detuning .1 of the 
mean magnitudes of the wave vectors and, which is 
particularly important, because of the diffraction of the 
waves. It should be emphasized here that the diffractive 
detuning of the phase velocities is nonuniform over the 
cross section and varies with distance, so that it is not 
possible to cancel it out by a judicious choice of the 
value of .1. 

Secondly, with the diffractive incoherence is con­
nected a nonlinear distortion of the wave fronts of the 
interacting beams. For example, for the first wave we 
have from (1) the equation 

iJ'P' D (V)' _ '(.A 02A 08 III + D.Ll.LA., (9) a;-+ • .L'P -~cos ~. 

It can be seen from this that we can expect the effects 
of focusing or defocusing of spatially modulated waves 
to be observable in strong interactions. 
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2. PARAMETRICALLY ACTIVE MEDIA h3 = 0) 

Let us first consider the diffraction of the beams Ai 
and Az in the uniform field of the pump wave As = Es. 
The angular components 

sJ(k .. k .. z)= H A,exp{-i(k,.x+k.y) }dxdy 

of the fields being amplified vary in a parametrically 
active medium according to the law (see l41 ): 

s.=[s.(k .. k., 0) G .. (k.l.' z)+s;(-k •• -k •• O)G,,(k.L, z)] 

xexp {-i[Ll+(D,-D,)k/]z}. 
Ll 'I (10) 

G .. =ch(rz)+ ~;sh(rz), G,,=-i(:J 'e-'" sh(rz), 

r= (r.'-Ll.'/4)·", r.= (1.1,) 'I'E,. Ll.=Ll+ (D.+D,) k.L" k.L'=k.'+k.'. 

It can be seen from (10) that the contour of the angular 
amplification I'( k 1) is inhomogeneous, as a result of 
which the angular spectrum of the waves narrows down 
and the beams accordingly broaden with distance. For 
example, the coordinated, axially-symmetric Gaussian 
beams A1(r, 0) = E 1 exp(-r2/a2) and Aa(r, 0) 
= Eaexp(-r2/a2) get diffracted, as follows from (10), in 
the following manner: 

A.(r,z) 
_ (11) 

= (a'!2) J (E.G .. +E;G,,)J,(k,r) exp{-k/[a'+iz (k,-'-k.-') ]/4}k, dk" 

where kr = (k~ + k~ )1/2 and J o is a Bessel function. 
Interchanging the indices 1 and 2, we obtain the expres­
sion for the amplitude A 2 • 

In the case of a linear medium, when ro = 0, the 
expression (11) goes over into the well-known formula 

AJ(r.z)=-_E_'-exp {- r' }. 
1-iz/Rd ., a'(1-iz/Rd .i) 

(12 ) 

in which the diffractive beam spreading length is equal 
to 

Rd .,=kp,'/2. (13) 

For z > Rct,j the beam acquires a diverging spherical. 
front and the amplitude decreases with the distance 
a:Rct j / z, the wave with the lower frequency spreading 
more rapidly. 

In a parametrically active medium, the diffraction of 
the waves being amplified begins to proceed completely 
differently if, as can be seen from (11), the wave detun­
ing is relatively small within the limits of the angular 
divergence of the beam, Le., if .1k s 2ro when kra 
S 2. In other words, there exists a critical pump-wave 
intensity 

S - S,n,'A,' S c 
cr' - (1-I!')'a' ' = -:8=-n-:-'x-::-'n-,-n,-n; (14) 

where fJ. = (2AS/Al) - 1 is a parameter characterizing 
the frequency degeneracy: -1 < fJ. < 1. When the thresh­
old is exceeded, i.e., when Ss> Scr b new diffraction 
phenomena arise. 

Let us first conSider the case when the wave detuning 
can be neglected in the evaluation of the integral (11). It 
is not difficult to show that this can be done if S3 
> fJ.-2Scr l' Setting .1k = 0, and assuming, for definite­
ness, that Wi;' Wz, we find the wave amplitudes 

E.G .. (0, z) +E;G,,(O, z) { r' } 
A,= exp - , 

1 +iz/ R an a' (1 +izl Ran) 
(15) 

_ E,G" (0, z) +E.·G" (0, z) {' r' } 
A, - 1-iz/Ran . exp a'(1-izIRan) ' (16) 
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where the common-for both beams-spreading length is 
equal to 

Ran=k,k,a'/(k,-k,). (17) 

A comparison of the formulas (15)-(17) with (12) and 
(13) shows that the diffraction of the waves acquires an 
anomalous character in the case of parametric ampli­
fication: first, although the wavelengths are different, 
the rates of spreading of the beams are equal; second, 
during the diffraction the beam with the shorter wave­
length acquires a converging front, and not a diverging 
one, as in the case of a linear passive medium. Such a 
beam, after emerging from a nonlinear layer of thick­
ness z:: L gets focused, and in the constriction formed 
over the distance ZIC):: L( kl - k2 l!2k2 the beam radius 
attains the initial value a. 

Let us now turn to the analysis of the behavior of the 
waves when the second threshold pump intensity is not 
exceeded: Scr 1 < S3 < j.L-2 Scr l' For this purpose, let us 
follow the variation of the field on the axis of the beam; 
setting t:. :: 0, t:.k « r o, and roz» 1 in (11), we find 

A.(O, z) =[E,G" (0, z) +E,"G,,(O, z) ] (nRan/4z)"'(1 +erf s) e!', 

s={HizlRan) [RpI{4z) 1"'. (18) 

Here erf ~ is the probability integral, while the length 

Rp=2roa'k, 'k,'lk,' (19) 

characterizes the effect of the wave-detuning-induced 
nonuniformity of the parametric-amplification contour. 

For pump intensities Ss» JJ.-2Scr 1> when I ~ I;>;> 1 
for any z and we can use the asymptotic expansion 
erf ~ = 1 - 11- 1/2 ~-le-~2, we arrive at the previous result 
(15), which confirms the existence of the anomalous 
diffraction. 

If Ss < jJ.-2Scr 1, then two diffraction regions are ob­
served. In the first region, 0 < z < Ran, the amplitude 
decreases with distance relatively slowly as (Rp/ Z)l/2, 
while the phase front remains practically plane. This 
zone can be called a region of parametric diffusion of 
the amplitudes of the waves being amplified. Further, 
there develops at z;> Ran an anomalous diffraction in 
which the amplitude decreases more rapidly: ccRan/ z. 
Obviously, only parametric diffusion can occur in a fre­
quency-degenerate amplifier (WI = W2 = ws/2), since 
Ran -00 as JJ. - O. 

In real experiments the pump wave is bounded in 
space. Therefore, it is of interest to consider the dif­
fraction phenomena in, for example, the field of a Gaus­
sian beam made up of the fundamental radiation. Owing 
to the nonuniformity of the amplification factor over the 
cross section, the excited beams undergo the constric­
tion al,2"" as(I'ozrl/2, which is opposed by the diffrac­
tion. As a result, there gets established the equilibrium 
beam radius: 

a.=a,(Scr ,IS,) 'I. (20) 

in the parametric diffusion (Scr 2 < S3 < jJ. -8 Scr 2) and 

a.=a,(Scr ,,,,'IS.) 'I. (21) 

in the anomalous diffraction ( S3;> JJ.- 8 Scr 2), the second 
critical intensity of the pump wave being equal to (cf. 
(14)) 

(22) 

The condition S3» Scr 2 automatically ensures large 
amplification factors over the diffractive-spreading 
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length of the fundamental beam: r 0 %3 » 1, %3 
= ksa~/2. 

Thus, if the radiation at the fundamental frequency 
Ws is a Gaussian beam, then for the observation of the 
new effects arising in the diffraction of the wave being 
amplified, it is necessary that the pump intensity exceed 
Scr 2, (22). In this case if the initial radius of the beams 
being amplified is larger than the radius of the pump 
beam, Le., if al,2;> as, then Scr 1;> Scr2, and the weak 
beams contract to the equilibrium radius; in the opposite 
case, when al,2 < as, Scr 1 < Scr 2 and the beams spread, 
as a result of anomalous diffraction or parametric dif­
fUSion, to the equilibrium radius. 

The diffraction phenomena in a parametric amplifier 
were also studied by us with the aid of the numerical 
solution of the system (1)-(3) reduced to a dimension­
less form (see the Appendix). In the numerical experi­
ments we investigated the propagation of cylindrical 
beams having at the entrance to the nonlinear medium 
plane wave fronts and Gaussian amplitude profiles 

B;(r, 0) =B;(O, 0) exp (-r'la/). (23 ) 

In the series of experiments under discussion in the 
present paper, we studied the interaction of two narrow 
weak beams with a wide fundamental-radiation beam 
(al:: a2"" 1, a~ = 20, and B1,2(0, 0)« Bs(O, 0)) in the 
degenerate (j.L = 0, Al = A2), as well as in the nondegen­
erate (JJ. :: 0.6 and A3 < Al < A2) cases for S3 ~ Scr l' On 
account of the last condition, the beams at first undergo 
the ordinary diffraction described by (12). But since 
the primary requirement S3;> Scr 2 is clearly satisfied, 
the diffraction undergoes Significant changes in the sub­
sequent propagation of the waves. 

In Fig. 1 we show the results of the numerical experi­
ment on the amplification of the subharmonic beams 
(Ss:: Scr 1:: 400Scr 2, %3 :: 2.5, and %1 = % 2:: YI6). 
In the course of the amplification the beams first expand 
by roughly a factor of two and then become stabilized 
(notice that the beam radii would, in a linear medium, 
for which 1'1 = 1'2 = 0, increase by a factor of 16 by the 
time the beams exit from the medium). According to the 
estimate (20), the equilibrium radius is equal to Pe 
= 1.4, which is in good agreement with experiment. It 
can also be seen from Fig. 1 that in parametric ampli­
fication the distortion of the wave front within the 
boundaries of the beam is considerably less than in a 

1;.(;uVl la;.~(}~I/I~a~ __ ..!_t 
(-z 0.8 -

q,O 0.6 

Z.O D.Q J 
0.2 f-Z 

r:)~az o.q 0.6 0.4 /.0~1~( 2 J q 16,. 
1.1 /f-2 /-2 /0 
. I 8 __ .!..-z 

(,0 6 J 

0,5 ~-2 

o o.z 0.. 04 0.8 1.0z 0 I 2 J • 1 6,. 

FIG. 1. Parametric diffusion of the subharmonic beams (/-I = 0, 
BI ,2(r, 0) = IOoSe-r2, and Dil = Dil = 0.25) in a parametrically active 
medium (I'I = 1'2 = 16 and 1'3 = 0) pumped by a high-power wave with 
Blr, 0) = e-r2/20, D:l = 0.5, and S3 = Serl. Shown are the plots of 
the variations with distance of the amplitude IBj(O, z) I on the axis and 
the beam radius p(z), as well as the plots of the profile of the amplitude 
IBj(r, 1) If IBj(O, 1) I and of the phase cJXr, I) at the exit from the medium 
at z = I. The dashed lines show the behavior of the waves during ordi­
nary diffraction in a linear medium (I'I = 'Y2 = 1'3 = 0); the numerals I, 
2, and 3 are the numbers of the waves. 
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'''l 1:~~I)ili!ID,1)1 
J,O 0,$ 

2,0 0,6 J 
1.0 ( 04' f 2 , " "", ,,J " 
r(z)~o,z 0,4, 0.6 0',8 I~,,~,,~, ~ " :; j 5' 
20 Z 10 1 

U 'J 
1,0 1 ~ , 

0.,) Z 

o 0,2 Oil '0:, 0,8 f.~' 0 , ~ J ~ j ;, 

FIG. 2. Anomalous diffraction of the beams (Il *' 0, Dj' = 0.8, D;' 
= 0,2, and B, 2(r, 0) = 1O-ge-2r2) in a parametric amplifier (1, = 24, 
12 = 6, and 1~ = 30) excited by a pump wave with B3(r, 0) = 2e-r2/ 20, 
D:;' = I, and S3 = 0.92Scrl. 

linear medium, as a result of which the angular width of 
the diagram of the radiation of the waves under ampli­
fication decreases. 

In the next experiment (Fig. 2), we investigated the 
amplification of waves with different frequencies (>" 
= 1.25 A3, A2 '" 5A3; S3 '" 0.92Scr 1 '" 1475Scr 2; Rct 1 = 0.1, 
Rct2 = 1'40, and Rct3 = 5). Since the frequencies of the 
waves under amplification differed greatly from each 
other, there distinctly appeared in the experiment an 
anomalous diffraction effect: the first beam with the 
shorter wavelength had at the exit from the medium a 
converging front, while the second beam had a diverging 
front. According to the estimate (20), the equilibrium 
radius of the beams is equal to Pe '" 1.55, which is in 
good agreement with the mean radius found in the ex­
periment. 

3. MUTUAL FOCUSING OF WAVES IN A QUADRATIC 
MEDIUM 

In the regime of high amplification, the amplitudes of 
the initially weak waves can be comparable to the am­
plitude of the fundamental wave, and it is necessary to 
take the exhaustion of the pump wave into account, i.e., 
it is necessary to solve the complete system of equa­
tions (1)-(3) with the right-hand sides (-Yj ~ 0). The 
exact solutions of this system in the geometrical-optics 
approximation (Dj '" 0) are known[21. For example, un­
der the conditions of our experiments, when <I>(r, 0) = 0 
and A,(r, 0) '" A2(r, 0) «A3(r, 0), the intensity of the 
pump wave varies with distance in the following fashion: 

S,(r,;) = S"mi,.+[S,(r, 0) -S"minlsn'{ (l,l,),I'A, (r, O)z; 1- Sa,m •• -.;}, 
S, (r, 0) 

(24) 

where sn is the elliptic sine, the square of which has 
the half-period 

1 161,l,S,(r,0) (25) 
Lh 'I In ()' 2(1,1,) 'A,(r,O) l"S, r,O 

It can be seen that the amplitude oscillates periodically 
between the initial value A3 (r, 0) and the minimum 
value 

". • 2A,' (r, 0) 
A"m', = S.,m', (i-I1'),"A. (r, 0) , (26) 

while the amplitudes of the other two waves vary within 
the limits A,(r, 0) and As(r, 0). 

Thus, in the absence of diffraction, the maximum 
values of all the amplitudes do not exceed the initial 
amplitude of the pump wave, i.e., Aj(r, z) ~ As(r, 0). 
The nonuniform distribution of the intensity over the 
cross section of, for example, a Gaussian beam leads 
to a situation in which the beat period for the peripheral 
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I:~,!)I J 1~~~~')I/IBIO'1i1 
0,8 )! 0,' 
06 0,6 J 

~J. I I I I I' , ~g:i ' , -z 
rlz) l 0,2 0,' 0.0 0,8 f,~1!bl Z J q 5 5" 

6 /\ 10 

• J.-/'~ J 

: t I, I , I , I , II~~, I:::: ~ f-2 
0.2 O' 06 o.B I.o.z 0 f 2 J q 5 6" 

FIG. 3. Strong interaction among the subharmonic- and fundamental­
radiation beams (D-' = D;' = 0.25, D:;' = 0.5; 1, = 12 = 13,13'" 26; 
B,,2(r, 0) = 1O-4e-r\ B3(r, 0) = e-r2 ; S3 = 0.66Scrl)· 

0.,8 

0.,6 

O.q 

0,2 

~ 
1:.~,fJl/lB(O,1)1 

~ o.'Z,L-7--'-~~~~~ 
M 0.,6 0.,8 f.Oz 0. Z J q J 5,. 

'fr, 
0. 

r (z) 41(", Ii J 

l, ',~; 
0. p, Z o.q 0.,6 0..8 1,0. z o.!-'--!-f ~Z!:--'--!:-J ....wqi:-'-.J~-:L5,. 

FIG. 4. Mutual focuSin~ of Gaussian beams without initial divergence 
(Il = 0.6, B"z(r, 0) = I 0-4e- r Z, B3(r, 0) = 2e-r2/ 20, Djl = 0.8, Di' = 0.2, 
and D:;' = I) in a medium with quadratic nonlinearity (r, '" 24, 12 '" 6, 
'Y3 = 30; S3 '" O.nscr!)· 

rays is much longer than for the axial rays. As a result 
of this the beams acquire in the course of the interac­
tion a ring structure, the number of rings in the primary 
beam being equal to the number of intensity minima on 
its axis. 

To study the influence of diffraction on the resonant 
interaction of the beams, we carried out numerical ex­
periments, the results of which are shown in Figs. 3 
and 4. The initial parameters of the waves were chosen 
to be roughly the same as in the first two experiments, 
only the amplitudes were chosen such that an intense 
energy exchange developed inside the nonlinear medium. 

In the degenerate case (Fig. 3) the subharmonic 
beams stabilize at the first stage of the parametric 
amplification in a manner similar to how the correspond­
ing beams stabilized in the first experiment (cf. Fig. 1). 
Further, there begins to form at the center of the pri­
mary beam an intensity dip that, as a result of diffrac­
tion, fills up, as it were, owing to the influx of energy 
from the peripheral part of the beam. As a result of 
this, the minimum amplitude turns out to be consider­
ably larger than in the case when diffraction is 
neglected, and the location of the minimum recedes a 
little (according to the formulas (25) and (26), Ltt = 0.76 
and A3,min(0) = 2 x 10-8 ; cf. Fig. 3). By considering the 
variation of the effective radii with distance, we can 
follow the formation of the ring structure of the beams: 
the radius increases sharply at the place where a new 
ring appears. 

Beyond the point z = 0.9, there is observed in the 
near-axial region a reverse transfer of energy from 
the subharmonic to the pump wave: This is essentially 
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a process of generation of the second harmonic of the 
subharmonic radiation. In such an interaction the wave 
fronts of the beams become, as can be seen from Fig. 3, 
converging near the axis. The beams can be expected to 
focus inside a more extended medium. 

A new phenomenon of mutual focusing of waves in a 
quadratic medium was observed by us in the subsequent 
experiments under certain conditions, including those 
under which harmonic generation occurred with high 
efficiency (the characteristics of mutual focusing in­
volving frequency doubling will be communicated in the 
next paper). It should be especially emphasized that 
mutual focusing occurs in the absence of cubic non­
linearity, Le., without the participation of the self­
focusing mechanisms. 

The mutual focusing of the three beams during a 
nondegenerate interaction is shown in Fig. 4. After the 
anomalous diffraction and the stabilization of the beams 
being amplified (cf. Fig. 2), there develops a strong in­
teraction among all the three beams (the formulas (25) 
and (26) give Lh = 0.43 and A3 min(O) = 1.25 x 10-8 ), 

the spatial beats in the amplitudes being nonperiodic, as 
in the geometrical-optics case, (24). In the course of 
the formation of the annular zones the wave amplitudes 
on the axis begin to, on the average, increase, and at­
tain their maximum values at the nonlinear focus zf 
= 0.9 simultaneously, the beam radii sharply decreasing 
in the process. During the mutual focusing the wave 
fronts of the beams with the higher frequencies W land 
W3 become converging, while the wave fronts of the 
beams with the lower frequency W2 become diverging 
in the near-axial region (cf. Fig. 2). 

It is extremely difficult to analytically compute the 
field at the nonlinear focus, but it can be shown with the 
aid of the integrals (5) and (7) of the motion that it is 
bounded. Let us introduce the following two quantities: 

• 
M(z)= Emax,A,;(r,z), (27) 

m=min; (Dh;). (28) 

By uSing a number of inequalities to estimate the inte­
grals entering into (7), we can derive (see the Appendix) 
fundamental inequalities determining the upper bound of 
the amplitudes at the focus: 

( M') ./, M/, A 
3,-lm/, 6T." .;;1·+T +1.P,(z), (29) 

where q = 1 for one-dimensional beams (.6.1 = a2/ax2), 
q = 2 for cylindrical beams (.6.1 = a2/ar2 + r-la/ar), and 

• 
II = J J EA,/r'-'dr. ,.., 

In a slightly nonlinear medium (X - 0) the ampli­
tudes are restricted to the level 

M.;;Y61, (3'-<[Jm/,) "'. (30) 

If, however, the conditions Is < MIl/3 or 

(31) 

are satisfied, then mutual focusing of the waves devel­
ops in the medium, and the upper bound is raised to 

M.;;Y6/, (21/3m') '/'('-'). (32) 

When a high-power pump beam with a Gaussian profile 
enters the medium, to the threshold condition (31) corre­
sponds the critical intensity (cf. (14) and (22)): 
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S S.n,n.n,'')..' ( a..,' ) ('-<lI' 
cr3~ 8'Q , 1+.-,- , (33) 

a, > ad~ 

where £l03 is the initial divergence and ad 3 = 2/k3a3. 
For S3> Scr 3 we have, according to (32), the upper 
bound 

(34) 

Under the conditions of our experiments the formulas 
(33) and (34) yield Scr 3 = 5.6 X 104 and M < 240 (the 
nonlinear focus is not visible in Fig. 3, since it is 
located beyond the point z = 1) in the degenerate case 
and Scr 1 = 1.2 X 105 and M < 700 in the nondegenerate 
case (in Fig. 4, M = 30). 

To decrease the critical intensity or power, it is 
necessary to reduce the divergence of the pump beam 
and increase its radius. In this case, however, the 
mutual-focusing length zf> Lh(O), (25), increases if the 
power of the beam remains constant. Obviously, there 
exists an optimum radius as ~ (ksL)1/2 for which the 
critical power is a minimum. 

4. COUPLED WAVE GUIDES AND SOLITONS IN A 
QUADRATIC MEDIUM 

The behavior of the waves at large distances z - 00 

depends on the sign of Is. If Is > 0, then after mutual 
focusing (in the process of which several foci can ap­
pear) the field decays into three beams that no longer 
interact and each of which carries a positive integral 

I~~l where 

If, on the other hand, Is < 0, then the beams propagate 
in the form of three coupled, generally-oscillating wave 
guides. Indeed, in the last case it follows from (7) that 
the maxima of the amplitudes are bounded from below: 

max,A.;(r, z»I/,I/I,. (35) 

This implies that self-capture of the beam occurs when 
Is < O. The propagation of the Gaussian beams 

As(r, 0) = Esexp{ - :' (1 + ~~s)_ i<P"} 
in the form of waveguides begins when 

I E 6;Es'.;;E.E,E, cos «1).-(1).), 
J-' 

2q
-

2D ~ ')[( I )' (" )'] 6 s 1 + a..s '\'1 -, + '\'1 a..s 
j = -:r;;;;;- I ads' "-.l II; "-.l a/ad; , J-' i-I 

I I 

(1).= ~ arctg{E~ / Ear'}, 
s_,~;as i_i 

(36) 

from which it is easy to derive the necessary condition 
for the self-capture of the beams: 

(6,6.),"IE,+ (6,6.) '"IE,+(6.6,),'·IE,<cos «1).-(1),,). (37) 

It follows from the last expression that in the case when 
the non-optimal-for energy exchange-phase relation 
cPo = 0 obtains collimated (I.e., £lOj = 0) beams with in­
tensities of the same order of magnitude are more 
easily captured and coupled to form waveguides, the 
diffraction effects being determined by the smallest 
radius. When the interacting beams are identical (Le., 
when aj = a and £lOj = 0) their intensities should exceed 
some critical value 

(38) 

Yu. N. Karamzin and A. P. Sukhorukov 418 



If we change the phase relation such that cos 4>0 < 0, or 
if we make the beams highly convergent (divergent), 
then the coupled waveguides may not go into the regime 
of self -capture. 

The structure of nonoscillating waveguides with am­
plitudes 

Ai=Aw,i(X,y)e-'P", Aw,i= ( D.D.;"li .) "'BW,i (~,!L) (39) 
"I,"!,"!. jaw aw aw 

can be found by solving the boundary-eigenvalue problem 
for the system of equations (f3s = f31 + f32 - A) 

which follows from (1)-(3) when allowance is made for 
(39) and which corresponds to the variational problem 
of the absolute extremum of the functional 

I=I,+~,I",+~,I",. (41) 
The coupled waveguides propagate more slowly than 

waves in a linear medium (f3j > 0, Vw < c/nj), and carry 
with them the power 

SoniA.,lPW'i{ (1-/-1')-', j= 1,2 
a';' 1, j = 3 ' 

(42) 

where PW,j = f J A~ ,jdxwdyw. The asynchronism integral 
then assumes a negative value: 

In the general case the formulated problem of finding 
the amplitude profiles of the waveguides is fairly com­
plicated and requires a separate treatment. Here we 
shall discuss only some waveguide solutions to Eqs. (40). 

If Pj '" Dj /a~ '" ADji (Ds - D1 - D2), then there 
exists a degenerate wave guide with Bw 1 = Bw 2 
= Bw 3. Such a one-dimensional waveguide (q'; 1) has 
~e p~ofile Bw,j = }'2 cosh- 2(x/2aw), and its power is 
Pw = 3. 

For one-dimensional beams the problem is generally 
somewhat simpler, since the Hamiltonian for the func­
tional (41) 

H=r<-'{l: [~; (~~i)'-~i Ai' ]+2A.A,A.} (44) 
,-, 

is an integral of motion of the waveguide equations (40) 
(H = const for q = 1). If we allow for the fact that H = 0 
on account of the conditions Aw,j = 0 for I x I - oX) , and 
that dAw x/dx = 0 for x = 0, then we can relate the am­
plitudes ~n the axis of the beams: 

.t ~i A~,,(O)=2Aw,,(O)Aw.,(O)Aw,'(O). (45) 
i-' 

The numerical solution of the Eqs. (40) with allowance 
for (45) in the degenerate case iJ. = 0, A = 0, P1 = fh, 
Bw 1 = Bw 2 yields B1 2(0) = 2.9, Bs(O) = 1.7, PI 2 '" , 
= 9.6, and P = 2.8. 

Notice, finally, that we can, with the aid of (43), esti­
mate the effective radius of the waveguides. 

5. CONCLUSION 

Thus, the diffractive incoherence of the three-photon 
interactions of bounded beams leads to mutual focusing 
or the propagation of the beams in the form of wave­
guides. In the optical band these phenomena can be ob­
served in non-centrosymmetric crystals. For typical 
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crystals with X = 10-8 cgs esu and L = 5 cm, the critical 
intensity of beams with As = 0.53 X 10-4 cm, iJ. '" 0, and 
as '" 0.1 mm (in this case Rct 3 '" L) is equal to Scr 
== 1 MW/cm2, which is entir~ly attainable in laser ex­
periments. Upon going over to the ultraviolet region of 
the spectrum, the critical intensity decreases sharply 
(Scr ~ A~). The mutual-focusing-induced increase of 
the wave intensity may lead to the breakdown of the 
crystals. 

It is necessary to take similar phenomena into ac­
count in the investigation of stimulated scattering, which 
can be treated as a parametric interaction of primary 
and scattered waves with the motions of the medium, as 
well as in the investigation of four-photon interactions. 

The diffractive incoherence imposes a limitation on 
the efficiency of optical frequency converters. For this 
reason, it is, in particular, impossible to obtain 100% 
efficiency in second-harmonic generators. 

On account of the space-time analogy[5] in the reso­
nant interaction of narrow pulses, there can arise the 
effects of anomalous dispersive spreading, mutual com­
pression of the pulses, and, under certain conditions 
when the phase-asynchronism integral is negative, the 
formation of coupled solitons is possible. The wave­
packet diffusion coefficients in the basic equations (1)­
(3) are then equal to Dj '" Y202kj law} and the Laplacian 
A.L = 02/01 2 • In this case the critical intenSity Scr 
~ SOk~wAsT-4, where T is the pulse length. In contrast 
to the interaction of beams, for which Dj> 0, the dif­
fusion coefficients for pulses can have different signs, 
which can significantly change the nature of the com­
pression of the pulses. 

The resonant interaction of pulses in a nonlinear dis­
persive medium is of interest for acoustics, hydrody­
namics, and plasma physics; the detailed investigation 
of such interactions merits a separate analysis. 

APPENDIX 

1. Formulation of the numerical experiments. To 
carry out the numerical experiments, the system of dif­
ferential equations (1)-(3) was reduced to a dimension­
less form. The longitudinal coordinate z was normal­
ized to the thickness L of the nonlinear medium, i.e., 
we set Z = z/L; the transverse radius vector-to the 
characteristic beam dimension: (x, y) = (x/a, y/a); the 
field amplitudes-to the characteristic value of the pump­
wave amplitude: Bj = Aj /Eo• The coefficients entering 
into the equations then become equal to the following 
quantities: Dj = L/2kja& and Yj = rjEoL . 

In the numerical solution the system (1)-(3) was ap­
proximated by implicit and symmetric conservative 
difference schemes, i.e., schemes for which the differ­
ence analogues of the relations (4) and (5) are realiza­
ble on the net (see[8]). To find the solution in a new z 
layer, we used the method of successive approximations 
and difference trial runs. 

Equations (1)-(3) were solved inside a cylinder, 
r < R. The radius of the cylinder was chosen to be suf­
ficiently large, so that the influence of the lateral 
boundary was negligible. The wave amplitudes at the 
lateral surface r = R were set equal to zero, i.e., 
Bj(O, z) = O. 

In the numerical experiments we followed the modi­
fication of the wave fronts and the intensity profiles of 
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Gaussian beams interacting in a nonlinear medium (the 
results are presented in the form of graphs). The beam 
radius p( z) was determined from the relation I B(p, z) I 
= Y21 B(O, z)l. 

2. Derivation of the fundamental inequality. From the 
phase-asynchronism integral (7) follows the obvious in­
equality 

• a mJJ E (V J.A'J)'dzdll<.I. +-P.(z) 
J-' 'r. (A.1) 

+21 J J A"A"A" cos q, dz dy 1 ' 
where m is given by the formula (28). Notice further 
that 

1 SJAOlA,.Aoacos q, dzdy 1 <.MI,/6, (A.2) 

where M is given by the formula (27), Let us now trans­
form the left-hand Side of (A.1). 

In the case of the interaction of two-dimensional 
waves (one-dimensional beams) we can use the Cauchy­
Bunyakovskii inequalities 

f2:' (8A,!), 2:' m,ax. A/ M' - dz;;" ---<.--. ,.ax 4Pj 1081, ,-, 
(A.3) 

For axially symmetric beams we have . 

• 8A' l' M" J.E ( arOi ) rdr;;"2",2: A,s'(O'Z)<'6"' (A.4) 
i_I )_l 

Here we have assumed that 
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which is valid for beams with bell-shaped amplitude 
profiles. It is precisely such a profile that is observed 
for beams in the region of their mutual focusing. 

Substituting (A.2)- (A.4) into (A.1), we arrive at the 
fundamental inequality (29). 
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