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Asymptotic relations for the total and differential cross sections for the reactions A B--+ CD and C B--+ AD 
are derived by the same method by representing the amplitudes fp, A (s; t) of these reactions for a fixed t:;; 0 
in the form of a complex, simple-layer potential. Different modifications of these relations, including the 
integral forms of the Pomeranchuk theorem, are given. An asymptotic representation for the amplitude 
phase shifts ljip.A(S; t) at high energies is derived on the basis of analyticity and crossing-symmetry 
considerations [the formulas (57) and (58)], It follows directly from these relations that a sufficient, but 
by no means necessary, condition for the asymptotic equality of the differential cross sections consists in 
the condition that 1/JP,A (s; t) = o(lns). The most complicated case when the amplitudes fp,A (s; t) have an 
infinite number of real zeros is considered for the first time. 

1. INTRODUCTION 

Pomeranchuk's assertion of the asymptotic equality 
of the total cross sections of cross-reactions at high 
energies-the Pomeranchuk theorem (PT)-did not at 
one time give rise to doubt. The argument by the author 
of the theorem[l] showing that the total cross section 
must eventually assume a constant value, and the dif
fraction picture in which the real part of the amplitude 
dies out in comparison with the imaginary part, seemed 
convincing. The primary attention at the time was 
given to the improvement of the mathematical proofs. 
From the purely mathematical point of view, the PT is 
a theorem on the connection between the behavior of the 
imaginary and real parts of an analytic function in the 
vicinity of a boundary point. The theorem has a local 
character, and the conditions are important only in the 
neighborhood of the point under consideration, Le., in 
the case of the PT, only in the neighborhood of the 
point at infinity. 

The present author used in[2,3] a new-to these prob
lems-mathematical technique: to wit, the generalized 
Phragmen-Lindelof principle and some theorems on the 
behavior of a function at the boundary of a region. In 
such an approach, the PT appears as if it were a simple 
physical interpretation of general mathematical 
theorems, and the role of crOSSing symmetry is espec
ially clear. InP ] the PT was proved for different 
regimes of behavior of the difference ~()'tot( E) between 
the total cross sections for E - 00. 

Gradually, however, the physics underlying the PT 
began to be called in question. In particular, such a 
critical analysis was carried out in Eden's paper[4]. 
Martin[S] has considered the following limitation on the 
difference between the amplitudes of cross- reactions: 
fp( E) - fA( E) = o( E in E). It is important, in the light 
of the new experimental data, that the theorem be valid 
under the less rigid restriction: Re [fp( E) - fA( E)l 
= o( E in E). Simple examples show that this restriction 
cannot be relaxed. 

The second condition contained in the PT, to wit, the 
existence of a limit for ~()'tot ( E) as E - oX> , has an 
extremely unpleasant character. No theoretical argu
ments supporting it exist, and its experimental verifica
tion is incomparably more difficult than the verification 
of the theorem itself. Fortunately, this condition can be 

394 Soy. Phys.-JETP. Vol. 41. No.3 

replaced by another, significantly simpler and cruder 
condition: ~()'tod E), beginning at some energy, must not 
change its sign. Weinberg[6] proved the PT under this 

condition and the restriction that I fp ,A( E) I < const . E. 
In the present paper we demonstrate by a more direct 
method and in more exact terms that we can restrict 
ourselves to the above-indicated requirement that 
Re [fp( E) - fA( E) 1 = o( E In E). 

The replacement of the requirement that ~()'tot( E) 
should have a limit by the requirement that this differ
ence should preserve its sign is extremely important 
because in all the experimental data, without exception, 
~atot{E) changes its sign only at low energies. Unfor
tunately, this experimental fact has still not been ex
plained. 

In general, the situation with the PT has lost its 
former definiteness, since the only firmly established 
limitation on the amplitudes is the Froissart-Martin 
limit 

IIp, A(E) I <const·In' E. (1 ) 

For differential cross sections, the PT was first 
proved for certain models by Van-Hove[7] and Logunov 
et al.[8]. In reality, however, the only difference be
tween the proof of the PT for differential cross sections 
and the proof for total cross sections consists in the 
use of the auxiliary function H_ (E) (see the formula 
(32) below) in place of the function g.( E) (see the 
formula (8)). This was performed by the present author 
in[9]. It was proved at the same time that if the ampli
tude-phase difference grows more slowly than the 
logarithm of the energy, then the limit of the ratio of 
the differential cross sections, if it exists, is equal to 
unity. 

Certain difficulties arise when the amplitudes have 
an infinite number of zeros. One of such difficulties was 
recently resolved by Cornille and Martin[lO]. In the 
present paper, a general representation for the phases 
of the amplitudes of cross-reactions is obtained (see 
(57)). Finally, amplitudes with an infinite number of 
real zeros are considered for the first time. 

Judging from the experimental data, the logarithm 
of the ratio of the differential cross sections for a fixed 
t also changes sign only at comparatively low energies. 
Therefore, it is quite essential that it be also possible in 
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the PT for differential cross sections to replace the re
quirement that the ratio of the cross sections should 
have a limit by the requirement that the logarithm of 
this ratio should, starting from some value of the en
ergy, preserve its sign. 

In the paper we introduce and widely use the concept 
of a "limit in full measure," without which it is impos
sible to, for example, investigate amplitudes with an 
infinite number of real zeros. However, readers who 
are not interested in subtleties of this sort can assume 
that we are dealing with an ordinary limit. 

2. THE MATHEMATICAL BASIS OF THEOREMS LIKE 
THEPOMERANCHUKTHEOREM 

Like f( z) = u( z) + iv( z) be a function that is analytic 
in the upper half-plane 1m z > 0 and that satisfies the 
once-subtracted dispersion relation (DR): 

f(Z)-f(Z')=~S (-, 1 __ ~) v(z')dz'. (2) 
1t z -z z -Zo 

An integral sign without limits denotes integration along 
the entire axis. Let us transform (2) into the form of the 
complex potential of a simple layer: 

1 S z'-z, dv(z') , 
/(z)-/(z,)=- In-,---,-dz. 

n z -z dz 
(3 ) 

The charge density (211 r1 dv (z')/ dz' is, generally speak
ing, a generalized function. If at the point z~ the func
tion v( z') has different limits from the left and from 
the right, then dv( z')/ dz' contains the term ~ v( ~~ ) 0 ( z' 
- z~), where ~v(z~) = v(z~ + 0) - v(z~ - 0), and in the 
complex vicinity of the point zb, 

f(z)-~Llv(z")ln-1-" Re/(z)-~Llv(zo')ln-I _1_'-1' (4) 
tt Z-Zo Jt %-Zo 

The relations (4) are results of the integral repre
sentations (2) and (3); therefore, the requirement that 
the limits v( z~ '!= 0) should exist can be relaxed some
what: to wit, we can introduce the concept of a "limit 
in full measure" (denoted by "Lim" instead of the con
ventional "lim"), when the independent variable lets 
out, as it approaches z~, the values of a set of zero 
density at the point z~. The exact definition and the 
necessary properties are given in the Appendix I. 

Let us consider the case when at least one of the 
limits Lim v ( z~ '!= 0) does not exist. Let us denote by 
H_ and H. the limiting sets of the function v(z') for z' 
- z~ - 0 and z~ + 0 respectively. Let us assume that H_ 
and H. are separated by an interval of length 21'). Then 
the estimate (A.3) yields the result that for any € > 0 in 
a sufficiently small complex vicinity of the point z~ 

2'1(1-8) I z,-z; I IRe[j(z)-/(z,)]I>---ln --, . 
1t Z-Zo 

(5) 

If the limiting sets H_ and H. have a point 0 in com
mon, but lie on different sides of it, then there are two 
possibilities: either the Lim v( z) = 0 exists at the point 
z~, or Re f( z) increases in the complex vicinity of the 
point z' like in I z - z~ 1- 1. In fact, if the Lim v( z') for 
z' - z~ does not exist, then this implies the existence 
of a set M with a positive density d( M I z~) and such 
1') > 0 that the values of v( z') in the set M lie outSide 
the interval (0 - 1/ , Q: + fJ), and the estimate (A.3) is 
valid. 

On account of the generalized maximum principle, 
the order of the growth in the complex vicinity of the 
point z~ as z - z~ is not higher than the order of the 
growth in the real vicinity; therefore, in the real 
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vicinity of the point z~ asymptotic equalities of the type 
f( z) ~ In I z - z~ I are replaced by assertions that f( z') 
increases at least like Inl z' - Z~I-1. 

The point z~ was assumed to be finite and real. The 
transformation ?: = -( z - z~ r 1 transforms the half
plane 1m z> 0 into the half-plane 1m ?: > 0 and the 
point z~ into the point?: = 00. The quantities v(z~ ± 0) 
then go over into v( '!=""), while In I z - z~ I for z - z~ 
goes over into In I?: I for?: - "". The relations (4), for 
example, go over into the relations 

v(-oo)-v(+oo) v(-oo)-v(+oo) 
Re/(z)- :; lnlzl, f(z)- ~ lnz. (6) 

The formula (6) should be understood in the wider 
sense, i.e., in the sense that the growth of Re f( z) in 
the vicinity of z = 00 is stronger than the growth of the 
difference v( -z') - v( z') as z' - + 00 by the factor 
Inlzl. For example, for v(-z')-v(z')~ Invlz' I we 
have 

3. TOTAL CROSS SECTIONS FOR CROSS-REACTIONS 

The PT and its various refinements for the total 
cross sections for cross-reactions between spinless 
particles 

AB ..... AB, ;fB ..... jfB (7) 

are obtainable at once from the general properties de
scribed in Sec. 2. For this purpose, it is sufficient to 
apply them to the auxiliary function 

(8) 

where fpC E) and fAt E) are the amplitudes of the direct 
and cross reactions (7) in the laboratory system of 
coordinates, while IJ. and M are the masses of the parti
cles A and B respectively. 

Let us recall that in the framework of any formula
tion of the local theory, as, for example, the conven
tional formulation that admits of only generalized func
tions of moderate growth, as well as the more general 
Jaffe formulation Ell ] and the most general formulation 
of the local nature of the theory by the present author 
inE12], the amplitudes feE) are, up to Single-particle 
poles, analytic in a plane with the branch cuts (- "", 
-IJ.] and [IJ., +""), with the exception, perhaps, of some 
finite region. Furthermore, the amplitudes are bounded 
from above by the Martin-Froissart limitE1], and satisfy 
twice-subtracted dispersion relations. 

We shall always assume that the amplitudes fp A (E) 
are analytic in the upper half-plane, since if the fp ,A( E) 
were not analytic on some half-disk I E I < a, then they 
would, when expressed in terms of the variable E = E 
+ a 2E-\ be analytic in the half-plane 1m E > O. 

Notice that the requirement that the amplitudes 
fp A (E) be localized is essentially equivalent to the 
requirement that the generalized Phragmen-Lindelof 
maximum principle be applicable in the upper half
plane, since both imply that the fp A(E) grow at com
plex infinity more slowly than any hnear exponential. 
The crOSSing-symmetry relation is, as shown in[91, 
most conveniently written in the forIl) 

(9) 

Besides, it is sufficient to verify that (9) is satisfied 
along the imaginary axis. The amplitudes are normal
ized such that the total cross sections 
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OP .• .(E) =Im jP. A(E)lk. (10) 

The auxiliary function g_ (E) is analytic in the upper 
half-plane, satisfies a once-subtracted dispersion rela
tion, and possesses crossing symmetry: g_ ( -E·) 
= g~ (E). The function 1m g_ ( E') is odd along the real 
axis, and for E' > iJ. we have 1m g_(E') = .lO'tot(E'). 

Applying the results of Sec. 2 to g_ (E), with 1m g_( E) 
playing a role similar to that of v( z), we obtain: 

1) if for E' - +00 

Re g_ (E') =0 (In E') 

and the total-cross section difference .lO'tot( E') has a 
limit in full measure (the value 00 is not a priori ex
cluded), then this limit is equal to zero; 

2) if Re g_( E') = o( in E') and .lO'tod E'), starting 
from some energy value, does not change sign, then the 
Lim .lcrtot(E') exists and is equal to zero. 

If the c(,ndition Re g_( E') = o( in E') in 1) is replaced 
by the condition Re g_( E') -' C in I E' I, then it follows 
from (6) that the Lim .lO'tot(E') = -C1I'/2. 

The introduction of the symmetric combination of the 
amplitudes 

g+ (E) =i[jp(E) +jA(E) Ilk 

enables us to derive the following properties: 

la) if for E' - +"", 

1m [jp(E') +j .. (E') I =@(E'lnE') 

and the Lim Re [fp( E') + fA( E' Wk exists, then this 
limit is equal to zero; 

(11) 

2a) if the first of the conditions in la) is fulfilled and, 
starting from some energy, Re[fp(E') +fA(E')l does 
not change sign, then the Lim Re [fp( E') + fA( E' Wk 
exists and is equal to zero. 

It is useful to consider the simplest case when the 
amplitude behaves so regularly in the upper neighbor
hood of the point at infinity that its asymptotic form is 
described in the entire half-plane by an analytic formula. 
It follows from the existence of the Froissart-Martin 
limit that under this assumption 

fp .. ~E) _ j [ap.A(v)+ibp.A(v)llnv(-iE)dv. (12) 
o 

The functions a( v) and b( v) may contain a-function 
terms as well (but not a'). The crossing-symmetry 
condition is equivalent to the requirement that the func
tions f p A ( E' )/k assume on the imaginary axis values 
that are symmetric with respect to the imaginary axis; 
therefore, it is convenient to introduce the coefficients 
a( v) and b( v) according to the formulas 

aA(v) =-ap(v) =-a(v), bA(v) =bp(v) =b(v); 

a(v)=b(v)=O for v>2. 
(13 ) 

It follows from this that as E - + "" 
, 

8o'o,(E)--lt J va(v)lnv-'IEldv, (14) . 

It follows from (14) that the PT is true if a( v) = 0 
for v> 1 and does not contain the term O(v - 1). In 
particular, the PT can also be fulfilled when the cross 
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sections grow at the maximum rate in proportion to 
InllE. In this case b(v) contains the term O(v - 2) and, 
according to (15), 

(16) 

4. THE INTEGRAL FORM OF THE POMERANCHUK 
THEOREM 

Let us assume that there exists a finite limit g_ ( i"" ) 
for the function g_ (E) as E - "" along the imaginary 
axis. Since g_ ( E) satisfies a once-subtracted disper
sion relation, we have 1) 

1 dE' 
g-(E)-g_(ioo)=-;-J 8o'o,(E') E'-P' (17) 

It follows from the odd parity of a O'tot ( E') and the 
equality g_ ( 0) = 0 that 

Because of the crOSSing symmetry, the limit 
g_( ioo) is a real quantity. The existence of the limit 
g_( i"") and the equality g_( ioo ) = Lim Re g_( E') for 

(18 ) 

E' - +"" clearly follow, if the latter limit exists, from 
the representation of Re g_( E) in the upper half-plane 
in the form of the Poisson-Lebesgue integral: 

1 J 1m EdE' , 
Reg_(E)=-;- IE'_EI,Reg_(E) (19 ) 

If, as was assumed earlier, the real part of the am
plitude dies out as E - +"", Le., if the Lim Re g_( E') 

= 0, then 

~J~ 8o,o,(E') dE'=O 
It E' . 

" 
(20) 

Applying the Cauchy formula to g_ (E)/k, we obtain 

! j 8o,o,(E') (E'~:~')'I' +g_(ioo)+ jp(!');t(!') - !"c~:", (21) 

" 
where c and d are the residues of the amplitude fp( E) 
at the Single-particle poles ±Eo = iJ.ll/2M. 

The function 

g_ .• (E) =g_(E)/ln (-ik) (22) 

tends to zero as E - i"" if g_( iE) increases more 
slow ly than in I E I as E - +.Xl. This, for example, is 
necessarily true when 

LimReg_ .• (E)=O for E-±oo. (23) 

Calculations similar to those carried out above show 
that from the vanishing of the limit g_, 1( i"") follows the 
conditional convergence of the integral 

(24) 

For E - +"", 
1m _ (E)- 8o'o.(E) +..::. Re g_ .• (E) 

g., InE 2 In'E 
(25) 

and, therefore, if we strengthen somewhat the condition 
(23), to wit, if we assume the conditional convergence of 
the integral 

JM Re g- .• (E') E' 
(E"-!,') 'I. In E' d • 

" 
(26) 

then from (24) will follow the conditional convergence 
of the integral 
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5. THE DIFFERENTIAL CROSS SECTIONS 

The asymptotic relations for the differential cross 
sections of the two cross-reactions 

AB-+CD, CB-+AD (28) 

of spinless particles can, as in the case of the total 
cross sections, be obtained from the crossing symmetry 
and the general properties considered in Sec. 2. Let s, 
u, and t be the Mandelstam variables and let the square 
of the momentum transfer t:s O. We denote the sym
metrized variable (s - u)/~Mi by E and the reaction 
amplitudes by fp,A( E; t). We shall drop the indices P, 
A, and the fixed value t if this will not lead to any con
fusion. The variable E has been introduced because the 
crossing-symmetry relation can be written in terms of 
this variable in the form 

fA(E; t)=fp'(-E'; t). (29) 

This form retains its meaning also at those t when the 
gap between the cuts vanishes. 

Let us, for brevity, introduce the special deSignation 
Q2( E; t) for the ratio of the differential cross sections: 

Q'(E,t)=dop(E;t) jdOA(E;t). (30) 
, dt dt 

Let us recall that 

Q'(E; t)=Ife(E; t)lfA(E; t) 1', 
Let us introduce the auxiliary function 

H_(E; t)=iln (fp(E; t)/f,..(E; t)l, 

(31) 

(32) 

If the ratio of the amplitudes does not have in the 
upper half-plane 1m E > 0 zeros and poles at the given 
t, then H_( E; t) is an analytic function in this half -plane. 
On the imaginary axis H_( E) is real and, therefore, 
crossingwise symmetric: 

H_(-E') =H_'(E) , 

On the positive semiaxis, 

(33) 

H_(E) = [1jlA (E; t)-ljlp(E; t)J+ilnQ(E; t), (34) 

where iJip A ( E; t) are the phases of the amplitudes 
fp,A(E; ti. Since fp(E; t) in the local theory is poly
nomially bounded, H_ (E) increases not faster than 
Inl EI· 

It can be seen from (33) and (34) that H_(E; t) plays 
in the derivation of the asymptotic value of the ratio 
Q2(E; t) the role that g_(E) played for Aatot(E). So, the 
following properties obtain: 

I. If the ratio Q2(E; t) of the total cross sections 
possesses a limit in full measure for E - + "" (the 
values 0 and oX> are not excluded) and the amplitude
phase difference iJip( E) - iJiA( E) = o( In E), then 

LimQ'(E; t)=1. (35) 

In the elastic case, on account of the unitarity condition 
1m fp,A?: 0, the phase shift iJiP,A(E; t = 0) does not 
exceed Tf, and the condition on the growth of the phases 
is clearly fulfilled. 

la. If the ratio of the differential cross sections for 
elastic cross-reactions possesses a limit in full meas
ure for E - + "", then this limit is equal to unity. 

II. If, starting from some energy value, the differen
tial cross section for one of the reactions (28) is not 
less than the differential cross section of the cross
reaction and iJip( E) - iJiA( E) = o( In E), then the ratio 
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of the differential cross sections has a limit in full 
measure and this limit is equal to unity. 

III. If the limit in full measure of the ratio Q2( E; t) 
exists when t - +"" and this limit is equal to y2, then 

I ' 1 L' ljlp(E)-1jl ... (E) (36) 
n '1 = -;- 1m In E 

(this follows from the general relation (6)). This also 
proves the existence of the Lim [iJip( E) - iJi A ( E))/ In E. 
The equality y = 00 or y = 0 implies that the limit from 
the right is equal to co or - 00 • 

The assumption that the amplitudes fp A(E; t) have 
no zeros or poles in the region 1m E > 0 is not realistic, 
but the presence of a finite number of zeros and poles 
does not affect the obtained results, since we can, with 
the aid of the method indicated at the beginning of Sec. 
3, exclude from conSideration the region I E I :s a in 
which all the zeros and poles are located. 

The auxiliary function 

H+(E; t)=!n [fp(E; t)f-dE; t)l/In (-iE) (37) 

plays a role similar to that played by g+ (E). The func
tion H+( E) possesses crOSSing symmetry and for 
E _+oX> 

H (E' t) _ Inlfp(E; t)f .. (E; t) I l'l ",p+1jl .. 

+ , InlEI 21n'IEI 

+' (ljlp+ljl .. +ltlnlfp(E; t)f,..(E; t) I) . 
I InlEI 21n'IEI 

(38) 

Since the ratio In I fp( E; t) fA (E; t) I/in I E I is bounded, 
from (38) follows the result: 

IV. If for E - +"" the Lim [iJip( E; t) + iJiA( E; t))/ln IE I 
exists, then this limit is equal to zero. 

From I and IV follows the property: 

V. A necessary and sufficient condition for the 
equality Lim Q2 (E; t) = 1 to hold consists in the limita
tion on the growth of the phases: iJiP,A(E; t) = o(ln E). 

Let us recall that the assertions I-IV have been ob
tained under the assumption that the amplitudes 
fp,A(E; t) have a finite number of zeros. 

We omit the proof of the conditional convergence of 
the integrals 

I d:" In Q' (E'; t), j E'~~'E' In Q' (E'; t). (39) 

A necessary condition for the convergence of the first 
integral is the existence of the Lim [iJip( E'; t) - iJiA( E'; 
t)); for the convergence of the second, the conditional 
convergence of the integral 

SW1j1P(E)-ljlA(E) dE, (40) 
Eln'E 

In the case of elastic scattering the integral theorem 
can be refined; to wit: 

~ S ,dE' 'I In Q' (E'; t=O) = Lim [ljlp(E') -1jl .. (E') ] 
It • (E '-Il') • 

-",E [w(a)-w(-a')]' 

where w( E) is the potential of a plane electromagnetic 
field in a plane with cuts and boundary values ±Y2 on the 
right and left cuts. The existence of the limit on the 
right-hand side is assumed and the summation is over 
all the zeros of the amplitude fp( E) in the plane with 
the cuts. 
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Let N and v be the numbers of zeros the amplitude 
has in the plane with cuts and on the cuts. From the 
inequality ~otot( E') ~ 0 and the Froissart-Martin limit 
we can obtain the estimates 

{ 
4 wi!en sign j. (I-l) = signj ... (I-l) =1 

N+v";;; 3 wi].en signj.(I-l)=-sign!A(I-l) 

2 when signfp(l-l) = sign/ ... (I-l) =-1 

6. AMPLITUDES WITH AN INFINITE NUMBER OF 
COMPLEX ZEROS 

Let Ek = Ek(t) be the complex zeros of the function 
f( E; t) in the upper half-plane. From the polynomial 
boundedness of f( E) clearly follows the convergence of 
Blaschke product over these zeros (see, for exam
ple,[lf,15]) 

:I(E;t)= II (1- :.)( 1-- :'.)-' (41 ) 

Let us represent the amplitudes f( E; t) in the form 

f(E; t)=:I(E; t)j(E; t), (42) 
A 

where f (E; t) does not have zeros in the upper half-
plane 1m E > O. Accordingly, 

¢(E; t) =arg n (E; t)+arg j(E; t). (43) 

It is well known[lf,15] that the condition for the converg
ence of the Blaschke product IT( E) is the convergence of 
the series 

~ I Im~ I <+00, 
"-oJ E. (44) 

Notice that 21 rr( E) 1 is none other than the potential of 
the field induced in the upper half-plane with a grounded 
boundary by unit charges located at the points Ek. 

The sequence of complex zeros {Ek} does not have 
real limiting values, since otherwise argf(E) would 
have at such a point an infinite jump. Therefore, {Ek} 
either contains a finite number of points or it tends to 
infinity. In both cases 1f( E) is continuous on the real 
axis; IlT( E) 1 = 1; arg 1f( E) is uniquely determined by 
the normalization 1f( 0) = 0 and is strictly an increasing 
function provided {Ek} is not empty. In the last case 
1f( E) == 1 and it is rot conSidered. 

It follows from the crOSSing-symmetry relation 
fA( E) = fp( -E*) that the zeros of the amplitudes fp( E) 
and fA( E) are connected by the relation EA,k = -Ep k' 
and lTA(E) = lTp( -E*), i.e., the corresponding Blaschke 
products and, consequently, the functions fp A( E) also 
satisfy the crOSSing-symmetry condition. or: the real 
axis 

(45) 

The functions In fp A( E) are analytic in the upper 
half-plane and satisfy,' in their turn, the crossing-sym
metry condition. Following from the fact that f( E) 
satisfies a dispersion relation is the result than in f( E) 
satisfies a dispersion relation is the following form: 

I(E) 1 S (1 1) I (E')ldE' In-_ -=ilE+-· ---- In f , 
j(O) ill E'-E E' 

(46) 

where 
2 • . 

1= lim -~ In-lj(Re'O) Isin 'Pd'P, 0,,;;;1<00, 

It follows from the crossing symmetry that lp = LAo If 
l > 0, then this implies that the amp'litude f( E) tends in 
the complex direction to zero like eilE , and instead of 
f( E) and f (E) it is more convenient to consider 
e-ilEf( E) and e-UEf( E). 

If the amplitudes fp A( E; t) do not have real zeros 
and poles, then (see (46» 

arg [f,.(E)i ... (E)]= Im~ S (_,1 __ ~) Inl/.(E')j ... (E') IdE'+21E. 
m E -E E (48) 

Since on account of crOSSing symmetry 1 fp( E) fA( E) 1 

= 1 fp ( -E* )fA( -E*) I, the integral in (48) is equal to 
o(in E) and 

arglJ.(E)/ .. (E)] =2IE+o (In E). (49) 

Turning to the phases of the amplitudes, we obtain 

¢.(E; t)+1jlA(E; t)=argll.(E; t)+arg:lA(E; t)+2IE+o(lnE). (50) 

All the terms on the right-hand side strictly increase 
and cannot cancel each other out. Hence: 

a) If lJip(E) + lJiA(E) = o(cp(E», where cp(E) is a 
positive nondecreasing function (<p( E) = o( E», then 
l = 0 and arg rrp,A(E) = o(cp(E». 

b) In particular, if lJip(E) + lJiA(E) = o(ln E), then 
l = 0 and argrrp,A(E) = o(in E). 

The property b) was obtained by Cornille and 
Martin[lO] by a method that required some additional 
assumptions. 

If for E - +00 the Lim Q2( E; t) = y2 exists, then from 
(46) and the crOSSing symmetry follow the following 
representations for the phases lJip ,A ( E; t): 

1jJ.,A(E;t)=argn.,A(E;t)±ln1InE+1E+o(lnE). (51) 
11 

The upper sign is for lJip and the lower sign is for lJiA' 
The condition for the convergence of lTp A( E) is the 

convergence of the series (44). Let CPP,A(E) be two 
arbitrary increaSing functions. We can always choose 
the zeros Ek such that for E - ± 00 

arg 11. (E) ='P.(E) +0 (In E), arg nA(E) ='PA(E) +o(ln E). (52) 

These relations hold if the numbers of zeros with real 
parts in the intervals (0, E) and (-E, 0) are respec
tively equal to the integral part of <p p A( E)/ IT and the 
imaginary parts decrease suffiCiently 'rapidly. 

Let y > 0 be arbitrary, and let us choose an arbitrary 
real function p( E') that is sufficiently smooth at the 
point E = 0 and that satisfies the conditions 

S ~lp(E')I<+oo, Lim[p(E')-p(-E')]=ln1, E' ..... +oo. (53) 
1+E" 

Let us now determine 

j.(E)=expL: S (E'~E - ;,) p(E')dE']. !A(E) =fr,. (-E'), (54) 

j.(E)=lI.(E)/.(E), /A(E)=lI."(-E·)/A(E). (55) 

It follows from (52) and (53) that the phases of the two 
functions fp A( E), which are analytic in the upper half
plane, are related by the crossing symmetry, and 
satisfy the condition 

Lim If.(E)/fA(E) 1=1, (56) 

can be represented in the form 
R_~ :lR 0 (47) 1jlp, A(E) ='Pp, A(E)±lc'ln 1 lnE+o(lnE). (57) 

Thus, there exist for any positive increaSing func-
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tions CPP,A( E) and any y > 0 an odd number of pairs of 
analytic functions fp ,A( E) which are related by cross
ing symmetry and which satisfy (56) and (57). Further
more, the only real limitation on the asymptotic forms 
of the phases lJIp ,A( E) for a gi ven y that follows from 
the analyticity and crossing-symmetry conditions is the 
condition that cP P A( E) be positive and increasing func
tions. Precisely because of this, the condition lJIp A( E) 
= o( in E) entails the equality y = 1. ' 

In the case of an elastic reaction, to the crossing
symmetry condition must be added such consequences 
of unitarity as the boundedness of the phases lJIp A ( E; 
t = 0), which is possible only when y = 1. For y '= 0 or 
y = "", the difference p(E) - p( -E) -±"" and (57) gets 
replaced by the relation 

1jlp, A(E)='I'p, A(E)±lC'[p(E)-p(-E) llnE+o{[p(E)-p(-E) linE}. 

(58) 

A defect of the above-formulated results is the ad
ditional assumption that the amplitudes have a finite 
number of real zeros. Furthermore, it is not possible 
in the axiomatic approach to even regard the real zeros 
as discrete points. 

Let us denote the total number of zeros of the func
tions fp,A(E) in the interval (0, E) by VP,A(E), con
sidering the poles to be zeros of negative multiplicity. 
Let us consi.der the electrostatic field with the complex 
potential e-1l Efp A( E) and with lines of force defined 
by the relation ' 

arg jp, A(E) -I ReE=const. (59) 

This field is induced by charges distributed along the 
real axis. The magnitude of the charge in the interval 
(0, E) is equal to the flux of the field-lines of force 
passing through the interval divided by 21T, and has the 
form 

(60) 

This partition is determined by the fact that v( E) is its 
Singular par,! and dv( E') = 0 almost everywhere. The 
function In \ f( E' >1 is absolutely continuous, and the 
analytic function f( E) has neither zeros nor poles in the 
closed upper half-plane. 

In contrast to the phases lJIp A (E'), the functions 
lJIp A(E') + 1TVP A(E') are continuous functions that are 
defined for all ~eal E'. It can be shown that the results 
obtained under the assumption that the number of real 
zeros is finite remain valid provided that a symmetry 
relation of the form 

'Vp(E) -"A(E) =0 (In E) 

is satisfied and lJIp,A(E) is replaced by 1/iP,A(E) 
+ rrvp,A(E). 

7. ANOTHER APPROACH TO THEOREMS OF THE 
TYPE OF THE POMERANCHUK THEOREM 

(61) 

The most adequate method for obtaining the asymp
totic relations between the cross sections is a method 
based on the generalized Phragmen-Lindelof-Nevan
linna maximum principle and certain theorems given in 
the Appendix to the present author's paper[912). 

Let the function g_( E) (see (8» be bounded for 
E - +"". If the difference AO'tod E) between the total 
cross sections preserved its Sign as E - + JO, then it 
would follow from the general theorems given in[9] that 
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the amplitudes fp A( E) increase in the complex direc
tion like a linear exponential function, which, in the 
local theory, is forbidden. 

We can get rid of the superfluous limitation on g_ (E) 
for E - +00 by replacing it by a necessary condition for 
the validity of the PT: to wit, by the condition Re g_ (E) 
= o( E In E). For this purpose, we had to prove the fol
lowing special property: 

Let F( E) be analytic in the region 1m E > 0, I E \ 
> Eo, continuous right up to the boundary, crossingwise 
symmetric, and bounded, and let 1m F( E) - 0 for 
E - +.>0. If for E 2: Eo the imaginary part 1m F(E) 
does not change sign, then in any interval (Eo, Ed 

mini ImF(E) I <'/2n' max ReIF(E) I/ln(EIE,). (62) 

The meaning of this propOSition is that although the 
function F( E) itself need not even tend to zero, its 
imaginary part tends, on account of the crOSSing sym
metry, to zero not more slowly than (in Efl at least 
along some sequence. We omit the proof of the theorem: 
it can very easily be derived from harmonic-measure 
theory, which is expounded in, for example,[141• 

To prove the PT under the condition that Re g_l( E) 
= o( E In E), it is sufficient to take as F( E) the func
tion3) g_ (E)fln (-iE). A shortcoming of such a proof is 
that we have to a priori assume the existence of the 
limit of AO'tod E') for E' - +.>0. We can eliminate this 
shortcoming by proving that (62) is valid in full meas
ure. In order to prove the asymptotic relations for the 
differential cross sections, it is necessary to take as 
F( E) the auxiliary function (see (42)) 

iln[j~(E)lf:(E) ]/In(-tE), 

If the number of real zeros of the amplitudes is 
finite, and the function (see (60)) 

i1n[fp(E)If A(E) ]/In(-iE). 

if the relation (61) holds. 

APPENDIX 1 

(63) 

(64) 

Let M be some set on the real axis and u( z; M) a 
harmonic function defined in the upper half -plane by the 
boundary values u( z') = 1 for z' w M and u( z') = 0 for 
the remaining points. Then 

1 J ydx' 
u(z;M)=- (' ),+" z=x+iy. 

n M x -x y 
(A.1) 

This formula is equivalent to O(z' - z~) being regarded 
as the boundary value of the function 1T- 1 1m (z - z~ fl. 
Therefore, it is natural to define the density, denoted 
by d( M \ z~), of the set M at the point z~ by the relation 

, . 1 J ydz' 
d(Mlz. )=hm- (' ') ,y ..... +O. 

1t M Z -Zo 2+y2 
(A.2) 

We shall call the set M a set of full or zero measure 
at the point z~ according as d(M\ z~) = 1 or O. We shall 
call M a set of full measure to the right or to the left at 
z~ if M is located to the right or to the left of the point 
z~ and d( M \ z~) = Y2' Let us call the limit, if it exists, 
to which the function v( z') tends as z' - z~ along some 
set of full measure at z~ the limit in full measure of 
the function v( z') at the point z~ and denote it by 
Lim v( z'), z' - z~. 

It follows from the definition that if the function 
v( z') has different signs at the points of M lying to the 
left and right of z~ and \ v( z') I > 1) > 0, then we find 
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that in a sufficiently small upper complex vicinity of the 
point z~ 

I 1J( 1 1) (') 'I 2'1 (I ')1 Iz,-zo'I (A.3) Re- -,---,- v z dz >-d M z, n--,-
n A Z -Z Z -Z, n Iz-z, I 

The addition of a constant to v( z') does not signifi
cantly change the left-hand side of (A.3), and therefore 
the estimate is also correct in the case when there 
eixsts a constant a such that the quantity v( z') - a has 
different signs at the points of M lying to the left and 
right of z~ and v( z') lies outside the interval (a -1/, 
a + 1]). 

Let us recall that M is called a harmonic null-set if 
for some Zo the quantity u( zo; M) = O. In this case 
u( z; M) == O. It is easy to verify that a null set has zero 
density at all points and, conversely, that a set of zero 
density at all points is a null set. It is claimed that a 
property obtains almost everywhere on the real axis if 
it obtains everywhere except, perhaps, on some null set. 
For example, it can be shown on the basis of Fatou's 
theorem (see, for example,P41) that functions satisfying 
dispersion relations have almost everywhere on the 
axis limiting values. 

APPENDIX 2 

The following conditions are sufficient for the valid
ity of the representation (2), i.e., for the once-sub
tracted dispersion relation: 

la. The function v( z) has limiting angular values 
almost everywhere on the real axis, i.e., for any 1[/2 
> Ii> 0, v(z') = lim v(z) for z- z' and 

lI<arg(z-z') <31-11. (A.4) 

2a. The equality 

limS~ Iv(z'+i8) 1= J~ Iv(z') 1<+00, 8-+0, (A.5) 
. 1 +z" 1 +z'· 

is valid. 

3a. The equality 

1 A lim-J I v (Re'·) I sin cp dcp=O for R-oo. (A.6) 
R, 

is satisfied. 

Only v( z) = 1m f( z) figures in these conditions. If we 
know the behavior of not only I v ( z) I , but also of I f( z) I 
as we approach the boundary, then the sufficient condi
tions can be modified in the following manner: 

lb. The function f( z) has limiting angular values 
almost everywhere on the real axis. 

2b. The equality 
. J dz' ,. J dz' , lim 1+z" I/(z +18) 1= 1+z"I/(z) I 

for € - +00, 

is valid. 

3b. The equality 

(A.7) 

lim~ Sln+I/(Re")lsinCPdCP=o, R-+oo, (A.8) 
R, 

is satisfied. 

Comparing the conditions a) with the conditions b), we 
can see that the condition 3a is incomparably more 
rigid than the condition 3b, but it can be shown that this 
is completely balanced by the fact that the condition 2b 
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is more rigid than 2a. The conditions la and 3a (and, 
correspondingly, Ib and 3b) are necessary conditions at 
the same time. The conditions a) are altogether neces
sary if we consider a representation of the form (2) in 
which the integral converges absolutely. 

The impression may be created that the condition 3a 
(consequently 3b) separates out the point at infinity. In 
fact, it follows from the condition 2a (and, consequently, 
2b) that the equality . 

limp J Iv(z'+pe f.) Isincpdcp=O, p-O; (A.9) 

is valid for any real point; consequently, . 
lim p pn+I/(z'+pe f.) Isin cp dcp=O, p-O. (A.I0) 

It follows from the conditions a) and b) that although 
the limiting values v(z') and f(z') are, generally 
speaking, generalized functions, they can almost every
where be regarded as ordinary local functions; and that 
in integrations over the harmonic measure dz'/ rr( 1 
+ Z'2) their behavior on an exclusive null set is of no 
importance. 

I)The convergence of (17) under slightly more rigid conditions, i.e., 
under the conditions that the limits of fp,A(E)/E for E .... +00 along 
the real axis should exist, was asserted in [13), but the proof given 
there is incorrect. 

2)The proof of the fundamental theorem in Sugawara and Kanazawa's 
paper (16) is not correct. 

3)This proof was expounded by us at the summer school in Uzhgorod 
in 1967. 
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