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Amplification in a -y laser under Bragg diffraction conditions is considered. It is shown that the largest gain 
can be attained in crystals consisting of excited isotopes with maximum multi polarity and minimum 
nuclear-transition energy. 

As is well known from the dynamic theory of x-ray 
scattering, when the Bragg conditions are satisfied for 
electromagnetic waves propagating in an ideal crystal, 
an abrupt decrease takes place in their absorption co­
efficient. The possibility of using this effect in a y laser 
was discussed in a recent article by Kagan [lJ, who 
analyzed qualitatively the transitions E 1, Ml, and E2. 
From quantitative estimates presented in this paper for 
the characteristic parameters of the problem in question, 
it follows that the use of anomalous passage of y rays is 
more effective for crystals containing nuclei with tran­
sitions of multipolarity M2, E3, and higher, i.e., for 
long-lived nuclear isomers, and that the use of C1 polar­
ization is not necessary. 

1. THE GAIN 

We consider the process of evolution of a y wave in 
an ideal crystal, in which some of the nuclei are in the 
excited state. The equation describing the interaction of 
a monochromatic y wave with a crystal is of the form 

4ntro 
~E(r)+x'E(r)=---j(r), (1) 

c' 

where K = w/c. 
Owing to Bragg diffraction, a state with definite 

y-quantum energy corresponds to a coherent super­
position of two plane waves with wave vectors that differ 
by the reciprocal-lattice vector (1C1 = 1C0 + K) 

E(r)=E,(r) exp (ix,r)+E,(r) exp (ix,r), (2) 

where Ei(r) are slowly varying amplitudes. 

Substituting expression (2) in Eq. (1) averaging it over 
a volume « ... ») whose linear dimensions are much lar­
ger than the distance between the nuclei and much smaller 
than the characteristic amplification length, we obtain 
the following system for the field amplitudes: 

oE,(r)los=-(2;(e,ilexP(-iX,r) ), 

(3) 

where the coordinate ~ is directed along no = 1C0iK and 
the coordinate 1) is directed along n1 = IC 11K. To obtain 
the system (3) we have, as usual, neglected the second 
derivatives of the slowly-varying amplitudes. 

The current density j(r) in (1) is the current operator 
averaged over the quantum-mechanical state and over 
the statistical thermal motion of the nuclei in the lattice. 
We shall carry out only the first averaging, assuming the 
nuclei to be immobile. The influence of the nuclear 
vibrations will be taken into account in the final state. 
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To find the nuclear part of the current density, we 
first obtained the current of one nucleus j = Tr(pf). The 
Hamiltonian of the interaction of the nucleus with the 
electromagnetic field can be written in the form 

A i SA J'6 in! = -;; j-E(r, t)dV+ h.c. 

where r is the negative-frequency part of the current 
density operator. The equation of motion for the density 
matrix in the interaction representation then takes the 
form [2J 

Z"1i 8<1,m,lpl/,m,> ( ) t J IA I at p,-p, -;;;- (I,m, j- l,m,>E(r) 

E r ] m<I,m.lpl/,m,> 
Xexp -iCilt+h(E,-E,)t dV- T 

where Pa = (JamaIPIJama)' a = 1,2, and liT is the 
width of the Mossbauer-emission line. 

Using the stationary solution of this equation in place 
of exact resonance (liw = E2 - E 1), we obtain the following 
expression for the current density 

. ( )- s { T(p,-p,) ~ E ( ) Jnr- p -~~ ,r 
i_O 

y J exp(ix,r') <I,m,lj-(r') I/,m,) dV'<I,mJj+(r) I I,m,) }. 

Substituting the last expression in the right-hand side of 
the system (3), we obtain 

(4) 

where 

i, j=O, 1. 

The summation over k is carried out over the resonant 
nuclei in the unit cell (its volume is n)o To separate the 
explicit dependence on the multipolarity of the nuclear 
transition, we expand the operators hlC) and hlC) in 
spherical vectors: 

:-..( )_ ~ A+("y(" ( ) J x - ~CJm 1m ~ • 

After substituting this expansion into the coefficients 
aaj' the latter take the form 

f E T(Pa-P,) I IA-("I la ( ) a'l- - <I, Cn I') P<I 'J..J , 
4c IiCil 

• 
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(5) 

(6) 
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Ei i 
Mi cos 'Pi; 
E2 cos 'Pi; 
M2 cos2'P;; 
E3 '/. (Seos 2'PU + 3) 

Note: 'Pi; =- (";"1)' 

1
M3 
E4 
M4 
M5 

'/,. (15 cos 3'Pi; + cOS'Pij) 
'/11 (7 cos 3'P!i + 9cos 'PU) 
'/. (7 cos 4'Pil + cos 2'Pi;) 
'/I .. (105 cos 5 'Pij + 21 cos3'P;j + cos 'Pi;) 

The coefficients Pij (AJ) for transitions with different 
multipolarity are listed in the table for the case of (J 

polarization. 

For 1T polarization, as expected, the following change 
takes place: 

" 

p.~') (MI) =pt") (EI) , p:,') (EI) =p,~") (MI). (7) 

We write down the electronic part of the current in the 
form 

2. INVESTIGATION OF THE CHARACTER OF 
DEVELOPMENT OF THE 'Y WAVE 

As follows from the form of the system (11), the first 
two terms in the right-hand side of (12) determine 
respectively the gain (/loll = ao/Y) and the damping 
(/lOe = 21TKlxOiI/Y) of the y wave far from the region 
where the Bragg conditions are satisfied. To simplify 
(12), we assume that these two parameters are of the 
same order of magnitude, Le., aoo ~ 21TK IXOiI. 

On the other hand, for frequencies w that are not too 
close to the absorption boundary on the K or L shell, the 
follOWing inequality holds: 

(13) 

Since IXOiI ~ Ix lil, it follows that in addition to the in­
equality (13) there are satisfied the conditions 

(14) 

i.=-i&lx(r)E, (8) inasmuch as aOl ~ aoo. 

where X (r) is the complex polarizability averaged in the 
sense indicated above. Substituting (8) in the right-hand 
side of the system (3), we obtain 

( 2n. .) \'"1 - -c-(e.].) exp (-nc,r) = ,,-,~,;EJ (9) , 
where 

i2nxG S 
~'J= ~ x(r.)exp[i(x,-x,)r]dV, 

{ 
1 for a polarization 

G= 
cos <p" for rr polarization 

We assume that the amplitudes Ei(r) are given by 

E,(r) =E, exp (knr) , (10) 

where 

n= (n,+n.)/ I n,+n. I. 

Then, taking (4), (9), and (10) into account, the system 
(3) takes the form 

klE,=g,.E,+g"E., 

klE,=g • .E,+guE .. 

where gij = aij + J3ij' and y = cos(ni' n). 

(11) 

From the condition that the system (11) have a solu­
tion, we obtain the following quadratic equation for the 
coefficients k: 

The real part of k determines the character (amplifi­
cation or damping) of the development of the y wave. We 
call it, for the sake of argument, the gain: 

/1=Rek=l-l (1);00-2nx I x,,j) ±1-lRe[a:,,'-4n'x' Ix., I'G' 
+4n'x' I x .. I'G'+4nxa:" I x .. I Gcos ~ 

-4inx Ix .. IG(a:"cos a:+2nx Ix .. 1 Gcos (a:-~)) ]"'. 

where we have introduced the notation [3J : 

Xo< = 1m ~ J x(r)dV, 
g 

x.=lx.,le'"+ilx"le'~= ~ J x(r)e'I<'dV, 
g 

x-.=lx"le-i"+ilx"le-'P = ~ f x(r)e-"" dV. 
g 
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(12) 

Taking the conditions (13) and (14) into account, we 
can obtain the following approximate expression for the 
gain: 

( a:" ) ( IXlil ) /1=/1,. 1-- -/1,. 1--/ -IIGI . 
aoo ;(01 

Taking the nuclear oscillations into account, this formula 
becomes 

= (1-=)- (l-~ICI -Z(K') f1 !10l< aoo !-lot' Ixo;! e ! 
(15) 

where Z(K) is the Debye-Waller factor. 

Thus, the absorption due to inelastic interactions of 
y quanta with electrons (mainly the photoeffect-for y 
quanta of energy on the order of hundreds of keY) is 
described by the same term as in the dynamic theory, 
i.e., when the Bragg conditions are satisfied, the absorp­
tion coefficient decreases by approximately two orders 
of magnitude in comparison with its value far from these 
conditions. Let us estimate the change of the gain for 
interactions of different multipolarities. We assume the 
linear dimensions of the unit cell to be a = 3.5 A, and 
then for y quanta of wavelength A = 0.3 A (E = 40 keY), 
the Bragg-diffraction angle is cp = A/a = 0.086. Substitut­
ing this value into the formulas for the coefficients 
Pij (AJ), we obtain the following dependences of 

/lOn //l~(J) on the multipolarity of the transition, where 

/If) = /lOn(l- a~~)/aoJ is the true gain at the nuclei 
when the Bragg conditions are satisfied: 

'AI: MI, £2 M2 
!'cmll'-(;): 300 70 

E3 

100 
M3 

30 

E4 
60 

M4 

20 

M5 
10 

We see therefore that the use of the anomalous passage 
in the case of (J polarization is the most effective for 
transitions of multipolarity M3, M4, and M5. On the 
other hand, for the electric multipole transitions it is 
more convenient to use 1T polarization, inasmuch as in 
view of tbe smallness of the diffraction angles the coeffi­
cient C(1T) = cos cp is close to unity, i.e., the increase of 
the y-ray absorption due to the fact that the electric 
field intensity at the corners of the crystal lattice is now 
different from zero is completely overlapped by the in­
crease of the gain. 

Let us consider the paired Bragg states of the y 
quanta in the case when K is not the prinCipal reciprocal-
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lattice vector Ko, but is its multiple, K = n1Ko1 + n2Ko2 
+ ns Kos, and let us attempt to find the optimal ratio 
K/Ko at which the gain M assumes a maximum value. 
For simplicity we confine ourselves to transitions of 
multipolarity M3. 

When the condition Z(K) ~ 1 is satisfied, formula 
(15) for the gain takes the form 

J.!=J.!.{!.5[~ (_l!.)'_3(K)'+-.!. (K)·]_K'(~+fJ)}. 
16 2 x x 2 x 4Mko8 D 

(16) 

where Mo ~ M On ~ MOe' M is the mass of the nucleus, 
ko is Boltzmann's constant, 9D is the Debye temperature 
and 

1 ( Ix,,1 ) 1 S . "-{; = K' 1-1x,J ""2x,,-' x,(r)r-cos'(Kr)dV. 

In the derivation of (16) we used the approximate 
formula for the Debye-Waller factor at T ~ aD' A 
simple calculation shows that the maximum value of (16) 
is reached at 

K x 6 _ a'-
-""-'1/=-'1/. (17) 
K, K. x 

where f is the Mossbauer-effect probability. We note 
that the last formula is valid when f does not differ 
strongly from unity. Substituting in (17) the values of 
the characteristic parameters employed by us, we obtain 
K/Ko = 5. Taking into account the approximate character 
of our calculations, we can state that the use of paired 
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Bragg states of y quanta with multiple reciprocal-lattice 
vectors is effective at K = (2-5)Ko. 

CONCLUSION 

The considered singularities of the gain in a y laser 
under Bragg-diffraction conditions enable us to estimate 
in greater detail the effectiveness of utilization of the 
anomalous passage of y rays. The results indicate that 
the largest gain is reached in crystals consisting of ex­
cited isotopes, with largest multipolarity and with small­
est nuclear-transition energy. In view of the smallness 
of the diffraction angles, the use of the a polarization is 
not necessary. For electric multipole transitions, the 
use of 1f polarization is more effectiveo The possibility 
of using paired Bragg states of y quanta with multiple 
reciprocal-lattice vectors is determined in a wide inter­
val of values of the y-quantum energy by the condition of 
smallness of the Debye-Waller factor Z(K). 
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